The invention relates to a method for effecting an electronic drive control of a drive coil of a protection system using an electronic device which comprises a microcontroller. The aim of the invention is to increase the serviceable life of a protection system. To this end, the invention uses a randomly selected and constantly changing delay time (tx) that occurs after a time (t2, t3) at which the supply voltage is established on the electronic device.
|
1. A method for controlling a drive coil of a contactor having main contacts for a load current, the method comprising:
providing an electronic drive control apparatus including a microcontroller; and applying a randomly selected constantly varying time delay in the microcontroller after a time at which a supply voltage has built up at the electronic drive control apparatus and before a time at which the supply voltage is measured.
2. The method as recited in
3. The method as recited in
4. The method as recited in
5. The method as recited in
6. The method as recited in
7. The method as recited in
8. The method as recited in
checking the supply voltage after the applying the delay time; and activating the drive coil approximately 10 to 15 ms after a completion of the checking so as to initiate a pickup operation.
9. The method as recited in
10. The method as recited in
11. The method as recited in
12. The method as recited in
manipulating the read value; then writing the manipulated value into a register as a timer; then starting the timer so as to achieve a timer underflow when the timer reaches a zero value; then forwarding the timer underflow to a CPU; and then continuing a program.
13. The method as recited in
reading a value from a storage location of an EEPROM; determining a new value from the read value; and replacing the read value with the new value in the EEPROM.
|
The present invention relates to a method for controlling a drive coil of a contactor.
An electronic drive control for a magnetic drive is known from European Patent Application EP 0 789 378 A1.
If the control voltage of a contactor is drawn from one of the three phases, synchronization effects can ensue between the closing or opening angle of the main contacts in the load circuit and the AC control voltage.
This is due to the fact that a certain voltage build-up of the supply voltage for the electronics has to take place.
If the control voltage is switched on at voltage zero, then the supply voltage does not build up immediately but only at a later point in time. Around this point in time, an unwanted synchronization takes place as a result of which one of the three switching contacts of the contactor is always subject to higher wear. This means, that one contact has a switch-on point at which the voltage level is approximately identical, independently of the instant of the control signal. Since the service life of the contactor depends on the service life of the most eroded contact, the synchronization results in shortened service life of the overall device.
An object of the present invention is to provide a method for electronic drive control of a drive coil of a contactor with which the service life of the contactor is increased.
The present invention provides a method for controlling a drive coil of a contactor having main contacts for a load current. The method includes providing an electronic drive control apparatus including a microcontroller. A randomly selected constantly varying time delay is applied in the microcontroller after a time at which a supply voltage has built up at the electronic drive control apparatus and before a time at which the supply voltage is measured.
Via the present invention, an irregular erosion of the switching contacts is prevented and, consequently, the service life of the contactor is increased.
With reference to the drawings, embodiments of the present invention will be described and illustrated in greater detail.
The present invention will be elaborated upon below with reference to the drawings, in which:
Subsequent to switching on the supply voltage at instance t0 which is lies at the voltage zero crossing, the voltage of the electronics builds up only after 3 to 5 ms. Subsequent to this voltage build-up, a reset signal occurs for a microcontroller. The program is started. After this instant t1, the state is detected in which the contactor is operated. It is checked which type of control is concerned. The detection refers to the conventional operation, programmable control operation or low-power operation. This input recognition takes approximately 5 ms, the end of recognition being denoted by t2. If a voltage level is present, then the conventional operation is detected.
After this point in time, to prevent synchronization effects, provision is made for a randomly determined delay time tx ranging between zero and half the period duration of the control voltage.
The supply voltage is measured only after this delay time, the point in time being denoted by t3, it being possible for the supply voltage to be both a DC and an AC voltage. In this connection, it is checked which supply voltage is concerned (AC or DC). The level of the applied voltage is ascertained at the same time.
After t3, it is checked, moreover, whether the supply voltage lies within a predetermined voltage window Umin, Umax, i.e., whether the determined value lies in the permissible range.
These processes take approximately 12.5 ms, it being possible for instant t4 at which the contactor drive is activated, that is, the pickup process is initiated, to lie at any point of the sine curve of the supply voltage due to delay time tx. The time of the pickup process is different, depending on the contactor type. Depending on the contactor type, the pickup takes place after 50 to 100 ms.
Switching point t5 of the contacts is distributed at random for the other phases as well, resulting in a uniform loading of the switching contacts.
The unwanted synchronization effect will be explained in greater detail with reference to FIG. 2. The broken lines show different switch-on points with which different voltage values can be associated. Since the voltage for starting the microcontroller must first be built up, the reset signal lies always at the same point of the curve nearly independently of the switch-on time so that the switch-on times are virtually synchronized to the same reset time.
If the control voltage is switched on, for example, at the voltage zero point, then the supply voltage for the electronics does not build up immediately.
Using the explained method, unwanted synchronization effects between the closing angle or opening angle of the main contacts in the load circuit are prevented.
To implement a timing element having a variable time which is set at random, a random-number generator is required. The value delivered by the random-number generator is subsequently processed in such a manner that, via the subsequent processing of the value, a time from zero to maximally half the period duration of the control voltage ensues.
A random value is obtainable in two ways.
In a first embodiment, a value in a RAM storage location 11 in the microcontroller is read out, the content of this cell subsequent to switching on the voltage being undefined.
In a second embodiment, a value is obtained form a storage cell, or location, 1 of an EEPROM, the value being manipulated appropriately. The old value is utilized for determining the new value. The old value is then replaced with the new value in the EEPROM.
In a second embodiment, a value is obtained from a storage cell, or location, 1 of an EEPROM, the value being manipulated appropriately. The old value is utilized for determining the new value. The old value is then replaced with the new value in the EEPROM.
Subsequently, the manipulated value is written into a register 2. Then, the timer is started. When the timer reaches the value zero, then a timer underflow ensues which is forwarded to the CPU, and the program is continued.
Due to this additional time loop, the closing and opening angles of the main contacts with respect to the control voltage are not synchronized.
Meid, Wolfgang, Schmitz, Gerd, Melchert, Wilhelm
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4769737, | Jun 20 1986 | Kabushiki Kaisha Toshiba | Circuit for driving a relay used in an AC circuit, with a protection against contact welding |
5377068, | Oct 19 1992 | Predator Systems Inc. | Electromagnet with holding control |
5442511, | Mar 30 1993 | Caterpillar Inc.; Caterpillar Inc | Generic solenoid driver circuit board, circuit and method of making same |
5530615, | May 20 1992 | SENSATA TECHNOLOGIES, INC | Method and apparatus for enhancing relay life |
5838077, | Jul 12 1995 | Pitway Corporation | Control system for switching loads on zero crossing |
5914849, | Apr 26 1994 | Tyco Electronics Corporation | DC actuator control circuit with voltage compensation, current control and fast dropout period |
6249418, | Jan 27 1999 | System for control of an electromagnetic actuator | |
DE3110314, | |||
EP789378, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 04 2001 | MEID, WOLFGANG | Moeller GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012781 | /0103 | |
Dec 04 2001 | MELCHERT, WILHELM | Moeller GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012781 | /0103 | |
Dec 04 2001 | SCHMITZ, GERD | Moeller GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012781 | /0103 | |
Jan 24 2002 | Moeller GmbH | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 25 2004 | ASPN: Payor Number Assigned. |
Jun 14 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 23 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 26 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 30 2006 | 4 years fee payment window open |
Jun 30 2007 | 6 months grace period start (w surcharge) |
Dec 30 2007 | patent expiry (for year 4) |
Dec 30 2009 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 30 2010 | 8 years fee payment window open |
Jun 30 2011 | 6 months grace period start (w surcharge) |
Dec 30 2011 | patent expiry (for year 8) |
Dec 30 2013 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 30 2014 | 12 years fee payment window open |
Jun 30 2015 | 6 months grace period start (w surcharge) |
Dec 30 2015 | patent expiry (for year 12) |
Dec 30 2017 | 2 years to revive unintentionally abandoned end. (for year 12) |