A thin-film multi-layer high Q inductor spanning at least three metal layers is formed by forming a plurality of parallel first metal runners on the semiconductor substrate. A plurality of first and second vertical conductive vias are formed in electrical communications with each end of the plurality of metal runners. A plurality of third and fourth conductive vias are formed over the plurality of first and second conductive vias and a plurality of second metal runners are formed interconnecting the plurality of third and fourth conductive vias. The plurality of first metal runners are in a different vertical than the plurality of second metal runners such that the planes intersect. Thus one end of a first metal runner is connected to an overlying end of a second metal runner by way of the first and third vertical conductive vias. The other end of the second metal runner is connected to the next metal one runner by way of the second and fourth vertical conductive vias., forming a continuously conductive structure having a generally helical shape.
|
2. A multi-level integrated circuit inductor structure, comprising:
a semiconductor substrate having a plurality of insulating layers and a plurality of conductive layers therebetween, and further having a plurality of active devices formed therein; runner conductive portions including first and second terminal ends thereof, wherein each of the first and the second terminal ends is connected to one of the plurality of active devices; vertical conductive portions; wherein lower runner portions are formed in a lower conductive layer of the semiconductor substrate; wherein upper runner portions are formed at least two or more conductive layers above the lower runner portions; wherein two or more vertically aligned first via portions effect electrical connection between a first end of a first lower runner portion and an overlying first end of a first upper runner portion; and wherein two or more vertically aligned second via portions effect electrical connection between a first end of a second lower runner portion and an overlying second end of the first upper runner portion.
1. An integrated circuit inductor structure comprising:
a semiconductor substrate having a plurality of insulating layers and a plurality of metallization layers therebetween; a plurality of first conductive strips disposed in a first metallization layer of said semiconductor substrate; a first stack of conductive vias in electrical connection with a first end of each one of the plurality of first conductive strips; a second stack of conductive vias in electrical connection with a second end of each one of the plurality of first conductive strips; and a plurality of second conductive strips disposed in a second metallization layer of said semiconductor substrate, wherein one of the plurality of second conductive strips spans and interconnects two consecutive first conductive strips through the first and the second stack of conductive vias, and wherein each one of the plurality of second conductive strips has a first end in electrical connection with an upper surface of the first stack of conductive vias and a second end in electrical connection with an upper surface of the second stack of conductive vias for interconnecting the two consecutive first conductive strips, wherein the plurality of second conductive strips are vertically spaced-apart from the plurality of first conductive strips with at least three intervening metallization layers therebetween.
|
This patent application claims priority to the provisional patent application filed on Jun. 28, 2001, and assigned Ser. No. 60/301,285.
This invention relates generally to inductors formed on an integrated circuit substrate, and more specifically to inductors having a core spanning at least three metal layers of the integrated circuit.
The current revolution in wireless communications and the need for smaller wireless communications devices has spawned significant efforts directed to the optimization and miniaturization of radio communications electronics devices. Passive components of these devices (such as inductors, capacitors and transformers), play a necessary role in the devices' operation and thus efforts are directed toward reducing the size and improving the fabrication efficiency of such components.
Inductors, which play an integral role in the performance of electronic communications devices, are electromagnetic components comprising a plurality of windings typically enclosing a core constructed of either magnetic material or an insulator. Use of a magnetic core yields higher inductance values. The inductance is also substantially affected by the number of coil turns; specifically, the inductance is proportional to the square of the number of turns. The inductance value is also affected by the radius of the core and other physical factors. Conventional inductors are formed as a helix (also referred to as a solenoidal shape) or a torroid.
With the continual allocation of operational communications frequencies into higher frequency bands, inductor losses increase due to increased eddy current and skin effect losses. For use in devices operating at relatively low frequency, inductors can be simulated by employing certain active devices. But simulated inductors are more difficult to realize at higher frequencies, have a finite dynamic range and inject additional and unwanted noise into the operating circuits.
The Q (or quality factor) is an important inductor figure of merit. The Q measures the ratio of inductive reactance to inductive resistance. High Q inductors present a narrow peak when the inductor current is graphed as a function of the input signal frequency, with the peak representing the frequency at which the inductor resonates. High Q inductors are especially important for use in frequency-dependent circuits operating with narrow bandwidths. Because the Q value is an inverse function of inductor resistance, it is especially important to minimize the resistance to increase the Q.
Most personal communications devices incorporate integrated circuit active components fabricated using semiconductor technologies, such as silicon or gallium-arsenide. The prior art teaches certain integrated planar inductors (including torroidal or spiral shapes) developed to achieve compatibility with the silicon-based integrated circuit fabrication processes. However, such planar inductors tend to suffer from high losses and low Q factors at the operative frequencies of interest. These losses and low Q factors are generally attributable to dielectric losses caused by parasitic capacitances and resistive losses due to the use of thin and relatively high resistivity conductors. Another disadvantage of conventional planar inductors is due to the magnetic field lines perpendicular to the semiconductor substrate surface. These closed-loop magnetic field lines enter the material above, beside and below the inductor. Penetration of the dielectric materials increase the inductive losses and lowers the inductor's Q factor. Also, unless the inductor is located at a significant distance from the underlying active circuit elements formed in the silicon, the inductor magnetic fields induce currents in and therefore disrupt operation of the underlying active components.
With integrated circuit active devices growing smaller and operating at higher speeds, the interconnect system should not add processing delays to the device signals. Use of conventional aluminum interconnect metallization restricts circuit operational speed as the longer interconnects and smaller interconnect cross-sections increase the interconnect resistance. Also, the relatively small contact resistance between the aluminum and silicon surfaces creates a significant total resistance as the number of circuit components grows. It is also difficult to deposit aluminum with a high aspect ratio in vias and plugs, where the aspect ratio is defined as the ratio of plug thickness to diameter.
Given theses disadvantages, copper is becoming the interconnect of choice because it is a better conductor than aluminum (with a resistance of 1.7 micro-ohm cm compared to 3.1 micro-ohm cm for aluminum), is less susceptible to electromigration, can be deposited at lower temperatures (thereby avoiding deleterious effects on the device dopant profiles) and is suitable for use as a plug material in a high aspect ration plug. Copper interconnects can be formed by chemical vapor deposition, sputtering, electroplating and electrolytic plating.
The damascene process is one technique for forming active device copper interconnects. A trench is formed in a surface dielectric layer and the copper material is then deposited therein. Usually the trench is overfilled, requiring a chemical and mechanical polishing step to re-planarize the surface. This process offers superior dimensional control because it eliminates the dimensional variations introduced in a typical pattern and etch interconnect process. The dual damascene process extends the damascene process, simultaneously forming both the underlying vias and the interconnecting trenches from copper. First the plug via and then the metal trench is formed. A subsequent metal deposition step fills both the via and the trench, forming a complete metal layer. A chemical and mechanical polishing step planarizes the top surface or the substrate.
U.S. Pat. No. 6,008,102 describes one process for forming a three-dimensional or helical inductor using copper layers formed by conventional and multiple patterning, etching and deposition steps. The multiple interconnecting vias are formed and filled with metal in separate steps from the formation and filling of the trenches.
To provide further advances in the fabrication of inductors in conjunction with active devices on a semiconductor substrate, an architecture and processes is provided for forming such an inductor within the conventional metal layers of an integrated circuit, wherein the inductor core area is larger than prior art inductors, resulting in a higher inductance value and a higher Q figure of merit. Also, an inductor formed according to the teachings of the present inventions has a desirable low-resistance (and thus high Q) in a relatively compact area of the integrated circuit. One technique for forming such an inductor is a dual damascene process.
According to one embodiment of the invention, a plurality of parallel lower conductive strips are formed overlying the semiconductor substrate, in which active components were previously formed. First and second vertical conductive via openings are formed over first and second opposing edges of each lower conductive strip and conductive material is deposited within the via openings to form first and second conductive vias. Two additional via openings are formed in vertical alignment with the first and the second conductive vias and filled with metal to form third and fourth conductive vias. A plurality of upper conductive strips are then formed, wherein the plane of an upper conductive strip intersects the plane of a lower conductive strip such that a first edge of one upper conductive strip overlies the first edge of a lower conductive strip, and the two edges are interconnected by the first and the third conductive vias. A second edge of the upper conductive strip overlies the second edge of the next parallel lower conductive strip, and these edges are electrically connected by the second and the fourth conductive vias. Thus the inductor comprises a helix of individual windings.
According to another embodiment of the invention, a plurality of parallel lower damascene trenches or windows are formed in a first multi-layer stack of dielectric layers overlying the existing substrate. The trenches are filled with copper. Two vertical conductive vias are formed in electrical communication with each edge of each lower damascene trench and copper is deposited therein. Next, according to a dual damascene process, an additional plurality of vias and upper trenches are formed in a second multi-layer stack of insulating layers overlying the first stack. The vertical plane of the lower damascene trench intersects the vertical plane of the upper damascene trench. A pair of vias associated with each one of the upper trenches is vertically aligned with the previously formed vias connected to the lower trench. The additional plurality of vias and upper trenches are filled with copper, preferably by electroplating and the surface then undergoes a chemical and mechanical polishing step. Because the planes of the lower and upper damascene trenches intersect, a helical succession of lower and upper damascene trenches interconnected by the conductive vias is formed.
The present invention can be more easily understood and the further advantages and uses thereof more readily apparent, when considered in view of the detailed description of the invention and the following figures in which:
In accordance with common practice, the various described device features are not drawn to scale, but are drawn to emphasize specific features relevant to the invention. Reference characters denote like elements throughout the figures and text.
One process for forming an inductor according to the present invention begins as shown in
A layer 24 overlying the insulating layer 22 comprises a hard mask of silicon dioxide. To etch a layer or layers below a hard mask, photoresist material is applied over the hard mask, the photoresist is patterned and then the pattern is transferred from the photoresist to the hard mask. The photoresist is removed and the etching steps are carried out using the hard mask pattern. This process advantageously offers better dimensional control of the etched features. In lieu of a hard mask, conventional photo resist patterning and etching steps can be utilized. In either case, as shown in
Turning to
In certain circuit configurations it may be necessary to connect the metal-1 runner 34 to underlying active device regions in the substrate. For instance one end of the metal-1 runner serves as an inductor terminal for connection to another component in the circuit. This can be accomplished by a dual damascene process by first forming a via opening for connecting one end of the metal-1 runner to an underlying device region. The second step forms the window 30, and the third step simultaneously fills the via opening and the trench 30 to form a conductive via and the metal-1 runner 34. By this technique, the metal-1 runner 34 is connected to the underlying device region. The conductive via can also be formed by conventional processes and then the metal-1 runner 34 formed in electrical contact therewith.
As shown in
Turning to
As illustrated in
As shown in
As shown in
As discussed above, the metal-3 runner 108 is not in the same vertical plane as the metal-1 runner 34. Further, there are a plurality of parallel-oriented metal-1 runners 34 and metal-3 runners 110, interconnected as shown in the top view of
In the embodiment of
Although the Figures and accompanying description herein illustrate placement of the bottom and top metal layers of the inductor in the metal-1 and metal-3 layers of the integrated circuit, the inventive features of the present invention can be applied such that the inductor spans other metal layers, for example, the bottom segment of the winding can be placed within the metal-2 layer and the top segment of the winding can be placed within the metal-4 layer or the metal-5 layer. Other embodiments where different metal layers and a different number of metal layers are spanned are considered within the scope of the present invention. Further, although in one embodiment, the inductor according to the present invention is formed using the damascene process, the invention is not limited to the use of this technique.
Although formation of the inductor according to the present invention has been described using a damascene process, the invention is not limited thereto. The inductor can also be formed using conventional metal deposition and etch steps wherein the metal layers forming the top and bottom winding segments are interconnected by vertical vias spanning at least three metal layers, i.e., at least one metal layer is not used to form either a top or a bottom winding segment.
