A piston assembly is provided for use in an engine. The piston assembly includes a piston body including a crown with a skirt extending from the crown. The skirt has an exterior surface. The exterior surface has a surface finish in a wave form with peaks and valleys, and having a roughness total between approximately 6 and 8 micrometers. The roughness total is defined as the difference between the highest peak and lowest valley within an assessment length. The surface finish has an approximate peak-to-peak distance between 0.18 and 0.23 mm within the assessment length. A composite coating is provided over the exterior surface.

Patent
   6684844
Priority
Sep 10 2002
Filed
Sep 10 2002
Issued
Feb 03 2004
Expiry
Sep 10 2022
Assg.orig
Entity
Large
20
14
EXPIRED
1. A piston assembly for use in an engine, comprising:
a piston body including a crown with a skirt extending from the crown, said skirt having an exterior surface;
said exterior surface having a surface finish in a wave form with peaks and valleys, and having a roughness total (Rt) between approximately 6 and 8 micrometers, said roughness total defined as the difference between the highest peak and lowest valley within an assessment length;
said surface finish having an approximate peak-to-peak distance between 0.18 and 0.23 mm within the assessment length; and
a composite coating on said exterior surface.
13. A piston and cylinder assembly for an engine, the piston including a piston body having a crown with a skirt extending from the crown, wherein the skirt has an exterior surface, and the cylinder being a cast-iron cylinder bore configured to receive the piston body and having a bore surface, the piston and cylinder assembly comprising:
said exterior surface having a surface finish in a wave form with peaks and valleys, and having a roughness total (Rt) between approximately 6 and 8 micrometers, said roughness total defined as the difference between the highest peak and lowest valley within an assessment length;
said surface finish having an approximate peak-to-peak distance between 0.18 and 0.23 mm within the assessment length;
a composite coating on said exterior surface; and
said bore surface having a roughness average (Ra) between approximately 0.34 and 0.52 micrometers.
2. The piston assembly of claim 1, wherein said composite coating comprises a composite polymer coating (CPC) between approximately 10 and 16 micrometers in thickness.
3. The piston assembly of claim 2, wherein said composite polymer coating (CPC) comprises a polyamide resin having between approximately 5% and 30% by volume graphite particles.
4. The piston assembly of claim 2, wherein said composite polymer coating (CPC) comprises a polyamide resin having between approximately 2% and 10% by volume graphite particles and between approximately 2% and 20% by volume molybdenum disulfide particles.
5. The piston assembly of claim 4, wherein said graphite and molybdenum disulfide particles comprise fibers with a length between approximately 3 and 15 micrometers, and a diameter of approximately 1 to 5 micrometers.
6. The piston assembly of claim 1, wherein said composite coating comprises a Ni--P--BN plated coating.
7. The piston assembly of claim 6, wherein said coating comprises approximately 5% by volume BN and approximately 3% by weight phosphorus.
8. The piston assembly of claim 6, wherein said coating has a thickness between approximately 12 and 17 micrometers and an approximate hardness of 50 HRC, said coating being electroplated and having suspended ceramic particulate in the electroplating solution co-deposited during electroplating.
9. The piston assembly of claim 1, wherein said roughness total is approximately 7 micrometers.
10. The piston assembly of claim 1, wherein said approximate peak-to-peak distance is approximately 0.22 micrometers.
11. The piston assembly of claim 1, wherein said surface finish is formed by turning with a diamond-tipped cutting insert.
12. The piston assembly of claim 1, further comprising a cast-iron cylinder bore configured to receive the piston body, said bore having a bore surface with a roughness average (Ra) between approximately 0.34 and 0.52 micrometers.
14. The piston and cylinder assembly of claim 13, wherein said composite coating comprises a composite polymer coating (CPC) between approximately 10 and 16 micrometers in thickness.
15. The piston and cylinder assembly of claim 13, wherein said composite coating comprises a Ni--P--BN plated coating.
16. The piston and cylinder assembly of claim 13, wherein said roughness total is approximately 7 micrometers.
17. The piston and cylinder assembly of claim 13, wherein said approximate peak-to-peak distance is approximately 0.22 micrometers.

The present invention relates to a piston and cylinder for a vehicle engine wherein the piston has a finished exterior surface with a roughness total between approximately 6 and 8 micrometers and peak-to-peak distance of approximately 180 and 230 micrometers, and is coated with a composite coating to reduce scuffing.

Modern engines require tight clearance between pistons and cylinder bores for reduced noise, better fuel economy and reduced oil consumption. With the tight clearance, design for scuffing resistance between pistons and cylinder bores becomes a significant issue for automotive manufacturers because scuffing may cause engine failure.

Specifically, scuffing is an adhesive-wear event in which two parts slide against each other in a lubricant-starved condition. Piston skirt scuffing is characterized by a loss of the surface material and burnt or galled surfaces of the skirt and the cylinder bore. When an aluminum piston is used with a cast-iron cylinder bore, scuffing is characterized by the transfer of aluminum from the piston skirt to the cylinder bore surface.

Scuffing typically happens when the lubricating oil film at the interface is broken. The potential exists for this loss of lubrication due to overheating which causes the lubricating oil film to decompose, excessive force between the parts, or insufficient oil at the interface. Scuffing may happen whenever the engine is low on oil and/or low on coolant. Without sufficient coolant, the oil overheats and cannot sufficiently lubricate the piston/cylinder interface. Overfueling may also cause scuffing because the gasoline may wash away the lubricant from the piston surface. Oil pump failure or oil leakage may also result in scuffing because there is simply insufficient oil at the piston/cylinder bore interface.

Accordingly, it is desirable to provide an engine design with reduced scuffing between the piston and cylinder bore.

It has been surprisingly discovered that providing an exterior surface with turning marks between approximately 6 and 8 micrometers in depth and appropriately 180 and 230 micrometers in width with either a composite polymer coating or nickel-boron nitride composite plated coating thereon may substantially improve scuffing resistance between the piston and the cylinder bore.

More specifically, the invention provides a piston assembly for use in an engine. The assembly includes a piston body having a crown with a skirt extending from the crown. The skirt has an exterior surface. The exterior surface has a surface finish (or turning marks) in a wave form with peaks and valleys formed by a turning operation, and having a roughness total between approximately 6 and 8 micrometers. The roughness total is defined as the difference between the highest peak and lowest valley within an assessment length. The surface finish has an approximate peak to peak distance between 0.18 and 0.23 mm (180-230 micrometers) within the assessment length. A composite coating is provided over the finished exterior surface.

Preferably, the roughness total is approximately 7 micrometers, and the approximate peak to peak distance is 220 micrometers. The exterior surface is finished by a turning operation with a diamond-tipped cutting insert.

The composite coating may be a composite polymer coating (CPC) between approximately 10 and 16 micrometers in thickness. The composite polymer coating may be a polyamide resin having between approximately 5% and 30% by volume graphite particles, or a polyamide resin having between approximately 2% and 10% by volume graphite particles and between approximately 2% and 20% by volume molybdenum disulfide particles. The graphite and molybdenum disulfide particles are fibers with a length between approximately 3 and 15 micrometers and a diameter between approximately 1 and 5 micrometers.

Alternatively, the composite coating may be a Ni--P--BN plated coating including approximately 5% by volume BN (boron nitride) and approximately 3% by weight P (phosphorus). The Ni--P--BN coating has a thickness between approximately 12 and 17 micrometers and an approximate hardness of 50 HRC. The coating is electroplated and has suspended ceramic particles in the electroplating solution co-deposited during electroplating.

The cylinder bore may be prepared by a plateau-honing operation to provide bore surface with a roughness average, Ra, between approximately 0.34 and 0.52 micrometers.

A method is also provided for manufacturing a piston and cast-iron cylinder bore of an engine, wherein the piston includes a piston body having a crown with a skirt extending from the crown, and the cylinder is configured to receive the piston body. The method includes the steps of:

(A) finishing the exterior surface of the skirt in a turning operation with a transverse feed rate of between approximately 0.18 and 0.23 mm/revolution;

(B) applying a composite coating to the finished exterior surface; and

(C) honing a bore surface of the cylindrical bore to form a roughness average between approximately 0.34 and 0.52 micrometers.

The above objects, aspects, features, advantages, and other objects, aspects, features and advantages of the present invention are readily apparent from the following detailed description of the best modes for carrying out the invention when taken in connection with the accompanying drawings.

FIG. 1 shows a side partial cross-sectional view of a piston reciprocating within a cylinder bore in accordance with the present invention.

FIG. 2a shows an enlarged schematic cross-sectional view illustrating a surface finish of a piston skirt.

FIG. 2b is a tabular illustration of surface characteristics of a prior art piston in comparison with a piston manufactured is accordance with the present invention.

FIG. 3 is a graphical illustration of an actual prior art piston surface profile.

FIG. 4 is a graphical illustration of an actual piston surface profile in accordance with the present invention.

FIG. 5a is a tabular illustration of surface characteristics of tested piston and cylinder bores.

FIG. 5b is a graphical illustration of the data represented in FIG. 5a.

FIG. 6a is a cross-sectional view of a prior art NCC-coated piston skirt.

FIG. 6b is a cross-sectional view of a NCC-coated piston skirt machined in accordance with the present invention.

FIG. 7 is a flow chart illustration of a method of manufacturing a piston and cylinder bore in accordance with the present invention.

FIG. 1 shows a piston and cylinder assembly 10 for use in a vehicle engine. The piston and cylinder assembly 10 includes an aluminum piston 12 which reciprocates within a cylinder bore 14 defined by an annular bore surface 16 in a cast-iron engine block 18.

The piston 12 includes a crown 20 with a skirt 22 extending from the crown 20. The skirt 22 has an exterior surface 24. A plurality of ring grooves 26, 28, 30 are formed in the crown 20 to receive compression rings and an oil ring (not shown).

The present invention is directed to an improvement in scuffing resistance to prevent transfer of material from the aluminum piston 12 to the annular cylinder bore surface 16. As described below, this improved scuffing resistance is achieved by specific roughness dimensioning of the exterior surface 24 of the piston skirt 22 in conjunction with a composite coating on the exterior surface 24. The scuff resistance may be further enhanced by specific dimensioning of roughness of the annular bore surface 16.

FIG. 2a schematically illustrates a cross-sectional view of a machined piston skirt surface 24 of a skirt 22. As the result of a turning operation, the surface 24 of the piston 22 is finished in a wave form with peaks 32 and valleys 34. The dimension F represents the peak-to-peak distance of the wave form, and is defined by the traverse feed rate (mm/revolution) of the turning operation by which the surface 24 is machined. The dimension D represents the difference between the highest peak and lowest valley within an assessment length. The dimension D is also referred to as roughness total (Rt) in this description.

The chart of FIG. 2b compares the roughness total and peak-to-peak distance of a prior art piston skirt surface with a piston skirt surface manufactured in accordance with the present invention. As shown, a prior art piston skirt surface typically has a roughness total between 13 and 19 micrometers, whereas a piston skirt manufactured in accordance with the present invention has a roughness total between approximately 6 and 8 micrometers. The peak-to-peak distance of a prior art piston skirt is approximately 0.32 mm. The peak-to-peak distance (F) of a piston skirt manufactured in accordance with the present invention is preferably 0.22 mm, or between approximately 0.18 and 0.23 mm.

FIG. 3 graphically illustrates a wave form profile of a prior art piston skirt surface. As shown, the waves peak at approximately 16 micrometers with the valleys at 0 micrometers. As shown, this profile corresponds with a roughness average (Ra) of 4.2 micrometers, and a roughness total (Rt) of 16.56 micrometers.

FIG. 4 graphically illustrates a surface finish profile of a piston skirt surface in accordance with the present invention. As illustrated, the peaks of the wave form are in the range of 6 to 7 micrometers, and the valleys are slightly below 0 micrometers. As shown, this translates into a roughness average (Ra) of 1.71 micrometers, and a roughness total (Rt) of 7.38 micrometers over the selected assessment length.

The term surface roughness average (Ra) is defined as the arithmetic average of the distance of a roughness profile, such as those illustrated in FIGS. 3 and 4, from its mean line.

The "assessment length" referenced above is the evaluation length, which is typically five times the cut-off length. It is the amount of material used for measuring the surface characteristics of a machine component. The cut-off length is typically 0.8 mm for a surface with a Ra of 0.1 and 2 micrometers. Turning to FIG. 5a, a table is provided illustrating test data from combinations of 16 piston skirt surfaces and cylinder bore surfaces which were tested to determine the load at which scuffing occurs (scuffing load). As used in the piston column of FIG. 5a, the terms "rough" and "smooth" correspond with the dimensions illustrated in FIG. 2b. For example, a "rough" piston skirt surface would have a depth (D) of 13 to 19 micrometers, and a feed rate or peak-to-peak distance (F) of approximately 0.32 mm, and a "smooth" piston skirt surface would have a depth (D) between approximately 6 and 8 micrometers and feed rate (F) of approximately 0.22 mm.

In the column entitled Liner (bore), the terms "rough" and "smooth" define the following surface characteristics: a rough cylinder bore has a roughness average (Ra) of 0.58 to 0.90 micrometers, and a smooth cylinder bore surface has a roughness average (Ra) in the range of 0.34 to 0.52 micrometers.

The first four rows of FIG. 5a illustrate the testing of non-coated pistons within corresponding cylinder bores using various combinations of rough and smooth surfaces as defined above. As shown, in the Scuffing Load column of FIG. 5a, and illustrated graphically in FIG. 5b, there is a slight improvement between rows 1 and 2 by smoothing the cylinder bore surface. However, smoothing the piston surface does not further increase the scuffing resistance. In fact, as illustrated in row 4, when both the piston and cylinder bore are machined smooth, as defined above, the scuffing resistance (the load at which scuff occurs) actually decreases. This illustrates the common belief in the relevant art that reduction in surface roughness of the piston skirt is ineffective in further improving scuffing resistance. Therefore, the present invention is a surprising discovery in that it has been determined that a specifically dimensioned smooth piston skirt surface in combination with a composite coating can substantially improve scuffing resistance.

Rows 5-8 of FIG. 5a and corresponding columns 5-8 of FIG. 5b illustrate the testing of a piston having an NCC coating thereon with various rough and smooth combinations for the piston skirt surface and cylinder bore surface. An NCC coating is a nickel ceramic composite coating.

By way of example, the NCC coating may be a Ni--P--BN plated coating which is applied via conventional electroplating with suspended ceramic particulate in the electroplating solution which is co-deposited during plating. A Ni--P--BN coating contains approximately 5% by volume BN (boron nitride). The BN particulate is 4 micrometers in diameter and less than 1 micron in thickness. The phosphorus content is 3% by weight. The coating thickness is 12 to 17 micrometers, with a hardness of approximately 50 HRC.

Comparing rows 7 and 8 of FIG. 5a with rows 5 and 6 of FIG. 5a, the scuffing resistance is improved by approximately 100% by providing a "smooth" finish on the piston skirt surface, as "smooth" is defined in FIG. 2b. This finding is very surprising in light of the trend illustrated in rows 1-4 wherein a non-coated piston skirt surface is provided with a "smooth" surface finish as defined in FIG. 2b, but the scuffing resistance actually decreases.

Rows 9-12 of FIG. 5a illustrate a gradual improvement in scuffing resistance of a tin-coated piston skirt surface as the piston skirt surface and cylinder bore surface are made smooth, as defined previously.

Rows 13-16 illustrate the testing of D10-coated pistons in a cylinder bore. Much like of the results of the tests illustrated in rows 5-8 with the NCC coating discussed above, the D10 coating with the smooth piston and cylinder bore surfaces, as "smooth" is defined above, provided dramatic improvement in scuffing resistance. For example, there is a 51% improvement in scuffing resistance between the test results identified in row 14 in comparison with those of row 16. This substantial improvement is achieved merely by providing the piston skirt surface with a smooth surface finish, as defined in FIG. 2b.

The D10 is an example of a composite polymer coating (CPC). The CPC coating can be a polyamide resin with 5-30% by volume graphite particles, or a polyamide resin with 2-20% by volume graphite particles and 2-20% by volume molybdenum disulfide particles. The graphite or molybdenum disulfide particles can be short fibers with a length of 3-15 micrometers and a diameter of 1-5 micrometers. The coating thickness is between 10 and 16 micrometers. The CPC coating can be applied onto pistons via spray, silk-screen printing, or pad printing processes. Before coating, the pistons are soaked, cleaned, and dried. After coating, the pistons are air-dried for 5-15 minutes to evaporate the organic carrier in the coating, and then baked at 180°C C. to 220°C C. for 15-60 minutes for curing.

FIG. 6a is a further illustration of a prior art rough piston surface finish for a piston skirt 22' having a composite coating 36', which may be a composite polymer coating (CPC) or a nickel-ceramic composite coating (NCC).

FIG. 6b shows a similar cross-sectional view of a piston skirt 22 having a composite coating 36 applied over a finished surface 24 of the skirt 22. In comparing FIGS. 6a and 6b, the roughness difference is apparent.

In preparing the cylinder bore surface discussed above, a plateau honing process is used with silicon carbide honing stones. As described previously, the final average surface roughness (Ra) of the cylinder bore should be in the range of approximately 0.34 to 0.52 micrometers in comparison to the Ra of 0.58 to 0.90 micrometers of common prior art cylinder bore surfaces.

FIG. 7 provides a flow chart illustration of a method of manufacturing a piston and cylinder bore in accordance with the present invention. As shown, at step 40, the piston skirt surface is finished in a turning machine at a 0.18 to 0.23 mm/revolution transverse feed rate. At step 42, a CPC or NCC coating is applied to the finished skirt surface. At step 44, the cylinder bore surface is honed to a roughness average (Ra) of approximately 0.34 to 0.52 micrometers using a plateau honing process.

In finishing the piston skirt surface, the feed rate may be established as above to provide the desired surface characteristics, or the tool geometry may be altered to provide the desired characteristics. In finishing the cylinder bore surface to the desired Ra values, the honing stones may be altered, the honing speeds may be altered, or the tool geometry and machining coolants may be altered to provide the smoother bore surface.

while the best modes for carrying out the invention have been described in detail, those familiar with the art to which this invention relates will recognize various alternative designs and embodiments for practicing the invention within the scope of the appended claims.

Brown, Donald L., Wang, Yucong

Patent Priority Assignee Title
10125809, Aug 01 2016 GM Global Technology Operations LLC Crankshaft assemblies and methods of manufacturing the same
10132270, Aug 01 2016 GM Global Technology Operations LLC Engine assemblies and methods of manufacturing the same
10267261, Aug 01 2016 GM Global Technology Operations LLC Methods of joining components in vehicle assemblies
10408163, Aug 01 2016 GM Global Technology Operations LLC Polymeric composite engine assembly and methods of heating and cooling said assembly
10436147, Oct 14 2015 Ford Global Technologies, LLC Direct-injection internal combustion engine with piston, and method for producing a piston of an internal combustion engine of said type
10486378, Aug 01 2016 GM Global Technology Operations LLC Methods of manufacturing vehicle assemblies
7035761, Aug 26 2003 Ford Motor Company Method for analyzing waviness of a surface
7086152, Oct 08 2001 Federal-Mogul Bradford Limited Engine piston and manufacture thereof
7171936, Oct 23 2003 Mahle Technology, Inc. Piston having a patterned coating and method of applying same
7293497, Nov 03 2005 INNIO WAUKESHA GAS ENGINES INC Piston
7302884, Nov 03 2005 INNIO WAUKESHA GAS ENGINES INC Piston
7373873, Mar 29 2004 Low friction, high durability ringless piston and piston sleeve
7438038, Apr 24 2006 FEDERAL-MOGUL WORLD WIDE LLC Cylinder liner and methods construction thereof and improving engine performance therewith
7493850, Nov 03 2005 INNIO WAUKESHA GAS ENGINES INC Piston
7506575, Nov 03 2005 INNIO WAUKESHA GAS ENGINES INC Piston
7543557, Sep 01 2005 GM Global Technology Operations LLC Scuff resistant aluminum piston and aluminum cylinder bore combination and method of making
8919319, Mar 19 2010 HONDA MOTOR CO , LTD Piston for internal combustion engine
9216474, Apr 24 2012 Industrial Parts Depot, LLC Two-piece friction-welded piston
9255545, Oct 01 2010 KS Kolbenschmidt GmbH Piston skirt coating consisting of a low-friction running-in layer and a low-wear base layer
9777668, Dec 30 2011 COMPONENTA FINLAND OY Piston for large sized internal combustion engine
Patent Priority Assignee Title
4075934, Dec 29 1975 Karl Schmidt GmbH Piston for internal combustion engines
4395442, Dec 19 1980 Wabco Fahrzeugbremsen GmbH Method of coating the working surfaces of piston operating devices
4694813, Feb 08 1984 Kolbenschmidt AG Piston for internal combustion engines
4809652, Sep 06 1985 Kolbenschmidt Aktiengesellschaft Light alloy piston
4831977, Jul 17 1987 Ethyl Corporation Pistons with wear resistant solid film lubricant coatings
4987865, Oct 11 1989 KSG PISTONS, INC Reduced friction piston
5158052, Feb 28 1991 Atsugi Unisia Corporation Aluminum alloy piston
5239955, Jan 07 1993 KSU INSTITUTE FOR COMMERCIALIZATION; Kansas State University Institute for Commercialization Low friction reciprocating piston assembly
5266142, Nov 01 1991 DECC Technology Partnership Coated piston and method and apparatus of coating the same
5313919, Jan 07 1993 KSU INSTITUTE FOR COMMERCIALIZATION; Kansas State University Institute for Commercialization Low friction reciprocating piston assembly
5450784, Sep 28 1993 Detroit Diesel Corporation Electroplated piston skirt for improved scuff resistance
5487364, Jun 10 1993 Toyota Jidosha Kabushiki Kaisha Piston for an internal combustion engine
5549086, Jun 30 1994 Yamaha Hatsudoki Kabushiki Kaisha Sliding contact-making structures in internal combustion engine
5884600, Feb 20 1998 GM Global Technology Operations LLC Aluminum bore engine having wear and scuff-resistant aluminum piston
////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Sep 03 2002BROWN, DONALD L General Motors CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0135640251 pdf
Sep 03 2002WANG, YUCONGGeneral Motors CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0135640251 pdf
Sep 10 2002General Motors Corporation(assignment on the face of the patent)
Jan 19 2005General Motors CorporationGM Global Technology Operations, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0221170001 pdf
Dec 31 2008GM Global Technology Operations, IncUNITED STATES DEPARTMENT OF THE TREASURYSECURITY AGREEMENT0222010547 pdf
Apr 09 2009GM Global Technology Operations, IncCITICORP USA, INC AS AGENT FOR HEDGE PRIORITY SECURED PARTIESSECURITY AGREEMENT0225530399 pdf
Apr 09 2009GM Global Technology Operations, IncCITICORP USA, INC AS AGENT FOR BANK PRIORITY SECURED PARTIESSECURITY AGREEMENT0225530399 pdf
Jul 09 2009UNITED STATES DEPARTMENT OF THE TREASURYGM Global Technology Operations, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0231240470 pdf
Jul 10 2009GM Global Technology Operations, IncUAW RETIREE MEDICAL BENEFITS TRUSTSECURITY AGREEMENT0231610911 pdf
Jul 10 2009GM Global Technology Operations, IncUNITED STATES DEPARTMENT OF THE TREASURYSECURITY AGREEMENT0231560001 pdf
Aug 14 2009CITICORP USA, INC AS AGENT FOR HEDGE PRIORITY SECURED PARTIESGM Global Technology Operations, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0231270273 pdf
Aug 14 2009CITICORP USA, INC AS AGENT FOR BANK PRIORITY SECURED PARTIESGM Global Technology Operations, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0231270273 pdf
Apr 20 2010UNITED STATES DEPARTMENT OF THE TREASURYGM Global Technology Operations, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0252450347 pdf
Oct 26 2010UAW RETIREE MEDICAL BENEFITS TRUSTGM Global Technology Operations, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0253110725 pdf
Oct 27 2010GM Global Technology Operations, IncWilmington Trust CompanySECURITY AGREEMENT0253270262 pdf
Dec 02 2010GM Global Technology Operations, IncGM Global Technology Operations LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0257800795 pdf
Date Maintenance Fee Events
Jul 30 2007M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Sep 12 2011REM: Maintenance Fee Reminder Mailed.
Feb 03 2012EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Feb 03 20074 years fee payment window open
Aug 03 20076 months grace period start (w surcharge)
Feb 03 2008patent expiry (for year 4)
Feb 03 20102 years to revive unintentionally abandoned end. (for year 4)
Feb 03 20118 years fee payment window open
Aug 03 20116 months grace period start (w surcharge)
Feb 03 2012patent expiry (for year 8)
Feb 03 20142 years to revive unintentionally abandoned end. (for year 8)
Feb 03 201512 years fee payment window open
Aug 03 20156 months grace period start (w surcharge)
Feb 03 2016patent expiry (for year 12)
Feb 03 20182 years to revive unintentionally abandoned end. (for year 12)