Integrated circuit devices having signal buffers therein include first and second storage devices that are electrically coupled in series and configured so that data can be loaded into the first storage device in-sync with a first clock signal (e.g., external clock signal) and then passed and loaded into the second storage device in-sync with a second clock signal (e.g., internal clock signal). The second clock signal is derived from the first clock signal and may be a delayed version of the first clock signal having an equivalent duty cycle. The buffer also comprises an integrated circuit that operates synchronously with the second clock signal and a transfer device that passes an output of the second storage device to the integrated circuit in-sync with the second clock signal. In this manner, data can be loaded into the integrated circuit in-sync with the same clock signal used to control the integrated circuit even though the data is originally transferred in-sync with another clock signal.
|
1. An integrated circuit device, comprising:
an internal clock generator that is configured to generate an internal clock signal in-sync with an external clock signal received by the integrated circuit device; a multi-stage data buffer that is configured to receive the external and internal clock signals and non-clock data generated external to the integrated circuit device, said multi-stage data buffer comprising first and second storage devices that are electrically connected together in series and configured so that the data is loaded into the first storage device in-sync with the external clock signal, which is received by the first storage device, and then passed and loaded into the second storage device in-sync with the internal clock signal, which is received by the second storage device; and a level-shifting inverter that is configured to pass the data generated external to the integrated circuit device to an input of the first storage device, and is responsive to a control signal that enables a pull-up path of the level-shifting inverter when active.
2. The device of
3. The device of
a transfer device that is configured to pass an output of the second storage device to an input data signal line in response to a rising edge of the internal clock signal.
4. The device of
5. The device of
6. The device of
a transfer device that is configured to pass an output of the second storage device to an input data signal line in response to a rising edge of the internal clock signal.
|
This application is related to Korean Application No. 98-33796, filed Aug. 20, 1998, the disclosure of which is hereby incorporated herein by reference.
The present invention relates to integrated circuit devices, and more particularly to integrated circuit devices having signal buffers therein.
Signal buffers have been used frequently as input buffers on integrated circuit chips so that the excessive voltage levels of some external signals can be level-shifted downward to levels that are appropriate for those circuits that reside on the chip. For example, control signals buffers on CMOS-based chips may be used to level-shift external signals at higher TTL levels to lower CMOS levels. This level-shifting operation is typically performed on control signals such as an external clock signal ECLK that is being converted to an internal clock signal PCLK. However, because the level-shifting operation may result in some degree of delay to the internal clock signals and because internal circuits on a chip may need to operate in-sync with the internal clock signal, it may become necessary to delay external data signals on-chip so that sufficient set-up and hold time margins are maintained when processing data in-sync with the internal clock signal. As will be understood by those skilled in the art, such delays may be provided by data buffers having RC delay circuits therein. Unfortunately, RC delay circuits tend to reduce the slope of data signal transitions, consume relatively significant amounts of power and have relatively large unit cell size (i.e., occupy relatively large amounts of chip area). Thus, notwithstanding such attempts to use RC delay circuits to facilitate synchronization between data and internal clock signals, there continues to be a need for devices and methods that provide improved data synchronization capability.
It is therefore an object of the present invention to provide data buffers that can provide sufficient time margins to enable efficient and accurate transfer of synchronous data and methods of buffering data to provide sufficient time margins.
These and other objects, advantages and features of the present invention are provided by a preferred multi-stage data buffer. The data buffer comprises first and second storage devices that are electrically coupled in series and configured so that data can be loaded into the first storage device in-sync with a first clock signal (e.g., external clock signal) and then passed and loaded into the second storage device in-sync with a second clock signal (e.g., internal clock signal). According to a preferred aspect of the present invention, the second clock signal is derived from the first clock signal and may be a delayed version of the first clock signal having an equivalent duty cycle. The buffer also comprises an integrated circuit that operates synchronously with the second clock signal and a transfer device that passes an output of the second storage device to the integrated circuit in-sync with the second clock signal. In this manner, data can be loaded into the integrated circuit in-sync with the same clock signal used to control the integrated circuit even though the data is originally transferred in-sync with another clock signal. A level-shifting inverter may also be provided having an output electrically coupled to an input of the first storage device.
In a most preferred embodiment of the present invention, the data is loaded into the second storage device in-sync with a first edge of the second clock signal and the transfer device passes the output of the second storage device to the integrated circuit in-sync with a second edge of the second clock signal. Here, the first and second edges of the second clock signal may be falling and rising edges, respectively. Moreover, the first storage device comprises a first transmission gate (e.g., CMOS transmission gate) and a first latch having an input electrically coupled to an output of the first transmission gate. Similarly, the second storage device may comprise a second transmission gate having an input electrically coupled to an output of the first latch and a second latch having an input electrically coupled to an output of the second transmission gate.
A preferred method of buffering data is also provided. This preferred method includes the steps of loading a data signal into a first storage device in-sync with a first clock signal and then passing the data signal from the first storage device into a second device, in-sync with a first edge of a second clock signal that is derived from the first clock signal. A step is then performed to pass the data signal from the second storage device to an integrated circuit, in-sync with a second edge of the second clock signal. Based on these aspects of the present invention, data buffers can be provided that secure a sufficient time margin (e.g., set-up time, hold time) to enable efficient and accurate transfer of synchronous data.
The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. Like numbers refer to like elements throughout and signal lines and signals thereon may be referred to by the same reference symbols.
Referring now to
Referring now to
The first storage device 233 comprises a first CMOS transmission gate 221 and a first latch 231. The first transmission gate 221 is responsive to the external clock signal ECLK and an inverted version of the external clock signal ECLKB. The first latch 231 comprises a pair of inverters electrically connected in antiparallel. Based on this configuration of the first storage device 233, a data signal/Din at the output of the voltage converter 211 can be passed to the first latch 231 when the first transmission gate 221 receives a falling edge of the external clock signal ECLK. The second storage device 234 comprises a second CMOS transmission gate 222 and a second latch 232. The second transmission gate 222 is responsive to the internal clock signal PCLK and an inverted version of the internal clock signal PCLKB. The second latch 232 comprises a pair of inverters electrically connected in antiparallel. Based on this configuration of the second storage device 234, the output of the first latch 231 can be passed to the second latch 232 when the second transmission gate 222 receives a falling edge of the internal clock signal PCLK. As illustrated by
Accordingly, a falling edge of the external clock signal ECLK will enable input data Din received by the input buffer 121 to be latched by the first latch 231, with the output of the first latch 231 having the same binary value as the input data Din. In particular, because the voltage converter 211 has a relatively short delay associated therewith, updated input data Din received by the voltage converter 211 while the external clock signal ECLK is at a logic 0 level will become latched by the first latch 231. However, once the external clock signal ECLK undergoes a rising edge transition, further changes to the input data Din while ECLK is held at a logic 1 level will not influence the output of the first latch 231. In addition, because the amount of time required for the data signal Din to pass through the voltage converter 211 and the first and second latches 231 and 232 is equal to the time interval "t1" and because the second transmission gate 222 is opened in response to a falling edge of the internal clock signal PCLK, the time interval "tSS" determines the available set-up time for the data Din to become latched by the second latch 232. Then, in response to the next rising edge of the internal clock signal PCLK, the latched data is passed through the transfer device 223 to the output PDin2 of the input buffer 121. This data remains valid for a time interval equal to "tSH". This time interval corresponds to a relatively long duration hold time that is equal to the duration of each logic 1 pulse generated by the internal clock generator 131. Moreover, the chip area and power consumed by the input buffer 121 is typically considerably less than the chip area and power required by conventional RC delay circuits.
In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.
Shin, Sang-woong, Kim, Gyu-hong
Patent | Priority | Assignee | Title |
10552365, | May 05 2017 | STMicroelectronics (Rousset) SAS | Buffer stage device that can be connected to a serial peripheral interface bus |
7251740, | Jan 23 2004 | Intel Corporation | Apparatus coupling two circuits having different supply voltage sources |
7802123, | Jun 27 2006 | Samsung Electronics Co., Ltd. | Data processing apparatus and method using FIFO device |
9477104, | Jun 24 2013 | FOCALTECH SYSTEMS CO , LTD | Source driver with reduced number of latch devices |
Patent | Priority | Assignee | Title |
5815462, | Jun 27 1996 | Mitsubishi Denki Kabushiki Kaisha; Mitsubishi Electric Engineering Co., Ltd. | Synchronous semiconductor memory device and synchronous memory module |
5867446, | Apr 27 1992 | Mitsubishi Denki Kabushiki Kaisha | Synchronous semiconductor memory device |
5990715, | Nov 19 1996 | SOCIONEXT INC | Semiconductor integrated circuit using a synchronized control signal |
6023181, | Apr 25 1997 | Texas Instruments Incorporated | High speed unitransition input buffer |
6025738, | Aug 22 1997 | International Business Machines Corporation | Gain enhanced split drive buffer |
6101197, | Sep 18 1997 | Round Rock Research, LLC | Method and apparatus for adjusting the timing of signals over fine and coarse ranges |
6172524, | Jun 29 1998 | Hyundai Electronics Industries Co., Ltd. | Data input buffer |
6304937, | Apr 18 1990 | Rambus Inc. | Method of operation of a memory controller |
20010043099, | |||
JP9153279, | |||
KR9760219, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 03 1999 | SHIN, SANG-WOONG | SAMSUNG ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010191 | /0268 | |
Aug 03 1999 | KIM, GYU-HONG | SAMSUNG ELECTRONICS CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 010191 | /0268 | |
Aug 19 1999 | Samsung Electronics Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 22 2004 | ASPN: Payor Number Assigned. |
Aug 24 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Aug 29 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 23 2015 | REM: Maintenance Fee Reminder Mailed. |
Mar 16 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 16 2007 | 4 years fee payment window open |
Sep 16 2007 | 6 months grace period start (w surcharge) |
Mar 16 2008 | patent expiry (for year 4) |
Mar 16 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 16 2011 | 8 years fee payment window open |
Sep 16 2011 | 6 months grace period start (w surcharge) |
Mar 16 2012 | patent expiry (for year 8) |
Mar 16 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 16 2015 | 12 years fee payment window open |
Sep 16 2015 | 6 months grace period start (w surcharge) |
Mar 16 2016 | patent expiry (for year 12) |
Mar 16 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |