A method of memory device fabrication. In one embodiment, the method of memory device (400) fabrication comprises implanting an element (200) in a substrate (440). The element (200) causes an inherent elongational realignment of atoms in silicon (101,102) when silicon (100) is formed (471) upon the substrate (440) with the element (200) implanted therein. A layer of silicon (100) is formed (471) on the substrate having the element (200) implanted therein (470), wherein alignment of atoms (101) of the silicon elongates (102) to an atomical alignment equivalent (101g) to said element (200). The layer of silicon (471) and the substrate (470) are crystallized subsequent to the elongational realignment of atoms of the layer of silicon (101g), wherein a crystallized layer of elongated silicon (101g) decreases electron scattering thus realizing increase core gain in the memory device (400).
|
1. A method of memory device fabrication comprising:
implanting an element (200) in a substrate (440), said element (200) causing an elongational realignment of atoms in silicon (101g) when said silicon (100) is formed upon said substrate (440) with said element (200) implanted therein; forming a layer of silicon (471) on said substrate (440) having said element (200) implanted therein (470), wherein alignment of atoms (101) of said silicon (100) elongates to an atomical alignment (101g) equivalent to said element (200); and crystallizing said layer of silicon (471) and said substrate (440), subsequent to said elongational realignment of atoms of said layer of silicon (101g), wherein a crystallized layer of elongated silicon (101g) decreases electron scattering (220) thus realizing increased core gain in said memory device.
2. The method as recited in
3. The method as recited in
5. The method as recited in
7. The method as recited in
|
The present invention relates a flash memory device. More particularly, the present invention relates to substrates in a flash memory device.
A flash memory device is a type of EEPROM (electrically erasable programmable read only memory) and is fast becoming a common device to store information. Today's flash memory devices are being used in numerous electronic devices including, but not limited to, digital cameras, MP3 players, laptop computers, personal digital assistants (PDAs), video game consoles, and the like. It is noted that numerous printers, e.g., inkjet, laser, and dedicated photograph printers are also being configured with flash memory drives to read flash memory devices. A flash memory device provides both the speed of volatile memory (RAM-random access memory) and the data retentive qualities of non-volatile memory (ROM.-read only memory). Additionally, with continued miniaturization of components and circuitry within an electronic system, flash memory devices are well suited to be incorporated into the diminutively sized systems.
As flash memory technology progresses, increased memory density and speed become critical. Writing to a flash memory cell and erasing a flash memory cell are slow when compared to reading of a flash memory cell. To read a cell, it is necessary to ensure that the drain current (also the reading current of the cell) is large enough to drive the output and to be able to control the level of the drive output buffer and speed. The speed with which the cell is read is determined by several factors including, but not limited to, the channel length of the device, e.g., a MOSFET (metal oxide semiconductor field emitting transistor), the threshold voltage, and gate oxide thickness.
To provide additional speed, the channel length has been continuously decreased to increase density and drive current for improved core gain, thus increasing speed of the device. However, there is a fundamental limit on the gate oxide or tunnel oxide thickness for flash memory due to reliability reasons. The tunnel oxide can not be scaled aggressively thin by virtue of the high voltage operations it undergoes during writing (programming) and erasing. This limits the core gain as the device is scaled down in terms of channel length.
Further, to comply with new diminutive form factors and other reduced size requirements, scaling down (size reduction) of the flash memory device is not without shortcomings. Scaling down of a flash memory device can cause problems with the internal effects of the flash memory device, e.g., degradation of the drive current, arising because of serious resistance from substrate doping problems.
Doping problems can include not driving the dopant deep enough into the substrate, or driving the dopant too deep into the substrate. Other problems can include having an excessively concentrated dopant, and conversely, having an insufficiently concentrated dopant. The amount of dopant concentration affects the operation of the transistor and, accordingly, the flash. memory device.
The dopant concentration is even more critical as flash memory devices become smaller and smaller and channel length decreases and where increased speed is demanded. A higher concentration of dopant will increase the Vt (threshold voltage) of the transistor while reducing associated leakage, which unfortunately reduces the speed at which the transistor can operate. The leakage is between the source and drain of the transistor. Additionally, if the dopant concentration is too high, thus a high Vt, a greater Vg (gate voltage) is required to provide enough overdrive to overcome the higher Vt and enable reading of the cell.
A lower concentration of dopant increases the speed with which the transistor can operate. It is noted, however, that a lower concentration of dopant will alsodecrease the Vt of the transistor and, unfortunately, increase associated leakage between the source and the drain. Further, because of the increase in leakage between the source and the drain, transistor functionality and reliability can be adversely affected with a dopant having too low of a concentration.
Thus, a need exists for a method to increase the speed in which a flash memory device is read. Another need exists for a method that increases core gain while maintaining a dopant concentration that provides the lowest threshold voltage and the least amount of leakage between the source and the drain. Yet another need exists for a method that increases core gain in a flash memory device while retaining device functionality and reliability.
Embodiments of the present invention are drawn to providing a method and apparatus for a memory device, e.g., a flash memory device, with increased core gain, through the formation and utilization of strained silicon. The present invention further provides a method and apparatus for a memory device which achieves a reduction in electron scattering. The present invention further provides a method and apparatus for a memory device that achieves the above and which is readily implementable in a memory device fabrication process.
A method of memory device fabrication is described. In one embodiment, the method of memory device fabrication comprises implanting an element in a substrate. The element causes an inherent elongational realignment of atoms in silicon when silicon is formed upon the substrate when the element is implanted therein. A layer of silicon is then formed on the substrate having the element implanted therein. The alignment of atoms of the silicon elongates to an atomical alignment equivalent to that of the element. The layer of silicon and the substrate are then crystallized, subsequent to the elongational realignment of atoms of said layer of silicon, wherein a crystallized layer of elongated silicon decreases electron scattering thus realizing increased core gain in the memory device. In one embodiment, the element implanted in the substrate is germanium.
These and other objects and advantages of the present invention will no doubt become obvious to those of ordinary skill in the art after having read the following detailed description of the preferred embodiments which are illustrated in the various drawing figures.
The accompanying drawings, which are incorporated in and form a part of this specification, illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention:
A method of memory device fabrication is described. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the present invention. To one skilled in the art, the present invention may be practiced without these specific details. In other instances, well-known structures and devices are shown in block diagram form in order to avoid obscuring the present invention.
Some portions of the detailed descriptions, which follow, are presented in terms of procedures, steps, processing, and other symbolic representations of operations that can be performed on memory devices. These descriptions and representations are the means used by those skilled in the memory device fabrication arts to most effectively convey the substance of their work to others skilled in the art. A procedure, step, process, etc., is here, and generally, conceived to be a self-consistent sequence of steps or processes leading to a desired result. The steps are those requiring physical manipulations of physical structures. It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical structures and processes and are merely convenient labels applied to these structures and processes.
The present invention is discussed primarily in the context of a memory device, such as a flash memory device. However, the present invention can be used with other types of memory devices that have the capability to have information/data stored, manipulated, and/or removed, including, but not limited to, flash memory devices.
While the present invention is discussed in the context of fabrication of a flash memory device, it is noted that embodiments of the present invention provide a method for implementing strained silicon in a memory device that can be readily adapted for inclusion in nearly any memory device fabrication process.
Further, in accordance with one embodiment of the present invention, it is noted that the formation of strained silicon and integration of strained silicon into a memory device can be readily added to nearly any memory device fabrication process. It is also noted that by readily and simply incorporating strained silicon into existing memory device fabrication processes, a substantial cost savings can be realized when compared to a extensive retooling of the fabrication process.
It is well known that elements with smaller molecular alignment structures have a greater amount of electron scattering than an element having a larger molecular alignment structure, given analogous distances for the electrons to travel.
It is specifically noted that an increase in drive current is realized when implementing strained silicon in a process of memory device fabrication. Additionally, another benefit is that the increase in drive current is realized while current Vt implant levels are maintained. Further, because current Vt implant levels are maintained, leakage in current between the source and drain is kept at the desired minimum or non-existent level.
Referring now to
It is noted that processes and procedures associated with shallow trench isolation, e.g., anisotropic isolation, thermal oxidation, oxide fill by CVD (chemical vapor deposition), CMP, and the like, have been previously performed upon substrate 410. Additionally, the present invention is also well suited to having triple well maskings and a triple well mask defect inspections performed upon substrate 410. Further, photo-lithographic processes, etching, thermal, and implant steps have also been performed upon substrate 410. These and other processes and procedures have not be shown or described so as to not unnecessarily obscure the present invention.
Now referring to
In step 702 of
In step 704 of
In step 706 of
In step 802 of
In step 804 of
In step 806 of
The foregoing descriptions of specific embodiments of the present invention have been presented for purposes of illustration and description. They are not intended to be exhaustive or to limit the invention to the precise forms disclosed, and obviously many modifications and variations are possible in light of the above teaching. The embodiments were chosen and described in order to best explain the principles of the invention and its practical application, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
Wang, Zhigang, Yang, Nian, Kim, Hyeon-Seag
Patent | Priority | Assignee | Title |
7221597, | May 26 2004 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Ballistic direct injection flash memory cell on strained silicon structures |
7261255, | Aug 12 2005 | Transformable airship | |
7473620, | Jan 17 2006 | S.O.I.Tec Silicon on Insulator Technologies | Process for adjusting the strain on the surface or inside a substrate made of a semiconductor material |
7678662, | Dec 13 2005 | Applied Materials, Inc | Memory cell having stressed layers |
Patent | Priority | Assignee | Title |
5891769, | Apr 07 1997 | Freescale Semiconductor, Inc | Method for forming a semiconductor device having a heteroepitaxial layer |
6403981, | Aug 07 2000 | Advanced Micro Devices, Inc. | Double gate transistor having a silicon/germanium channel region |
20020011603, | |||
20020185691, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 31 2002 | Advanced Micro Devices, Inc. | (assignment on the face of the patent) | / | |||
May 31 2002 | YANG, NIAN | Advanced Micro Devices, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012955 | /0271 | |
May 31 2002 | WANG, ZHIGANG | Advanced Micro Devices, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012955 | /0271 | |
May 31 2002 | KIM, HYEON-SEAG | Advanced Micro Devices, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012955 | /0271 | |
Jan 31 2007 | SPANSION INC | Spansion LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019069 | /0342 | |
Jan 31 2007 | Advanced Micro Devices, INC | SPANSION INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019047 | /0588 | |
May 10 2010 | SPANSION TECHNOLOGY INC | BARCLAYS BANK PLC | SECURITY AGREEMENT | 024522 | /0338 | |
May 10 2010 | Spansion LLC | BARCLAYS BANK PLC | SECURITY AGREEMENT | 024522 | /0338 | |
Mar 12 2015 | Cypress Semiconductor Corporation | MORGAN STANLEY SENIOR FUNDING, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE 8647899 PREVIOUSLY RECORDED ON REEL 035240 FRAME 0429 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTERST | 058002 | /0470 | |
Mar 12 2015 | BARCLAYS BANK PLC | SPANSION TECHNOLOGY LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035201 | /0159 | |
Mar 12 2015 | BARCLAYS BANK PLC | Spansion LLC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 035201 | /0159 | |
Mar 12 2015 | Spansion LLC | MORGAN STANLEY SENIOR FUNDING, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 035240 | /0429 | |
Mar 12 2015 | Cypress Semiconductor Corporation | MORGAN STANLEY SENIOR FUNDING, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 035240 | /0429 | |
Mar 12 2015 | Spansion LLC | MORGAN STANLEY SENIOR FUNDING, INC | CORRECTIVE ASSIGNMENT TO CORRECT THE 8647899 PREVIOUSLY RECORDED ON REEL 035240 FRAME 0429 ASSIGNOR S HEREBY CONFIRMS THE SECURITY INTERST | 058002 | /0470 | |
Jun 01 2015 | Spansion, LLC | Cypress Semiconductor Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 036032 | /0001 | |
Aug 11 2016 | Cypress Semiconductor Corporation | MONTEREY RESEARCH, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 040911 | /0238 | |
Aug 11 2016 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Spansion LLC | PARTIAL RELEASE OF SECURITY INTEREST IN PATENTS | 039708 | /0001 | |
Aug 11 2016 | MORGAN STANLEY SENIOR FUNDING, INC , AS COLLATERAL AGENT | Cypress Semiconductor Corporation | PARTIAL RELEASE OF SECURITY INTEREST IN PATENTS | 039708 | /0001 |
Date | Maintenance Fee Events |
Mar 18 2004 | ASPN: Payor Number Assigned. |
Mar 20 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 22 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 12 2015 | REM: Maintenance Fee Reminder Mailed. |
Jun 25 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Jun 25 2015 | M1556: 11.5 yr surcharge- late pmt w/in 6 mo, Large Entity. |
Date | Maintenance Schedule |
Nov 04 2006 | 4 years fee payment window open |
May 04 2007 | 6 months grace period start (w surcharge) |
Nov 04 2007 | patent expiry (for year 4) |
Nov 04 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 04 2010 | 8 years fee payment window open |
May 04 2011 | 6 months grace period start (w surcharge) |
Nov 04 2011 | patent expiry (for year 8) |
Nov 04 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 04 2014 | 12 years fee payment window open |
May 04 2015 | 6 months grace period start (w surcharge) |
Nov 04 2015 | patent expiry (for year 12) |
Nov 04 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |