A control system for controlling the displacement of a variable displacement internal combustion engine including measuring a variable indicative of torque for the variable displacement internal combustion engine, generating a torque threshold that indicates a torque condition to vary the displacement of the variable displacement internal combustion engine, and characterizing driver behavior to determine the torque threshold.

Patent
   6687602
Priority
May 03 2001
Filed
May 03 2001
Issued
Feb 03 2004
Expiry
Mar 06 2022
Extension
307 days
Assg.orig
Entity
Large
37
7
all paid
12. A method of controlling the displacement of a variable displacement internal combustion engine comprising the steps of:
measuring a variable indicative of torque for the variable displacement internal combustion engine;
generating a torque threshold that indicates a torque condition to vary the displacement of the variable displacement internal combustion engine; and
characterizing driver behavior to determine said torque threshold.
15. A method of controlling the displacement of a variable displacement internal combustion engine comprising the steps of:
measuring a variable indicative of torque for a variable displacement internal combustion engine;
filtering said variable indicative of torque;
generating a torque threshold that indicates a torque condition to vary the displacement of the variable displacement internal combustion engine; and
characterizing driver behavior to determine said torque threshold.
8. A method of controlling the displacement of a variable displacement internal combustion engine in a vehicle comprising the steps of:
determining manifold pressure in the variable displacement internal combustion engine;
determining accelerator pedal position in the vehicle;
characterizing driver behavior based on the changes in accelerator pedal position;
determining a calibration of said manifold pressure based on the characterization of said behavior; and
varying the displacement of the variable displacement internal combustion engine with reference to said calibration.
1. An engine control system in a vehicle comprising:
a variable displacement internal combustion engine;
a controller for controlling the displacement of said variable displacement internal combustion engine;
an accelerator pedal position sensor electronically coupled to said controller; and
wherein said controller receives pedal position information from said accelerator pedal position sensor and characterizes the type of driver operating the vehicle;
wherein said controller using said driver characterization determines when to operate said variable displacement internal combustion engine in a partially-displaced operating mode.
2. The engine control system of claim 1 wherein said variable displacement internal combustion engine is a gasoline engine.
3. The engine control system of claim 1 wherein said variable displacement internal combustion engine includes at least two cylinders.
4. The engine control system of claim 1 wherein said variable displacement internal combustion engine is an eight-cylinder engine.
5. The engine control system of claim 1 further comprising a brake pedal sensor electronically coupled to said controller.
6. The engine control system of claim 5 wherein said controller receives brake pedal operation information from said brake pedal sensor and further characterizes the type of driver operating the vehicle.
7. The engine control system of claim 1 wherein said controller includes a plurality of calibrations used to determine a manifold pressure switching point to determine when to operate said variable displacement internal combustion engine in a partially-displaced operating mode.
9. The method of claim 8 further comprising the step of characterizing driver behavior based on the rate of change in said accelerator pedal position.
10. The method of claim 8 further comprising the step of characterizing driver behavior based on the frequency of change for a brake pedal.
11. The method of claim 8 further comprising the step of filtering the determined manifold pressure.
13. The method of claim 12 wherein said variable is manifold pressure in said variable displacement internal combustion engine.
14. The method of claim 12 wherein said variable is a measured torque output of the variable displacement internal combustion engine.

The present invention relates to the control of internal combustion engines. More specifically, the present invention relates to a method and apparatus to control a variable displacement internal combustion engine.

Regulatory conditions in the automotive market have led to an increasing demand to improve fuel economy and reduce emissions in current vehicles. These regulatory conditions must be balanced with the demands of a consumer for high performance and quick response from a vehicle. Variable displacement internal combustion engines (ICEs) provide for improved fuel economy and torque on demand by operating on the principal of cylinder deactivation. During operating conditions that require high output torque, every cylinder of a variable displacement ICE is supplied with fuel and air (also spark, in the case of a gasoline ICE) to provide torque for the ICE. During operating conditions at low speed, low load and/or other inefficient conditions for a fully-displaced ICE, cylinders may be deactivated to improve fuel economy for the variable displacement ICE and vehicle. For example, in the operation of a vehicle equipped with an eight-cylinder variable displacement ICE, fuel economy will be improved if the ICE is operated with only four cylinders during low torque operating conditions by reducing throttling losses. Throttling losses, also known as pumping losses, are the extra work that an ICE must perform when the air filling the cylinder must be restricted during partial loads. The ICE must therefore pump air from the relatively low pressure of an intake manifold through the cylinders and out to the atmosphere. The cylinders that are deactivated will not allow air flow through their intake and exhaust valves, reducing pumping losses by allowing the active cylinders to operate at a higher intake manifold pressure. Since the deactivated cylinders do not allow air to flow, additional losses are avoided because the trapped charge in the deactivated cylinders act as "air springs" during the compression and decompression of the air in each deactivated cylinder.

In past variable displacement ICEs, the switching or cycling between the partial displacement mode and the fun displacement mode was problematic. Frequent cycling between the two operating modes negates fuel economy benefits and affects the driveability of a vehicle having a variable displacement ICE. The operator's driving habits will affect the number of times a variable displacement ICE will cycle between the partial and the full displacement mode, and the fuel economy benefits of a variable displacement ICE. Frequent cycling will also impact component life in a variable displacement ICE.

The present invention is a method and apparatus for the control of cylinder deactivation in a variable displacement engine. In the preferred embodiment of the present invention, an eight-cylinder internal combustion engine (ICE) may be operated as a four-cylinder engine by deactivating four cylinders. The cylinder deactivation occurs as a function of the load or torque required by the vehicle and driver behavior. According to the present invention, different driver behaviors will create different criteria for an operating mode switch from partial displacement to full displacement of a variable displacement ICE. The present invention characterizes drivers and their perceived requirements for driveability.

Referring to FIG. 1, a graph of fuel economy gain is shown with three types of drivers characterized. In alternate embodiments of the present invention, any number of driver types may be characterized. A soft pedal or conservative driver is a driver that would be the most likely to monitor fuel economy for a variable displacement ICE. This type of driver is very likely to be dissatisfied if the claimed fuel economy benefits are not met. Operation in a partial displacement mode should be maximized for this type of driver.

A normal driver would utilize a normalized or nominal cycling schedule between partial and full displacement in a variable displacement ICE.

An aggressive driver is not likely to be in a partial displacement mode for any extended period of time due to high power demand and brake and accelerator pedal dynamics. The aggressive driver will realize less fuel economy gain than a conservative or normal driver and will be dissatisfied if the cylinder deactivation detracts from the desired driving experience. The aggressive driver would force numerous switching cycles if the control of the displacement of the variable displacement ICE used a nominal calibration.

Fuel economy for a variable displacement ICE should be maximized for soft pedal drivers and normal drivers, as their driving behaviors will allow superior fuel economy without any perceived decrease in performance. Aggressive drivers will not be as concerned with the fuel economy benefits of a variable displacement engine, as they favor performance. The present invention maximizes the amount of time spent in partial displacement mode for a soft pedal driver and a normal driver while maintaining the same performance and driveability of a fully-displaced ICE for an aggressive driver.

The engine control system of the present invention can characterize the type of driver using numerous sensor inputs such as an accelerator pedal position sensor, a brake pedal sensor, a manifold air pressure sensor, a throttle position sensor, and other traditional sensors used in the control of an ICE. By monitoring these sensor inputs over time, the engine control system will characterize the driver and then utilize calibrated switch points for each type of driver that will allow a soft-pedal driver or a normal driver to quickly enter the partial displacement mode, while preventing unacceptable frequent cycling between displacement modes for an aggressive driver. In alternate embodiments of the present invention, adaptive switching points may be used that continually change in response to driver behavior. A variable filter for sensor inputs having calibrated hysteresis pairs may also be used in the present invention to reduce cycling busyness.

FIG. 1 is a graph of percent fuel economy gain shown with different driver characterizations;

FIG. 2 is a diagrammatic drawing of the control system of the present invention;

FIG. 3 is a graph of partial displacement switching criteria characterization; and

FIG. 4 is a flowchart of a method of the present invention.

FIG. 2 is a diagrammatic drawing of the vehicle control system 10 of the present invention. The control system 10 includes a variable displacement ICE 12 having fuel injectors 14 and spark plugs 16 (in the case of a gasoline engine) controlled by an engine or powertrain controller 18. The ICE 12 crankshaft 21 speed and position are detected by a speed and position detector 20 that generates a signal such as a pulse train to the engine or powertrain controller 18. The ICE 12 may comprise a gasoline ICE or any other ICE known in the art. An intake manifold 22 provides air to the cylinders 24 of the ICE 10, the cylinders having valves 25. The valves 25 are further coupled to an actuation apparatus 27 such as used in an overhead valve or overhead cam engine configuration that may be physically coupled and decoupled to the valves 25 to shut off air flow through the cylinders 24. An air flow sensor 26 and manifold air pressure (MAP) sensor 28 detect the air flow and air pressure within the intake manifold 22 and generate signals to the powertrain controller 18. The airflow sensor 26 is preferably a hot wire anemometer and the MAP sensor 28 is preferably a strain gauge.

An electronic throttle 30 having a throttle plate controlled by an electronic throttle controller 32 controls the amount of air entering the intake manifold 22. The electronic throttle 30 may utilize any known electric motor or actuation technology in the art including, but not limited to, DC motors, AC motors, permanent magnet brushless motors, and reluctance motors. The electronic throttle controller 32 includes power circuitry to modulate the electronic throttle 30 and circuitry to receive position and speed input from the electronic throttle 30. In the preferred embodiment of the present invention, an absolute rotary encoder is coupled to the electronic throttle 30 to provide speed and position information to the electronic throttle controller 32. In alternate embodiments of the present invention, a potentiometer may be used to provide speed and position information for the electronic throttle 30. The electronic throttle controller 32 further includes communication circuitry such as a serial link or automotive communication network interface to communicate with the powertrain controller 18 over an automotive communications network 33. In alternate embodiments of the present invention, the electronic throttle controller 32 may be fully integrated into the powertrain controller 18 to eliminate the need for a physically separate electronic throttle controller.

A brake pedal 36 in the vehicle is equipped with a brake pedal sensor 38 to determine the braking frequency and amount of pressure generated by an operator of the vehicle on the brake pedal 36. The brake pedal sensor 38 generates a signal to the powertrain controller 18 to determine a braking condition for the vehicle. A braking condition will indicate a low torque/low demand condition for the variable displacement ICE 12. An accelerator pedal 40 in the vehicle is equipped with a pedal position sensor 42 to sense the position and rate of change of the accelerator pedal 40. The pedal position sensor 42 signal is also communicated to the powertrain controller 18. In the preferred embodiment of the present invention, the brake pedal sensor 38 is a strain gauge and the pedal position sensor 42 is an absolute rotary encoder.

The preferred method of the present invention is described in the flowchart of FIG. 4. The method starts at block 50 where an operator has started the vehicle and executed a transmission shift. At block 52, the ICE 12 is operating in the full displacement mode. At block 53, the partial displacement mode calibration or switch points is set at "normal" until the driver's behavior can be characterized. The operating mode switch points or calibration values are based on sensed MAP values in the preferred embodiment, but may comprise any other variable indicative of output torque in an ICE. At block 54, the controller 18 monitors the accelerator pedal position sensor 42, the brake pedal sensor 38 and the MAP sensor 28. At block 55, the operating mode of the ICE 12 is determined based on MAP pressure.

At block 56, the driver is characterized using sensor data as a soft pedal driver, a normal driver or an aggressive driver. The sensor data of particular interest is the number of specific torque changes or requests per unit time by the driver.

At block 58, referring to FIG. 3, the switching points are determined for a particular driver characterization. FIG. 3 includes plots 43 and 44 that map the calibrated switch points for a driver characterization and MAP. Plot 43 illustrates that the nominal and conservative drivers will remain in the partial displacement mode to a much higher MAP level or percent of full load before switching to full displacement. Similarly, the number of measurements above the full displacement request in plot 43 or the time delay before switching to full displacement mode as shown in plot 44 increases for the nominal and conservative drivers. Plots 43 and 44 are determined experimentally to maximize partial displacement mode time without degrading the driveability expectations of different types of drivers. The switching calibrations are stored within the powertrain controller 18 memory and are selected to correspond to the driver characterization. In alternate embodiments, the calibration may be adaptive to correspond to the changing driving habits of a particular driver. At block 60, the ICE 12 cycles between partial displacement and full displacement according to the selected calibration.

While this invention has been described in terms of some specific embodiments, it will be appreciated that other forms can readily be adapted by one skilled in the art. Accordingly, the scope of this invention is to be considered limited only by the following claims.

Ament, Frank

Patent Priority Assignee Title
10100754, May 06 2016 Tula Technology, Inc. Dynamically varying an amount of slippage of a torque converter clutch provided between an engine and a transmission of a vehicle
10247121, Mar 13 2014 Tula Technology, Inc Method and apparatus for determining optimum skip fire firing profile
10273894, Jul 11 2008 Tula Technology, Inc Internal combustion engine control for improved fuel efficiency
10428756, Jun 01 2012 MAHINDRA AND MAHINDRA LIMITED Power-economy mode control system for a vehicle
10519876, Mar 13 2014 Tula Technology, Inc Controller system and method for selecting a firing fraction for a skip fire controlled internal combustion engine based at least on non-drive train levels of noise, vibration and harshness
10865720, Feb 06 2016 Audi AG Method and device for operating a drive device, and drive device
10941722, Mar 13 2014 Tula Technology, Inc.; GM Global Technology Operations LLC Method and apparatus for determining optimum skip fire firing profile
6874462, Jul 24 2003 GM Global Technology Operations LLC Adaptable modification of cylinder deactivation threshold
6874463, Feb 26 2004 GM Global Technology Operations LLC Engine and method of operation with cylinder deactivation
6895941, May 03 2001 GM Global Technology Operations LLC Method and apparatus for a variable displacement internal combustion engine
6915779, Jun 23 2003 GM Global Technology Operations LLC Pedal position rate-based electronic throttle progression
7013866, Mar 23 2005 FCA US LLC Airflow control for multiple-displacement engine during engine displacement transitions
7085647, Mar 21 2005 FCA US LLC Airflow-based output torque estimation for multi-displacement engine
7577511, Jul 11 2008 Tula Technology, Inc. Internal combustion engine control for improved fuel efficiency
7621252, Feb 01 2008 GM Global Technology Operations LLC Method to optimize fuel economy by preventing cylinder deactivation busyness
7849835, Jul 11 2008 Tula Technology, Inc Internal combustion engine control for improved fuel efficiency
7886715, Jul 11 2008 Tula Technology, Inc Internal combustion engine control for improved fuel efficiency
7954474, Jul 11 2008 Tula Technology, Inc Internal combustion engine control for improved fuel efficiency
8099224, Jul 11 2008 Tula Technology, Inc Internal combustion engine control for improved fuel efficiency
8131445, Jul 11 2008 Tula Technology, Inc Internal combustion engine control for improved fuel efficiency
8131447, Jul 11 2008 Tula Technology, Inc.; Tula Technology, Inc Internal combustion engine control for improved fuel efficiency
8311722, Dec 18 2009 FCA US LLC Driver-based control system and method to improve fuel economy
8336521, Jul 11 2008 Tula Technology, Inc Internal combustion engine control for improved fuel efficiency
8402942, Jul 11 2008 Tula Technology, Inc System and methods for improving efficiency in internal combustion engines
8499743, Jul 10 2009 Tula Technology, Inc.; Tula Technology, Inc Skip fire engine control
8511281, Jul 10 2009 TULA TECHONOLOGY, INC Skip fire engine control
8616181, Jul 11 2008 Tula Technology, Inc Internal combustion engine control for improved fuel efficiency
8646435, Jul 11 2008 Tula Technology, Inc System and methods for stoichiometric compression ignition engine control
8651091, Jul 10 2009 Tula Technology, Inc Skip fire engine control
8701628, Jul 11 2008 Tula Technology, Inc Internal combustion engine control for improved fuel efficiency
8839766, Mar 30 2012 Tula Technology, Inc. Control of a partial cylinder deactivation engine
8869773, Dec 01 2010 Tula Technology, Inc Skip fire internal combustion engine control
9020735, Jul 11 2008 Tula Technology, Inc Skip fire internal combustion engine control
9086024, Jul 11 2008 Tula Technology, Inc. Internal combustion engine control for improved fuel efficiency
9200587, Apr 27 2012 Tula Technology, Inc. Look-up table based skip fire engine control
9541050, Jul 11 2008 Tula Technology, Inc. Internal combustion engine control for improved fuel efficiency
9982611, Jul 11 2008 Tula Technology, Inc Internal combustion engine control for improved fuel efficiency
Patent Priority Assignee Title
5213078, Mar 25 1989 Robert Bosch GmbH Method for determining at least one end position of a displacement device in a motor vehicle
5568795, May 18 1995 FORD GLOBAL TECHNOLOGIES, INC A MICHIGAN CORPORATION System and method for mode selection in a variable displacement engine
5970943, Mar 07 1995 Ford Global Technologies, Inc System and method for mode selection in a variable displacement engine
6277051, May 10 1999 Hyundai Motor Co. Method for controlling manual downshifting in an automatic transmission
6311670, Aug 01 1997 Renault Method for correcting an internal combustion engine torque jerks
20020157640,
20020162540,
////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 27 2001AMENT, FRANKGeneral Motors CorporationASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0121680515 pdf
May 03 2001General Motors Corporation(assignment on the face of the patent)
Jan 19 2005General Motors CorporationGM Global Technology Operations, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0221170001 pdf
Dec 31 2008GM Global Technology Operations, IncUNITED STATES DEPARTMENT OF THE TREASURYSECURITY AGREEMENT0222010501 pdf
Apr 09 2009GM Global Technology Operations, IncCITICORP USA, INC AS AGENT FOR HEDGE PRIORITY SECURED PARTIESSECURITY AGREEMENT0225560013 pdf
Apr 09 2009GM Global Technology Operations, IncCITICORP USA, INC AS AGENT FOR BANK PRIORITY SECURED PARTIESSECURITY AGREEMENT0225560013 pdf
Jul 09 2009UNITED STATES DEPARTMENT OF THE TREASURYGM Global Technology Operations, IncRELEASE BY SECURED PARTY0232380015 pdf
Jul 10 2009GM Global Technology Operations, IncUAW RETIREE MEDICAL BENEFITS TRUSTSECURITY AGREEMENT0231610864 pdf
Jul 10 2009GM Global Technology Operations, IncUNITED STATES DEPARTMENT OF THE TREASURYSECURITY AGREEMENT0231550922 pdf
Aug 14 2009CITICORP USA, INC AS AGENT FOR BANK PRIORITY SECURED PARTIESGM Global Technology Operations, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0231270326 pdf
Aug 14 2009CITICORP USA, INC AS AGENT FOR HEDGE PRIORITY SECURED PARTIESGM Global Technology Operations, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0231270326 pdf
Apr 20 2010UNITED STATES DEPARTMENT OF THE TREASURYGM Global Technology Operations, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0252450273 pdf
Oct 26 2010UAW RETIREE MEDICAL BENEFITS TRUSTGM Global Technology Operations, IncRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0253110680 pdf
Oct 27 2010GM Global Technology Operations, IncWilmington Trust CompanySECURITY AGREEMENT0253270222 pdf
Dec 02 2010GM Global Technology Operations, IncGM Global Technology Operations LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0257800795 pdf
Oct 17 2014Wilmington Trust CompanyGM Global Technology Operations LLCRELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS 0341830680 pdf
Date Maintenance Fee Events
Jul 30 2007M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Jul 06 2011M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jul 22 2015M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Feb 03 20074 years fee payment window open
Aug 03 20076 months grace period start (w surcharge)
Feb 03 2008patent expiry (for year 4)
Feb 03 20102 years to revive unintentionally abandoned end. (for year 4)
Feb 03 20118 years fee payment window open
Aug 03 20116 months grace period start (w surcharge)
Feb 03 2012patent expiry (for year 8)
Feb 03 20142 years to revive unintentionally abandoned end. (for year 8)
Feb 03 201512 years fee payment window open
Aug 03 20156 months grace period start (w surcharge)
Feb 03 2016patent expiry (for year 12)
Feb 03 20182 years to revive unintentionally abandoned end. (for year 12)