Advantageously, the multi-layer inductor formed according to the teachings of the present invention is compatible with conventional CMOS backflow (i.e., interconnect) processing and does not require any additional masking steps during the process of fabricating the CMOS devices. Because the conductive structures are formed of copper, the resulting conductor has relatively lower resistance than those formed with aluminum and thus a higher Q. A larger inductor cross-sectional area results from the use of metal layers at different levels of the substrate (for example, metal-1 to metal-3 or metal-3 to metal-5) and produces a higher inductance value. As illustrated by the processing steps discussed above, the inductor is highly integratable either on-chip with other active elements or as part of a multi-module device constructed on a common substrate. The use of less conductive material in the inductor structure lowers the eddy current losses. Also, the magnetic circuit lines are more concentrated due to the compact inductor structure, and thus the inductance is increased and the effect on proximate regions of the integrated circuit is reduced.
An architecture and process have been described as useful for forming a thin film multi-layer high Q inductor on a semiconductor substrate. While specific applications of the invention have been illustrated, the principals disclosed herein provide a basis for practicing the invention in a variety of ways and in a variety of circuit structures. Numerous variations are possible within the scope of the invention, including the use of any two metal layers to form the inductor conductors. The invention is limited only by the claims that follow.
Layman, Paul Arthur, Chaudhry, Samir, Thomson, J. Ross, Griglione, Michelle D., Laradji, Mohamed
Patent | Priority | Assignee | Title |
11437174, | May 19 2015 | Shinko Electric Industries Co., Ltd.; TOKYO COIL ENGINEERING CO., LTD. | Inductor and method of manufacturing same |
6717232, | Jul 12 2000 | NXP B V | Semiconductor inductor and methods for making the same |
7023316, | Dec 05 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Semiconductor device with electrically coupled spiral inductors |
7129561, | Nov 19 2003 | GLOBALFOUNDRIES U S INC | Tri-metal and dual-metal stacked inductors |
7417301, | Mar 25 2004 | Infineon Technologies AG | Semiconductor component with coreless transformer |
7714688, | Jan 20 2005 | KYOCERA AVX Components Corporation | High Q planar inductors and IPD applications |
8395455, | Oct 14 2011 | United Microelectronics Corp. | Ring oscillator |
8410576, | Jun 16 2010 | National Semiconductor Corporation | Inductive structure and method of forming the inductive structure with an attached core structure |
8421509, | Oct 25 2011 | United Microelectronics Corp. | Charge pump circuit with low clock feed-through |
8493806, | Jan 03 2012 | United Microelectronics Corporation | Sense-amplifier circuit of memory and calibrating method thereof |
8513750, | Dec 31 2007 | TAHOE RESEARCH, LTD | Forming inductor and transformer structures with magnetic materials using damascene processing for integrated circuits |
8588020, | Nov 16 2011 | Marlin Semiconductor Limited | Sense amplifier and method for determining values of voltages on bit-line pair |
8643521, | Nov 28 2012 | United Microelectronics Corp. | Digital-to-analog converter with greater output resistance |
8669897, | Nov 05 2012 | United Microelectronics Corp. | Asynchronous successive approximation register analog-to-digital converter and operating method thereof |
8692608, | Sep 19 2011 | United Microelectronics Corp. | Charge pump system capable of stabilizing an output voltage |
8711598, | Nov 21 2012 | United Microelectronics Corp. | Memory cell and memory cell array using the same |
8724404, | Oct 15 2012 | Marlin Semiconductor Limited | Memory, supply voltage generation circuit, and operation method of a supply voltage generation circuit used for a memory array |
8767485, | Oct 15 2012 | Marlin Semiconductor Limited | Operation method of a supply voltage generation circuit used for a memory array |
8804440, | Oct 15 2012 | Marlin Semiconductor Limited | Memory for a voltage regulator circuit |
8859384, | Aug 01 2013 | International Business Machines Corporation | Inductor formation with sidewall image transfer |
8866536, | Nov 14 2013 | United Microelectronics Corp. | Process monitoring circuit and method |
8873295, | Nov 27 2012 | Marlin Semiconductor Limited | Memory and operation method thereof |
8917109, | Apr 03 2013 | United Microelectronics Corporation | Method and device for pulse width estimation |
8947911, | Nov 07 2013 | United Microelectronics Corp. | Method and circuit for optimizing bit line power consumption |
8953401, | Dec 07 2012 | Marlin Semiconductor Limited | Memory device and method for driving memory array thereof |
8970197, | Aug 03 2012 | Marlin Semiconductor Limited | Voltage regulating circuit configured to have output voltage thereof modulated digitally |
9030221, | Sep 20 2011 | United Microelectronics Corporation | Circuit structure of test-key and test method thereof |
9030886, | Dec 07 2012 | United Microelectronics Corp. | Memory device and driving method thereof |
9105355, | Jul 04 2013 | United Microelectronics Corporation | Memory cell array operated with multiple operation voltage |
9143143, | Jan 13 2014 | United Microelectronics Corp. | VCO restart up circuit and method thereof |
9412734, | Dec 09 2014 | Marlin Semiconductor Limited | Structure with inductor and MIM capacitor |
9577023, | Jun 04 2013 | GLOBALFOUNDRIES Inc | Metal wires of a stacked inductor |
9735110, | Sep 26 2008 | Rohm CO, LTD | Semiconductor device and semiconductor device manufacturing method |
Patent | Priority | Assignee | Title |
4313152, | Jan 12 1979 | U.S. Philips Corporation | Flat electric coil |
5095357, | Aug 18 1989 | Mitsubishi Denki Kabushiki Kaisha | Inductive structures for semiconductor integrated circuits |
5157576, | Feb 20 1990 | TDK Corporation | Composite electric part of stacked multi-layer structure |
5227659, | Jun 08 1990 | Trustees of Boston University | Integrated circuit inductor |
5372967, | Jan 27 1992 | Motorola, Inc. | Method for fabricating a vertical trench inductor |
5446311, | Sep 16 1994 | MEDIATEK INC | High-Q inductors in silicon technology without expensive metalization |
5541442, | Aug 31 1994 | International Business Machines Corporation | Integrated compact capacitor-resistor/inductor configuration |
5559360, | Dec 19 1994 | Bell Semiconductor, LLC | Inductor for high frequency circuits |
5610433, | Mar 13 1995 | National Semiconductor Corporation | Multi-turn, multi-level IC inductor with crossovers |
5717243, | Apr 24 1996 | CONEXANT, INC | Integrated circuit with an improved inductor structure and method of fabrication |
5736749, | Nov 19 1996 | Bell Semiconductor, LLC | Integrated circuit device with inductor incorporated therein |
5863806, | Nov 21 1996 | United Microelectronics Corp. | Method of forming microcoil structure for integrated circuits |
6008102, | Apr 09 1998 | MOTOROLA SOLUTIONS, INC | Method of forming a three-dimensional integrated inductor |
6015742, | Sep 29 1997 | HANGER SOLUTIONS, LLC | Method for fabricating inductor of semiconductor device |
6031445, | Nov 28 1997 | STMicroelectronics SA | Transformer for integrated circuits |
6037649, | Apr 01 1999 | Intel Corporation | Three-dimension inductor structure in integrated circuit technology |
6057202, | Jan 16 1998 | WINDBOND ELECTRONICS CORP. | Method for manufacturing an inductor with resonant frequency and Q value increased in semiconductor process |
6083802, | Dec 31 1998 | Winbond Electronics Corporation | Method for forming an inductor |
6124624, | Feb 28 1997 | Telefonaktiebolaget LM Ericsson | Q inductor with multiple metallization levels |
6140197, | Aug 30 1999 | Chartered Semiconductor Manufacturing Ltd.; National University of Singapore | Method of making spiral-type RF inductors having a high quality factor (Q) |
6160303, | Aug 29 1997 | Texas Instruments Incorporated | Monolithic inductor with guard rings |
6166422, | May 13 1998 | Bell Semiconductor, LLC | Inductor with cobalt/nickel core for integrated circuit structure with high inductance and high Q-factor |
6187647, | Oct 12 1999 | Bell Semiconductor, LLC | Method of manufacturing lateral high-Q inductor for semiconductor devices |
6240622, | Jul 09 1999 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Integrated circuit inductors |
6249191, | Nov 23 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Monolithic integrated circuit oscillators, complementary metal oxide semiconductor (CMOS) voltage-controlled oscillators, integrated circuit oscillators, oscillator-forming methods, and oscillation methods |
6255714, | Jun 22 1999 | Bell Semiconductor, LLC | Integrated circuit having a micromagnetic device including a ferromagnetic core and method of manufacture therefor |
6420773, | Oct 04 2000 | Winbond Electronics Corp. | Multi-level spiral inductor structure having high inductance (L) and high quality factor (Q) |
6429504, | May 16 2000 | Macom Technology Solutions Holdings, Inc | Multilayer spiral inductor and integrated circuits incorporating the same |
EP725407, | |||
GB1279160, | |||
JP11354330, | |||
WO213271, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 03 2001 | GRIGLIONE, MICHELLE D | Agere Systems Guardian Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012256 | /0167 | |
Oct 03 2001 | LARADJI, MOHAMED | Agere Systems Guardian Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012256 | /0167 | |
Oct 03 2001 | THOMSON, J ROSS | Agere Systems Guardian Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012256 | /0167 | |
Oct 03 2001 | LAYMAN, PAUL ARTHUR | Agere Systems Guardian Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012256 | /0167 | |
Oct 03 2001 | CHAUDHRY, SAMIR | Agere Systems Guardian Corp | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012256 | /0167 | |
Oct 05 2001 | Agere Systems Inc. | (assignment on the face of the patent) | / | |||
Aug 31 2002 | Agere Systems Guardian Corp | AGERE Systems Inc | MERGER SEE DOCUMENT FOR DETAILS | 024990 | /0837 | |
May 06 2014 | Agere Systems LLC | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 032856 | /0031 | |
May 06 2014 | LSI Corporation | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 032856 | /0031 | |
Aug 04 2014 | Agere Systems LLC | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 035365 | /0634 | |
Feb 01 2016 | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | Agere Systems LLC | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS RELEASES RF 032856-0031 | 037684 | /0039 | |
Feb 01 2016 | DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT | LSI Corporation | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENT RIGHTS RELEASES RF 032856-0031 | 037684 | /0039 | |
Feb 01 2016 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | BANK OF AMERICA, N A , AS COLLATERAL AGENT | PATENT SECURITY AGREEMENT | 037808 | /0001 | |
Jan 19 2017 | BANK OF AMERICA, N A , AS COLLATERAL AGENT | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | TERMINATION AND RELEASE OF SECURITY INTEREST IN PATENTS | 041710 | /0001 | |
Dec 08 2017 | Broadcom Corporation | Bell Semiconductor, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044886 | /0608 | |
Dec 08 2017 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Bell Semiconductor, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 044886 | /0608 | |
Jan 24 2018 | HILCO PATENT ACQUISITION 56, LLC | CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045216 | /0020 | |
Jan 24 2018 | Bell Semiconductor, LLC | CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045216 | /0020 | |
Jan 24 2018 | Bell Northern Research, LLC | CORTLAND CAPITAL MARKET SERVICES LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 045216 | /0020 | |
Apr 01 2022 | CORTLAND CAPITAL MARKET SERVICES LLC | HILCO PATENT ACQUISITION 56, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059720 | /0719 | |
Apr 01 2022 | CORTLAND CAPITAL MARKET SERVICES LLC | Bell Semiconductor, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059720 | /0719 | |
Apr 01 2022 | CORTLAND CAPITAL MARKET SERVICES LLC | Bell Northern Research, LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 059720 | /0719 |
Date | Maintenance Fee Events |
Apr 20 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 21 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 25 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Oct 28 2006 | 4 years fee payment window open |
Apr 28 2007 | 6 months grace period start (w surcharge) |
Oct 28 2007 | patent expiry (for year 4) |
Oct 28 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 28 2010 | 8 years fee payment window open |
Apr 28 2011 | 6 months grace period start (w surcharge) |
Oct 28 2011 | patent expiry (for year 8) |
Oct 28 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 28 2014 | 12 years fee payment window open |
Apr 28 2015 | 6 months grace period start (w surcharge) |
Oct 28 2015 | patent expiry (for year 12) |
Oct 28 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |