A uv emitter is incorporated into a variety of different illumination devices suitable for illuminating indicia associated with dials on watches, gauges and other instruments, as well as ornaments. The indicia is made of a material responsive to uv emissions to render the indicia visible. The devices may be used in motor vehicles and other devices. In addition, a conductor arrangement is also provided that can be used to support the uv emitter under the transparent cover of watches or gauges, with the uv emitter oriented to direct the uv emissions toward the indicia. Embodiments are presented for uv emitters on top of dials with indicia, laterally from the dials, or even under the dials.

Patent
   6729738
Priority
May 03 2001
Filed
May 03 2002
Issued
May 04 2004
Expiry
May 03 2022
Assg.orig
Entity
Small
257
15
all paid
14. In a vehicle having at least one device, an illumination apparatus comprising:
a radiation emitter disposed in said device including a semiconductor junction adapted to generate a wide uv beam; and
indicia responsive to said uv beam and attached to said device, said indicia being made of a material selected from the group consisting of a phosphorescent and fluorescent material.
15. An apparatus for providing illumination for an electronic device having a plurality keys, comprising:
a radiation emitter including a semiconductor junction adapted to generate a wide uv beam; and
indicia associated with said keys and responsive to said uv beam, said indicia being made of a material selected from the group consisting of a phosphorescent and fluorescent material.
6. In a vehicle having at least one device, an illumination apparatus comprising:
a radiation emitter disposed in said vehicle and including a semiconductor junction without a focusing lens adapted to generate a wide uv beam; and
indicia responsive to said uv beam and attached to said device, said indicia being made of a material selected from the group consisting of a phosphorescent and fluorescent material.
4. An ornamental device comprising:
a case having a base and a transparent cover, with an image affixed to said base and visible through said cover, said image including image elements responsive to uv light, said image elements being made of a material selected from the group consisting of a phosohorescent and fluorescent material; and
a radiation emitter disposed above said base and including a lensless semiconductor junction arranged to form a uv light beam directed to said image.
13. In a watch having a case with a dial and a crystal disposed on top of said dial, an illumination apparatus comprising:
a radiation emitter disposed in said watch and including a semiconductor junction adapted to generate radiation in the uv region and generating a broad uv beam; and
at least one indicia disposed on said dial, said indicia being responsive to said uv beam, wherein said indicia is made of a material selected from the group consisting of a phosphorescent and fluorescent material.
1. In a watch having a case with a dial and a crystal disposed on top of said dial, an illumination apparatus comprising:
a radiation emitter disposed in said watch and including a lensless semiconductor junction adapted to generate radiation in the uv region and generating a broad uv light beam; and
at least one indicia disposed on said dial, said indicia being responsive to said uv light beam, wherein said indicia is made of a material selected from the group consisting of a phosphorescent and fluorescent material.
2. The apparatus of claim 1 wherein said dial is transparent.
3. The illumination apparatus of claim 1 wherein said radiation emitter is arranged to direct said uv beam laterally from sidewalls of said case.
5. The ornamental device of claim 4 wherein said radiation emitter includes a semiconductor junction adapted to emit uv radiation.
7. The apparatus of claim 6 wherein said device is an instrument having a dial and said indicia is attached to said dial.
8. The apparatus of claim 7 wherein said instrument includes a transparent, cover extending on said dial and said radiation emitter is mounted on said cover.
9. The apparatus of claim 8 further comprising several radiation emitters, each emitter generating beams toward said indicia.
10. The apparatus of claim 6 wherein the vehicle has a structural member remote from the device and wherein said radiation emitter is attached to the structural member.
11. The apparatus of claim 10 wherein the vehicle has a roof and said radiation emitter is attached to the roof.
12. The apparatus of claim 6 wherein said device is an instrument having a moving member and said indicia is attached to said moving member.
16. The apparatus of claim 15 wherein said device is a keyboard.
17. The apparatus of claim 15 wherein said device is a hand held device.
18. The apparatus of claim 15 wherein said electronic device includes an accessory port, said apparatus further comprising an elongated flexible member having the radiation emitter at one end and a coupler at the other end for coupling with said accessory port.
19. The apparatus of claim 18 wherein said coupler is a USB connector.
20. The apparatus of claim 15 wherein said indicia is attached to the keys.

This application claims priority to provisional applications Ser. No. 60/288,330 filed May 3, 2001; Ser. No. 60/298,984 filed Jun. 18, 2001; and Ser. No. 60/315,323 filed Aug. 28, 2001; all incorporated herein by reference.

The subject matter of this application is also related to application Ser. No. 09/659,189 filed Sep. 12, 2000, entitled SEMICONDUCTOR LIGHT EMITTING ELEMENT FORMED ON A CLEAR OR TRANSLUCENT SUBSTRATE, now, U.S. Pat No. 6,486,561 incorporated herein by reference.

A. Field of the Invention

This invention relates generally to an improvement in illumination devices such as electronic timepieces equipped for a conventional analog or digital display, indicator gauges, which may comprises a meter panel, directional gauges, used for example in motor vehicles, ornamentation displays of an image, logo or design, and other similar articles which are illuminated for viewing under poor lighting conditions.

B. Description of the Prior Art

Historically, watches, gauges and other similar articles were first illuminated by using phosphorescent markings. However, when both the manufacturing methods of phosphorescent materials and the materials themselves proved to be medically and environmentally unacceptable, other illuminating means were developed. Some of these other means include the use of LED, LCD, and fluorescent devices, as well as incandescent bulbs. All of these proved to be unsatisfactory, especially for small devices such as wrist watches.

Additionally, these devices could not provide sufficient illumination due to a non-uniformity in brightness across the illuminated display surface. The insufficient illumination was the result of the positioning or shape of the light source itself which was either a point or linear source thereby making these illumination devices limited and unacceptable.

Recently, electroluminescent lighting, hereinafter referred to as EL, was introduced, for an analog or digital watches as another known alternative. An EL element is positioned underneath the watch dials, or other surfaces, or alternatively the dials themselves are made of an EL material, as described in U.S. Pat. Nos. 3,749,977--Sliker, 4,775,964--Alessio & Olsen, 4,208,869--Hanaoka, 5,029,046--Kameda, 5,117,334--Kameda. In all of these references direct illumination is provided upward towards the viewer, restricting any aesthetic aspects such as a full color logo or colored images on the dial. Another disadvantage of EL's is that they require complicated auxiliary circuitry. Moreover, the lighting colors are determined by phosphorus contents of the EL, and are limited commercially to colors such as blue-green, white and yellow.

U.S. Pat. No. 5,997,161 discloses a black light instrument cluster illuminated by standard black light or UV bulbs.

U.S. Pat. Nos. 5,962,971 and 5,813,753 disclose complicated means of generating UV light.

In my U.S. Pat. Nos. 6,106,127 and 6,299,321, incorporated herein by reference, I have described an illumination device for a watch and other instruments consisting of a light emitter disposed on a transparent or translucent surface(like the a watch crystal). The emitter receives power from a battery disposed in the watch case through wires imbedded in, or otherwise attached to the crystal. The emitter is adapted to emit light in a wide angle to illuminate the dial of the watch in an even light distribution pattern. The following concepts comprise various improvements to the basic patented invention of the these patents.

It is, accordingly, an objective of the present invention to eliminate the above-mentioned disadvantages encountered in the prior art and provide an improved system through which sufficient illumination can be provided to both indicia of interest as well as logos and other decorative elements.

It is another objective of the present invention to provide an improved illumination device for an electronic or analog timepiece, indicator gauge, directional gauge or ornamental device or other articles eliminating any EL as the illumination source and its associated circuitry.

Another objective of the invention is to provide an improved illumination apparatus for viewing the dial or surface of various objects by positioning an illumination device to direct light in a direction towards the subject to be illuminated which makes viewing easier, more efficient and less stressful to the viewer.

A further objective of this invention is to provide in situations such as limited lighting or at night time, the cosmetic illumination of single or multiple color images, logos or items located on or about the surface of a timepiece, indicator or directional gauges or ornamentation devices.

A further objective is to provide a solid state illumination device that makes use of a source of UV light to provide a novel type of illumination for watches, gauges and other similar articles.

The present invention seeks to attain these objectives by disposing a light-emitting element, on or inside a light transmissive surface of the article to be illuminated. This element is positioned in the center, sides or in a random placement and rendered light emisive or is activated by means of an electronic circuit which is installed within or in proximity of said article. An illumination switch controlled by an external control member is provided on the case of the article for selectively activating the light emitting element.

More particularly, the light source is disposed either on an inner surface of, or is imbedded within the cover or article itself, in such a manner that is virtually invisible to the viewer.

In many instances various objects must be observable in the dark or under low lighting conditions. In instances where it is not possible, or it is inconvenient to provide full illumination, low level lighting is provided to light the observed object either directly, laterally, using edge-effect type lighting or using backlight type illumination (wherein the light source is built into or disposed behind the object to be observed). However, these solutions have been found to be unsatisfactory because they provide mediocre lighting at best. Moreover, in many instances these types of devices are not pleasing esthetically.

For example, most automobiles, motorcycles or aeronautical vehicles use some form of interior and/or instrument illumination for visibility at night or in low visibility conditions. This illumination system is usually based on electroluminescent (EL), incandescent or LED devices which require special controls, power supplies, dimmers and so on.

Another example where improved illumination would be useful are laptop computers. Under poor lighting conditions most laptops (as well as PDAs, cell phones, electronic games and other similar small hand-held devices) have built-in light sources or active screens that are fairly easy to see. However, the keyboards and controls for these devices are provided with little or no illumination and accordingly they are very hard to see.

One effective means of lighting objects comprise so-called black lights. These kind of lights are particularly desirable for providing illumination under low lighting conditions and are especially useful when used in combination with fluorescent inks or objects having fluorescent colors applied on the object being illuminated. However, until now, all black light sources comprised high voltage tubes or incandescent lamps that have been coated with a filter adapted to transmit UV light and block most visible light. Typically these filters do allow a small amount of light to escape from the tube in the violet range so that the light can be seen with the naked eye when turned on.

Similarly, a UV light source can be used for a laptop or standard compute keyboard. This light source could be an accessory or built into the unit. As an accessory the unit could be connected and powered through a USB port and could be fixed or could be provided on a flexible support so as to allow the user to customize the position of the light source. The light source could have an on/off switch, which could allow the user to activate the light source as desired.

As an integrated unit within the keyboard or on the periphery it is the UV light sources positioning which is critical for maximum illumination. Under the most efficient circumstances a single UV-LED light source could be positioned above the illuminated object at a predetermined distance for effective illumination but in manner that insures that it will not interfere with the users vision or periphery. The UV light source could be made to provide a broad radial pattern over the entire area or modified with a directional cone or shield focusing the light to the desired area for illumination.

Inks or other materials responsive to UV light (such as fluorescent and phosphorescent inks etc.) are applied onto or processed into the keyboard, mouse or the desired illuminated area and could be make into shapes, diagrams, logos, images or numerals in multiple colors such as red, green, yellow, orange, blue, purple or pink.

The invention will be better understood by reference to the following description, taken in connection with the appended drawings, in which like reference numerals indicate like parts, and in which:

FIG. 1 shows a block diagram of a power circuit for a watch in accordance with this invention;

FIG. 2 shows a diagrammatic view of a watch with an external power supply;

FIG. 3 shows a block diagram of a controller for controlling a light for a watch with an external and an internal battery;

FIG. 4 shows a block diagram of a watch with a touch screen;

FIG. 5 shows a side sectional view of a watch with several positions of a UV emitter in accordance with this invention;

FIGS. 5A-5R show schematically various lighting arrangements of various different apparatus in accordance with this invention;

FIG. 6 shows a cross sectional view of a watch with a light emitter and a dielectric coating on the crystal;

FIGS. 7A-7J show details of a UV flashlight constructed in accordance with this invention;

FIGS. 8A-8D show details of the UV source for the flashlight of FIG. 7 and other such devices

FIGS. 9A-I show details of a conductor arrangement used to provide power and support a light emitter constructed in accordance with this invention;

FIGS. 10A-10C show details of another conductor arrangement;

FIG. 11 shows a side elevational view of another conductor arrangement;

FIG. 12 shows an orthogonal view of yet another conductor arrangement;

FIGS. 13A and 13B show details of light emitter arranged to illuminate a watch, instrument or other device laterally;

FIGS. 14A and 14B show details of a watch, instrument or other device illuminated from the bottom;

FIG. 15 shows a light emitter on a conductor arrangement with a reflector; and

FIGS. 16A-C show details of a light emitter extending through a shaft and optionally including a reflector.

A. Internal Power Source

Typically, watches are powered by a so-called button type battery which is kept small so that it can fit in watches with small cases. This type of battery has a nominal output of about 1.5 volts. Recently, new light emitter devices are marketed which have better light emitting characteristics, including new and brighter colors. For example, light emitting diodes are becoming available which are referred to as Super Bright LEDs using InGaN technology to generate deep blue, standard blue and aquamarine light. Superluminosity light chips are also available which are capable of generating high intensity blue or white light. However, all of these new type of devices require a power source in the range of 2-6 volts and hence could not be used in standard watches having 1.5 volt batteries.

Therefore, according to the present invention, a circuit is provided which converts the power from a standard 1.5 volt battery to a higher level. A circuit 10 of this type is shown in attached FIG. 1. As can be seen in this FIG. 1, the circuit includes a DC/DC converter 12 which powers a 2 to 6 volt bus B--B using power from the 1.5 volt battery 14. DC/DC converters of this type are well known in the art.

An alternate means of providing higher voltage is to use two thin 3 volt lithium batteries known as 1616's in series with a voltage dropping resistor.

Connected to the bus B--B are one or more light emitting elements LE which receive power at the higher voltage from converter and generate light. Preferably a resistor R1 is in series with the LE to limit the current therethrough. Since this bus B--B is available, other elements 16 including timing circuits may be connected to it as well.

The DC/DC converter 12 may be an ASIC which may be preset to generate a preselected voltage on the bus B--B. Alternatively the ASIC could be externally programmable, or could be responsive to a control signal C. In FIG. 1 the control signal C is derived from a light sensor 18. The light sensor 18 is used to sense ambient light. The converter 12 is constructed and arranged to adjust the voltage of the bus B--B in accordance with the control signal C. Accordingly, the voltage on bus B, and hence the intensity of the light produced by the light emitter LE is dependent on the ambient light level.

Alternatively the DC/DC converter could be a dedicated chip or an IC that is incorporated on the PC board of a watch (not shown in FIG. 1) and is set so that it can produce only a single voltage level. This alternative design is less flexible but cheaper to implement.

B. Internal and External Batteries

Some watches have an active element, such as a light source, which uses a substantial amount of energy. In these types of watches, it is customary to use a timer which disables the active element after a predetermined time. For example, a light used to illuminate a watch dial is usually turned off automatically after about 2-3 seconds. However in some instances, it may be desirable to have the active element on for a longer time period. For example, a jogger may want to see his time continuously, or a watch may incorporate a heart rate monitor and the jogger may want to see his heart rate as well.

For these types of devices, two batteries are provided: an external and an internal battery. Of course, more than one internal and/or more than one external batteries may be provided. As shown in FIG. 2, a watch 20 is shown with a case C and an external battery XB which is connected to the watch case via a plug P.

This external battery can be mounted in a piggyback fashion on the case C, or alternatively it can be mounted on or within the watch band itself, and can be removed therefor and inserted into the plug P as desired. A sensor S that senses the presence of battery XB is associated with plug P.

FIG. 3 shows the internal circuitry of watch 20. The circuitry includes two batteries: an internal battery IB and the external battery XB discussed above. The circuitry can operate in a variety of modes as determined by a control circuit 22. In one mode, the two batteries can be connected in parallel to provide power to a bus B--B. In a second mode, a switch SW can be used to selectively connect either the internal or the external battery to the bus. The control circuit 22 can monitor the reserve energy level left in each battery and when one battery gets depleted, the control circuit can automatically switch the bus over from the first to the second battery.

A timer 24 is also associated with the control circuit 22. The timer is used to energize the bus (which may be used, for example, to power a light LE) for a predetermined time period. As discussed above, this time period may dependent on which battery is being used as the energy source for the bus. With the internal battery IB as the power source, a relatively small time period may be set, for example 3 seconds. With the external battery XB as the power source, a much longer time, for example, two hours, may be set. The control circuit can determine if the external battery XB is in place through external sensor ES. Moreover, the timer and/or the control circuit may also be adapted to pulse the LED LE intermittently at a duty cycle of 10% at a frequency 1 KHz. This operation allows the LED to be operated either at a lower current level to extend the life of the device, at a higher apparent intensity or lower temperature. This operation is effective because the LED has sufficient persistence so that even though a very low duty cycle is used, the LED appears to be on all the time.

Since the operation of the watch may be dependent on the external battery XB, it becomes important for the user to know its status. For this purpose an internal sensor maybe used to show determine the reserve energy left in the external battery XB. When the external battery XB becomes discharged, an indication light I is activated to alert the user that the external battery must be replaced (or recharged if possible). Alternatively the indicator light I may be on whenever the external battery is connected to the watch to indicate that the external battery is operational. When the external battery is depleted, the indicator light I can be set to blink by the sensor IS, and/or the control circuit 22.

While the external battery was described as being used to power a watch, obviously it could be plugged into the case of other types of devices such as handheld game, a PDA, a cell phone, etc.

C. Control Switching

Most modern electronic watches include one or more pushbuttons used to activate its various functions. As these devices evolved the number of functions that they could performed continuously increased. However, the number of pushbuttons that could be accommodated on a watch case and the number of operations assigned to each is very limited.

As shown in FIG. 4, this problem is resolved by providing the face (not shown) or any other accessible part of a watch 30 with a touch screen TS. The touch screen TS could be a resistive, a capacitive type or any other similar type of device that can be used to detect when a particular portion of the screen TS is touched by a user. Of course, normally, the touch screen TS should not be active because otherwise it would react to any inadvertent touch by the user or the user may press the watch face against other objects. Therefore, in accordance with this invention, the touch screen TS is activated for a predetermined time after a pushbutton PB is pressed. Thereafter a sensor/decoder 34 is used to sense what portion of the screen (if any) is touched, and to generate an appropriate code for a microprocessor 34. The microprocessor 34, which also controls all the functions of watch 30 then performs an appropriate function.

Some functions that may be activated in this manner are:

a. Controlling the illumination level of the watch face;

b. Controlling the duration of illumination;

c. Blinking

d. Alarm functions

Of course, these are just illustrative examples, and many other functions may be performed as well.

The touch screen TS is normally transparent so that it can be disposed on top of, or incorporated into, or positioned on the bottom surface of the crystal.

D. Illumination Using UV Light

One aspect of the present invention pertains to various systems and devices wherein various elements are rendered visible at night, and/or low light conditions by using in combination a solid state UV source such as a UV emitter or UV LED in and alphanumeric characters and/or images printed or otherwise deposited using a UV-sensitive material.

In accordance with the present invention, as shown in FIG. 5, the dial or a watch 40 or other instrument is illuminated, as shown in FIG. 5 by using a light emitter B1 which is a semiconductive junction adapted to emit UV light. In one embodiment the light emitter B1 is attached and mounted on the bottom surface of a cover, such as a crystal 42 crystal.

Preferably, the dial 44 is provided with one or more images C1, C2 which could be alphanumeric characters or any other types of images. Preferably these characters are printed or otherwise affixed to the dial using a phosphorescent or fluorescent ink. When the UV light from source B1 hits these characters, they appear to glow and are very visible. This type of illumination is especially advantageous under low ambient lighting conditions or in the dark. While in FIG. 5a watch is illustrated, it should be understood that the same principles may be used to illuminate many other types of devices such as gauges, and the like. For example, a gauge on the instrument panel of a car, truck or plane may be lit in this manner, as disclosed in more detail below.

Moreover, while in FIG. 5 the light emitter B1 is shown on the crystal, other light emitters may also be under the dial, such as B2 and B3 or on the sides, such as B4 and B5. With the emitters on the bottom, the dial 44 has to be made of a material that is transparent or translucent at least to UV light.

The emitters B1-B5 etc. could be implemented as a flop chip, a flip chip or other types of ICs. In one embodiment, the emitters are covered with sheath made of glass, plastic or other materials for enhancing the effectiveness of the junction at the desired light wavelengths. The sheath could be very dark, or it could be blue, green or violet. Moreover, if it known that if a phosphorous tip is formed on the sheath then the tip generates a bright white light.

The emitters B1-B5 are connected of course to a power supply which has been omitted for the sake of clarity using conductors described in more detail below.

Importantly, emitters B1-B5 can be LEDs adapted to provide UV light in the range of 315-320 to 380-400 nm (nanometers, usually referred to as UV-A). LEDs of this type are available from Cree in the USA and Nichia in Japan. However, preferably, the emitters are formed from semiconductor junctions without a focusing lens (which are normally provided on conventional LEDs). The present inventor has found that if the focusing lens, is omitted, the emitter generates a wide angle beam which is substantially uniform.

The second component of this aspect of the invention consists of various indicia (such as C1 and C2) made imprinted or otherwise attached to a support and created from fluorescent inks. These indicia can be applied and formed into shapes, images, logos, script or numerals. In motor vehicle or motorcycle, the fluorescent inks could be used to outline instrument clusters such as a speedometer, gearshifter, cup holder or other instruments. If a moving element needs to be illuminated, for example, a speedometer needle, the indicia can be applied to the moving element itself.

The UV source (such as the emitter B1) is preferably positioned above the illuminated object and oriented so that its light impinges on the indicia at a predetermined angle. If a UV generating LED is used as the source it can be placed at various positions within the motor vehicle very easily because it is very small and unobtrusive. The UV lighting source could be positioned in the inside of the roof for the front and back seats or within the instrument cluster, on the underside of the rearview mirror or the center console depending on where UV illumination is desired for exciting the applicable fluorescent ink. This type of illumination is much more informative and cost effective then the currently available lighting devices.

Optionally, in the watch of FIG. 5 the dial 44 can be made transparent and additional indicia may be provided under the dial on various components of the watch(not shown). These components can then become visible when the respective UV emitters, such as B1 are activated. This embodiment is especially attractive if the watch is an analog watch with some moving parts since these moving parts can then become highlighted by the UV light from the sources.

Our application uses one or more UV light sources that can be focused to generate a narrow beam or can be disbursed to form a radial pattern to illuminate multiple objects or elements with a single light source. Advantageously, the fluorescent inks are available in many brilliant colors including combinations such as red, green, blue, pink, purple or yellow. Moreover, the indicia can be formed with different colored inks which are illuminated with a single UV light.

These concepts are illustrated in more detail in FIGS. 5A-5R. FIG. 5A shows an instrument panel 60 used either on the dashboard of an automobile or other motor vehicle, such as a truck, bus, tractor, airplane, motorcycle, etc. The panel includes a housing 62 and a face 63 on which there are a plurality of instruments 64. These instruments may include a speedometer, a tachometer, a fuel gauge, a pressure gauge, a water temperature gauge, and other various indicia, well known in the art. Each instrument is defined by a plurality of elements. Some of these elements can be fixed, while others can be moving. For example, elements 66 are stationary elements consisting of alphanumeric characters painted or otherwise affixed to the face 63. Element 68 consists of a needle pivoting about an axis (not shown) and having an angular position that indicates a certain parameter associated with the operation of the motor vehicle. Importantly, all or some of these indicia, are printed or incorporate a substance that is flourescent and therefore visible in the daylight as well as well as when illuminated by UV light. Alternatively, each indicia may be composed of one element that is visible by daylight and a second element that is visible under UV light. The indicia may made of inks, phosphors or other similar materials.

The needle comprising element 68 may be painted with the appropriate material either along its entire length. Alternatively the tip of the needle may be covered with the fluorescent ink.

The panel 60 is protected by a transparent cover 70 made of glass, plastic or suitable material.

UV light for the indicia is provided by a plurality of light sources that can be provided and positioned in a number of different configurations. For example, in FIG. 5B, a cover 70A is provided with a plurality of sources 72, each source being positioned so that when the cover 70A is in place, each source is positioned above the center of one of the instruments 64. The cover 70A also includes conductors 74 that provide power to the light sources 72. Preferably, the light sources consists of semiconductor emitters as discussed above. Various structures and configurations for the conductors 74 are discussed in more detail below.

FIG. 5C shows another embodiment of the invention. In this embodiment the housing 60 includes bosses 76 disposed peripherally of each instrument 64. Each instrument may be provided with one or more such bosses 76. Each is mounted on the face (or alternately), on the cover 70 and carries at least one light source 78. Some bosses may be used to support more than one light source. Each light source is arranged and constructed to generate UV light directed toward a respective instrument.

FIG. 5D shows a modified housing 60A that incorporates only a single instrument 64A. The housing 60A includes a boss 80 holding a light source 82 oriented to illuminate the instrument 64A.

FIG. 5E shows another embodiment. In this embodiment, housing 60B includes a face 62B on which there are a plurality of instruments 64B including pivoting needles 68B. An intermediate plate 67 is fitted over the face 62B. The plate 67 has a plurality of circular cutouts 69. The circular cutouts 69 have sidewalls supporting one or more UV sources 72B. The sources are oriented radially. The intermediate plate fits over the face 62B so that each needle 68B enters into one of the opening 70 and is illuminated by sources 72B. Additionally, cover 70B fits over the intermediate plate. The cover 72B is optionally provided with additional light emitters 72B' positioned like sources 72 in FIG. 5B to further illuminate the instruments. The emitters 72B' are powered by current through conductors 74B.

FIG. 5F shows another embodiment with a face 62C, instruments 64C defined by indicia similar to the indicia 66, 68 in FIG. 5A, and a clear cover 70C. An independent, self supporting set of conductors 74C are provided that extends between the face 62C and the cover 70C. The sources 72C are attached to the conductors 74C.

In all the embodiments discussed above each of the individual instruments can be illuminated using a light emitter or source, preferably centrally located. Alternatively, a plurality of emitters are used that are dispersed peripherally around each instrument at various angular positions. Of course a combination of both schemes may be used.

FIG. 5G shows a panel 77 formed into a grid pattern or two dimensional array defined by a plurality of light emitters 72K. This panel can be made into any size, and can be mounted behind a transparent or translucent billboard, or other large sign for illumination as required. FIG. 5H shows the panel 77 used in a display 81. The display includes a sheet 79 covered by a phosphorescent or other UV responsive material. When the emitters 72K are activated, the UV light therefrom impinges and renders sheet 79 luminescent. The sheet then forms a back light for a sheet 80 that is imprinted with an image.

FIG. 51 shows a wristwatch with a cover having a built in light emitter 120C. When the cover is open the light emitter can be activated to illuminate the watch as shown. The illumination could be visible or UV light.

FIG. 5J shows a wrist watch or a pocket watch with a cover having its own light emitter 120D. When the cover is opened, the face of the pocket watch.

FIG. 5K shows an ornament 83 that can be mounted on a motor vehicle including a car, a motorcycle, etc. The ornament includes a base 83A with a design 83B. A clear protective cover 83C is disposed on top of the base and is domed to provide some interior space therebetween, One or more emitters 83D is attached to the cover and is positioned to selectively illuminate the design 83B. The light emitter 83D is coupled to conductors 83E that are connected to a power source not shown. The power source could be an independent battery, the battery of the car, a power supply, etc. Alternatively, the ornament may also be mounted on a non-motorized apparatus such as a skateboard, a surfboard, and the like, in which case batteries may be incorporated therein.

FIGS. 5L, 5M and 5Q show another embodiment of the invention. In this embodiment, in addition to the instrument panel 70, other control elements 84 of a motor vehicle are identified by respective indicia, including the controls for the radio, transmission, air conditioning/heating, radio, seat belts, etc. Each of these indicia are printed or otherwise applied using substances that are visible in the daylight, as well substances that become visible when exposed to UV light. As best seen in FIGS. 5L and 5M, one or more UV emitters 72M are provided on the roof of the automobile. These sources are oriented to illuminate the indicia on these controls. As a result the indicia on all the controls is very easily visible at night, when the rest of the cabin within the motor vehicle must be dark to allow the driver to see his external environment. If necessary additional emitters may be provided, as shown at 72M.

FIGS. 5N and 5O show another embodiment. This embodiment shows a system for illuminating the keyboard of a PC, laptop or other similar devices. The system includes an arm 90 having an elongated body which is made of a semi-rigid material so that it can be bent and shaped into any desired shape. After it has been bent, the arm stays in that position. The body has one end 94 adapted to be mated with or coupled to a housing. In FIG. 5N end 94 is male USB connector adapted to mate with a complementary female connector. Of course the end can be shaped to couple with other types of connections as well. Devices like arm 90 have been proposed previously in which the other end of the arm incorporates an incandescent light bulb. In the present invention, the other end of the body includes a UV source 96, which is preferably a UV emitter as described above. Surrounding the source 96 is a cone-shaped shield 98 that protects the source and may be used to direct the UV light from source 96 in a predetermined direction.

Referring now to FIG. 5O, a standard keyboard 100 is shown. This keyboard can be the keyboard of a lap top, the keyboard for a desk top computer, or other similar device. The keyboard 100 is provided with a USB jack 102. The keyboard further includes with standard QWERTY keys 104 and various other control keys 106. Importantly, each key is identified by an alphanumeric legend 108. According to this invention, this legend is printed using a fluorescent or similar UV-responsive material. Of course the legend should also be visible in daylight.

In operation, the arm 90 is attached to the keyboard through the USB port 102 so that the source 96 is powered through said USB port. If desired, a switch (not shown) may be incorporated into the arm 90 to selectively turn the source 96 on or off. Before, or after the arm is installed, it is shaped so that the source 96 is directed at the keyboard. Once the arm is in position, UV light from the source lights the legend on the keys of the keyboard thereby rendering the same visible. As a result the keyboard is very easy to use in the dark, or under low light conditions. Moreover, the arm 90 works equally well with any other type of device that has a USB, a parallel port, a serial port, a game port or other port that can be used or modified to act as a power source.

FIG. 5P shows another embodiment of the invention. In this Figure, an electronic device 110 is shown. This device could be a laptop, a PDA, a cellphone, a hand-held computer or any other similar device. The device has two articulated portions, a top portion 112 and a bottom portion 114, said two portions being hingedly connected. If the device 110 is a laptop computer, the top portion generally includes a screen (not shown) while the bottom portion includes a keyboard 116 with a legend 118 associated with each key. For other types of devices, the top portion 112 could be a cover and the bottom portion could include a screen. The top portion includes, preferably along one edge, a light source 120, which is, preferably, a UV source. As in the previous embodiment, the legends are printed using a UV-responsive material. The device 110 may also include a switch (not shown) for selective activation of the source. As can be seen in FIG. 5P, the source is positioned, so that when the two portions are separated to form an angle of about 30-135 degrees, the UV source on the first portion illuminates the keyboard or any other legends on the second portion thereby rendering the legends visible in the dark, or low light conditions. In some instances, it may be helpful to mount the source 120 on portion 112 on a pivoting member, so that the source could be directed manually at the legends. Moreover, the UV source could be made adjustable so that it generates broad beam covering the whole keyboard or area of interest, or only a narrow beam covering only a portion of the keyboard.

For the embodiments of FIGS. 5N, 5O and 5P the UV source could be a single UV emitter as described in more detail. Alternatively, the UV source could include two separate UV emitter disposed side by side, as shown in FIG. 5R. In this Figure, emitter 120A is a red-phosphor tipped emitter and UV emitter 120B is an emitter radiating in the invisible spectrum. The two emitters can be activated individually. The emitter 120A renders only certain of the keys visible, for example, the keys that are colored red. This type of operation is advantageous because it is very easy on the eye and allows a user to look quickly at the keyboard and at the screen. Emitters of other colors may be used as well, such as, green or yellow. The UV emitter 120B can be used in a passive mode, for instance when the user watches a DVD movie.

E. Dielectric Coatings

FIG. 6 shows another improvement to my invention. In this Figure, a watch or other gauge 50 is shown with a dial 52 and a crystal or other transparent or translucent cover 54. Associated or coupled to the cover is a light source 56, which is preferably an emitter that emits light in the visible spectrum, or an ultraviolet emitter. The emitter 56 is directed toward the dial 52 as described in my U.S. Pat. Nos. 6,106,127 and 6,299,321. However, in addition, a coating or layer 58 is applied to the crystal to form a predetermined image, for example of a logo. Preferably the coating or layer 58 is made of a dielectric material that acts as an insulator. This material is used to form a transparent or translucent design (such as a logo) on the crystal. Dielectric materials that are particularly useful for this purpose are available from 3M. These kinds of materials are particularly useful because they have very unusual optical characteristics. One such characteristic is that they reflect light of one color while transmitting a different color to the dial. The combination of these characteristics can be used to obtain esthetic designs on the watch or other articles being illuminated. Preferably, as shown in FIG. 6, the dielectric coating 58 is applied on the crystal with the emitter 56 resting on the dielectric coating 58. As a result, as seen in FIG. 6 a small amount of light from the emitter 56 is reflected from the dial 52 in such a manner so as to illuminate the coating thereby rendering the respective image clearly visible.

Alternatively the dielectric coating 54 could be made opaque thereby blocking any light from being transmitted in the vicinity of the light emitter thereby masking the light emitter 56 so that it is completely invisible.

F. A UV Flashlight

It is known that UV light can be used to detect certain substances, and accordingly there is a great need for a, portable, effective and convenient light source. For example, a UV light can be used to find and identify various human-related fluids, including blood, urine, semen, etc. A UV source could be used to harden some materials, e.g. fillings and materials used in dentistry

UV light could be also used in various security related environments by providing markings and other identifying indicia which is not visible under normal light. Such indicia may be applied, for example, on banknotes, securities, rare, secret or valuable documents, art works, etc.

UV light could also be used in various industrial environments. For example, fluids in an engine could treated with a fluorescent additive and the engine could be inspected with a UV source for cracks or leakages at joints.

Accordingly, one aspect of the present invention pertains to a flash light. Referring to FIG. 7A, shows a flash light 120 having a standard body with batteries, a keychain hole 122 and a momentary switch 124 at one end. At the other end, the there is provided a semiconductor UV source 126, including an emitter 128, and a conical or parabolic shield 128. The source 126 is protected by a transparent protective lid 130. FIG. 7B shows another known type of flashlight 120A. This flashlight has at one end 132 a twist-type an/off switch and a UV source 126A at the other. The housing of FIGS. 7A, 7B is made of a material (aluminum, plastic, etc.) that is relatively rigid.

FIG. 7C shows another type of flashlight 120C. This flashlight has a first body portion 120-B1 which is relatively rigid and holds the batteries. A forward portion 120B2 is flexible to allow the positioning of the source 126C into any desired configuration.

FIG. 7D shows another type flashlight 120D. In this embodiment, instead of plastic or glass, the flashlight is provided with a cover 130 made of quartz. This type of cover is desirable because quartz is transparent to and does not degrade in the presence of UV light.

FIG. 7E shows a cross-sectional view of a flashlight particularly useful for the medical applications, including the use of UV for hardening materials. In this embodiment, the reflective cone 184C has a tip that provides a means of attaching one of several different types of cones. The replaceable cones for generating UV beams having different geometric shapes and sizes. In FIG. 7F, a planar lens is shown that generates a generally columnar beam. FIG. 7G shows a truncated cone. FIG. 7H shows a cone with a rounded tip. FIG. 7I shows a cone with a pointed tip. FIG. 7J shows a cone with an inverted tip, e.g. a tip with a V-shaped notch. All these cones have a base that is threaded or provided with other means of attachment for the flashlight and can provide light beams of different shape, intensity and distribution patent.

For all the applications described above, a UV source is required. As discussed above, a solid state UV source is preferable adapted to emit radiation at about 320-400 nm. A UV LED that may be used is shown in FIG. 8A. In this Figure, the LED 150 includes a semiconductor chip 152 connected to respective terminals 154, 156. One terminal 154 includes, or is connected to a standard current limiting resistor 158. The chip 152 is imbedded in blob of plastic material 160 shaped to protect the junction and to form a light concentrating and focusing lens in the normal fashion.

Preferably, however, instead of UV LED with a focusing lens, a UV emitter 170 should be used. The emitter 170 does not have the focusing lens. As illustrated in FIG. 8B, preferably the UV emitter 170 includes a semiconductor chip 172 formed on substrate 174. The chip 172 could be a standard IC chip or a flip chip. One terminal of the chip is bonded to the substrate 174 and then connected to a conductor 176. The other terminal of the IC is connected by a wire bond 178 to the substrate 174. On the substrate the wire bond 178 is connected to a terminal 180. Optionally, a resistor 182 is attached to the terminal 178 as shown and provides current limiting.

The emitter 170 described so far can be attached to a carrier and used as is to provide a constant and uniform illumination just as is. Optionally, for a more directed light beam, a reflective cone 184 may be placed on the substrate to surround the IC 172. FIG. 8C shows the resulting arrangement.

Finally, a protective cover can be attached to the cone, which can be either disc-shaped, as at 186, or cone shaped, as at 188. The whole emitter 170 can then be sealed and the interior of the cone can be partially evacuated to form a vacuum.

FIG. 8D shows an alternate embodiment of the UV emitter of FIGS. 8A-C. In this embodiment, the emitter 170A is mounted on a plastic holder 190. A conical (or parabolic) shield 186A is mounted around the emitter 170A and a protective quartz lens 186A is added as a cover. Importantly the resulting emitter assembly is sized and shaped to fit unto the flashlight as illustrated in FIG. 7D.

The emitter 170 described so far can be attached to a carrier and used as is to provide a constant and uniform illumination just as is. Optionally, for a more directed light beam, a reflective cone 184 may be placed on the substrate to surround the IC 172. Finally, a protective cover can be attached to the cone, which can be either disc-shaped, as at 186, or cone shaped, as at 188. The whole emitter 170 can then be sealed and the interior of the cone can be partially evacuated to form a vacuum.

G. Conductor Arrangements for Emitters

In many, if not all, of the lighting arrangements discussed above a light emitter is shown which is supported by, or in close proximity to a flat surface. This flat surface is usually a transparent or translucent member, such as, for example, the crystal of a watch. In my co-pending application Ser. No. 09/659,189 filed Sep. 12, 2000, I disclose a method of providing conductors for light emitters in the forms of thin metallic strips deposited on the flat surface. In the following discussion other conductor arrangements are disclosed.

FIG. 9A shows a cross-sectional view of a watch 200 with various elements discussed above. The watch has a case 202, a dial 204, a crystal 206 and a bottom cover 208 sealing the case in the usual manner. Mounted on the dial is a battery 14, a DC/DC converter 12, an ASIC chip 16 with various timing circuits and other control elements. A movement (not shown) is used to drive the hands 210, 212. The hands are supported by a dual shaft 214 in the usual manner.

A plurality of indicia are printed or otherwise attached or formed on the dial 204. These indicia are used to indicate time and other information. The indicia may also include logos. The indicia are visible under normal lighting conditions. In addition, as discussed above, the indicia may also include elements that render them responsive to UV light.

The watch 200 is also provided with a light emitter 218 that provides illumination during low light conditions. The emitter 218 may generate light in the visible range as described in my patents identified above, or it may generate UV light as discussed above. A conductor arrangement 220 is provided to supply energy to the light emitter 218 and to support the same at its desired location.

Details of the conductor arrangement 220 are shown in FIGS. 9B-9F. The conductor arrangement includes a pair of generally vertical pins 222A, 222B and a generally horizontal arm 224. The vertical pins have a circular or square cross section. At their bottom, each pin has a stop 226. Below this stop, the pins extend through the dial 204 and mate with a respective female connector 228. Instead of connectors, a pins could also be mated directly with a PC circuit board to connect the pins to power through a switch (not shown in these drawings). The stops 226 and connectors 228 cooperate to mount the pins vertically on the dial and maintain it in a substantially vertical orientation. The two pins may be made of steel or other material have high tensile strength and may be gold- or copper-plated to eliminate oxidation and to provide low conductivity. The two pins may be connected by crossbars 230 to enhance their structural stability.

The top of the pins 222A, 222B is terminated with a pad 232. This pad can be made of an insulated material with a conductive surface touching the pins. The bar 224 could be made as a solid strip with two conductors imbedded therein, each conductor being connected to one of the pins. Alternatively, the arm 224 may consist of two conductors 224A, 224B made of phosphor bronze which is very good conductor that is also very spring-like flexibility. Thus, the arm 224 is very flexible so that the whole conductor arrangement flexible and easy to install. The lengths of the pins are selected to position pad 232 and arm 224 just underneath the crystal. Since the crustal is non-conductive, the pad 232 or the arm 224 could be touching the crystal without any effect on the operation of the light emitter 218. The ends of the conductors 224A, 224B are attached to respective terminals on the emitter 218 as discussed in more detail below. If the arm 224 is rigid than it may not be necessary to affix the light emitter 218 to the crystal. Thus the crystal is support in a cantilevered manner by the arm 224. However, in order to insure that the light emitter is positioned properly and does not move out of place over time, especially as the watch is shaken during normal ware, the light emitter can be attached to the crystal using an adhesive such as UV curable adhesive 234. FIG. 9J shows the conductors 224A and 224B being angled with respect to each other.

In FIG. 9E, the two conductors 224A and 224B are shown as being offset laterally. FIGS. 9G, 9H and 9I show a different conductor arrangement wherein the two conductors 224A and 224B are offset vertically from each other.

FIG. 10A discloses another conductor arrangement 240. This arrangement consists of a square post made of a non-conductive material such as aluminum oxide or other ceramic material. The post has two opposed faces 244, 246 that are coated with silver, gold or platinum to provide to conductive paths along the post. The conductors 234A, 234B are attached to these faces, using soldering or other well known means. The bottom of the post 242 has a wider portion. Two springs 250, 252 extend downwardly to the circuit board 254. The springs 250, 252 or the post 242 pass through a slot made in the dial 202. The springs 250, 252 rest against the circuit board 254 to make contact with pads(not shown) connecting the springs (and hence, the conductors 234A, 234B to other circuit elements. Thus the springs 250, 252 provide both contact means and a biasing means to urge the post upward toward the crystal. Therefore, good contact is maintained between the circuit board 254 and the coils, the coils and the post.

Another conductor arrangement is shown in FIG. 11A. This arrangement 260 includes a plate 262 which has two contact pads 264 on the bottom and two pads 266 on top. The conductors 234A and 234B are welded or otherwise attached to the top pads 266. The arrangement further includes two springs 268, 270, extending down and making contact with two pads 272 on circuit board 254. When assembled the arrangement is compressed between crystal 206 and circuit board 254. Advantageously, the plate 262 or the conductors 234A. 234B can be secured to the crystal using a UV-activated adhesive 274 or other similar means.

The arrangement 270 can be located in a number of different positions within the watch. For example, the arrangement can be positioned adjacent to the case, or a niche formed in the case. Alternatively, a hole 276 can be formed in the case with an upper shoulder 278. The springs 268, 270 can then introduced through the hole 276 so that the plate 262 rests on shoulder 278. Finally, the whole coils can be placed into a sleeve 280 and the sleeve can then be introduced into hole 276.

FIG. 12 shows yet another embodiment for a conductor arrangement 300. This arrangement has the two conductors 234A, 234B extending across the watch face as shown. Each conductor is supported in a cantilevered manner by a post 302, 304. The watch is provided with a collar 306, which performs other functions as well. Two holes 308, 310 are formed in the collar 306. Two coils 312, 314 extend through the holes 308, 310 and contact the posts 302, 304 directly or through intermediate contact pads (not shown). The collar is installed under the crystal and the light emitter 218 is positioned under the crystal, and can be glued to it, as described in earlier embodiments.

G. Lateral Illumination

FIGS. 13A and 13B show a side of a watch 300 with a dial 302 carrying indicia 304 and a light emitter 306 displaced under the dial 302. A light guide 308 carries the light from light emitter 306. Adjacent to the lateral wall of the watch there are provided several mirrors, including mirror 310, 312 and 314. Mirror 310 receives the light from the emitter 306 and directs it upward to mirror 312 and/or 314. Mirrors 312 and 314 are arranged and oriented to redirect light toward the dial 302 thereby lighting the indicia 304. As can be seen in FIG. 13B, several mirrors can be placed circumferentially about the watch face, each mirror directing the light at a portion of the dial. For example, a mirror can be placed at every quadrant, e.g. 3 o'clock, 6 o'clock, 9 o'clock, 12 o'clock, etc. A single light emitter may be provided for all of the mirrors, or alternatively, more than one light emitter may be provided.

H. Indirect Illumination

FIGS. 14A and 14B shows a configuration somewhat similar to the ones in FIGS. 13A and 13B, in that the watch 400 has a dial 402 with indicia 404 and a light emitter 406 disposed under the dial 402. In this configuration the dial is translucent and the light emitter is directed upward. As a result, when the light emitter is activated, it illuminates the translucent dial which then becomes luminous and renders the indicia 404 visible. A single light emitter may suffice, or several light emitters may be used as indicated in FIG. 14B.

I. Reflector Cones for the Electromagnetic Device

All the embodiments described above incorporate a light emitter which is preferably a lensless to provide a very broad light beam. It was found that in some instances a reflector cone may be used to shape the beam. FIGS. 16A-B shows a light emitter 502 which consists of a semiconductor junction 504 and a reflector 506. The semiconductor junction generates light along the axes indicated by the arrows. Current to the semiconductor junction is provided by conductors 508 and 510. In this embodiment, the conductor 508 is shown passing through the sleeve 512 of an instrument having a needle 514. The conductor passes through the sleeve 512 as well, or is welded to the sleeve and the sleeve serves as the current return.

Some of the light is directed along some of the horizontal axes, such as axis X. This portion of the light is wasted. In order to render the light emitter more efficient, the reflector is arranged and constructed to intercept the waste light and redirect downward toward dial 516.

FIG. 16C shows another embodiment of the invention in which the light emitter 502A includes a semiconductor junction 504A that is inverted. In this configuration, even more light would be lost without a reflector, as shown. In this case the reflector 506 is positioned slightly higher to intercept more of the light. It should be understood that structures similar to the one shown in FIG. 16C could be used to illuminate not only gauges or instruments but watches as well. Morever, an emitter similar to 502A can be extended through any dial or backache through any hole, not just through a shaft. Moreover the shield 506 may be omitted, if desired.

FIG. 15 shows the light emitter 502 supported in a cantilevered fashion by conductors 234A and 234B.

Obviously numerous modifications may be made to this invention without departing from its scope as defined in the appended claims.

Fuwausa, Michelle Jillian, Thompson, James L.

Patent Priority Assignee Title
10011219, Jan 18 2016 Ford Global Technologies, LLC Illuminated badge
10023100, Dec 14 2015 Ford Global Technologies, LLC Illuminated trim assembly
10023110, Apr 21 2017 Ford Global Technologies, LLC Vehicle badge sensor assembly
10035463, May 10 2017 Ford Global Technologies, LLC Door retention system
10035473, Nov 04 2016 Ford Global Technologies, LLC Vehicle trim components
10041650, Nov 21 2013 Ford Global Technologies, LLC Illuminated instrument panel storage compartment
10043396, Sep 13 2016 Ford Global Technologies, LLC Passenger pickup system and method using autonomous shuttle vehicle
10046688, Oct 06 2016 Ford Global Technologies, LLC Vehicle containing sales bins
10047659, Aug 31 2016 Ford Global Technologies, LLC Photoluminescent engine indicium
10047911, Aug 31 2016 Ford Global Technologies, LLC Photoluminescent emission system
10053006, Jan 31 2017 Ford Global Technologies, LLC Illuminated assembly
10059238, May 30 2017 Ford Global Technologies, LLC Vehicle seating assembly
10064256, Nov 21 2013 Ford Global Technologies, LLC System and method for remote activation of vehicle lighting
10064259, May 11 2016 Ford Global Technologies, LLC Illuminated vehicle badge
10065555, Sep 08 2016 Ford Global Technologies, LLC Directional approach lighting
10075013, Sep 08 2016 Ford Global Technologies, LLC Vehicle apparatus for charging photoluminescent utilities
10081295, Oct 13 2015 Ford Global Technologies, LLC Illuminated badge for a vehicle
10081296, Apr 06 2016 Ford Global Technologies, LLC Illuminated exterior strip with photoluminescent structure and retroreflective layer
10086700, Oct 20 2016 Ford Global Technologies, LLC Illuminated switch
10106074, Dec 07 2016 Ford Global Technologies, LLC Vehicle lamp system
10118538, Dec 07 2016 Ford Global Technologies, LLC Illuminated rack
10118568, Mar 09 2016 Ford Global Technologies, LLC Vehicle badge having discretely illuminated portions
10131237, Jun 22 2016 Ford Global Technologies, LLC Illuminated vehicle charging system
10137825, Oct 02 2017 Ford Global Technologies, LLC Vehicle lamp assembly
10137826, Jun 29 2016 Ford Global Technologies, LLC Photoluminescent vehicle appliques
10137829, Oct 06 2016 Ford Global Technologies, LLC Smart drop off lighting system
10137831, Jul 19 2017 Ford Global Technologies, LLC Vehicle seal assembly
10144337, Jun 02 2017 Ford Global Technologies, LLC Vehicle light assembly
10144365, Jan 10 2017 Ford Global Technologies, LLC Vehicle badge
10150396, Mar 08 2017 Ford Global Technologies, LLC Vehicle cup holder assembly with photoluminescent accessory for increasing the number of available cup holders
10160405, Aug 22 2017 Ford Global Technologies, LLC Vehicle decal assembly
10166913, Mar 15 2017 Ford Global Technologies, LLC Side marker illumination
10168039, Aug 10 2015 Ford Global Technologies, LLC Illuminated badge for a vehicle
10173582, Jan 26 2017 Ford Global Technologies, LLC Light system
10173604, Aug 24 2016 Ford Global Technologies, LLC Illuminated vehicle console
10186177, Sep 13 2017 Ford Global Technologies, LLC Vehicle windshield lighting assembly
10189401, Feb 09 2016 Ford Global Technologies, LLC Vehicle light strip with optical element
10189414, Oct 26 2017 Ford Global Technologies, LLC Vehicle storage assembly
10195985, Mar 08 2017 Ford Global Technologies, LLC Vehicle light system
10205338, Jun 13 2016 Ford Global Technologies, LLC Illuminated vehicle charging assembly
10207636, Oct 18 2017 Ford Global Technologies, LLC Seatbelt stowage assembly
10220784, Nov 29 2016 Ford Global Technologies, LLC Luminescent windshield display
10235911, Jan 12 2016 Ford Global Technologies, LLC Illuminating badge for a vehicle
10240737, Mar 06 2017 Ford Global Technologies, LLC Vehicle light assembly
10281113, Mar 05 2018 Ford Global Technologies, LLC Vehicle grille
10286837, Feb 09 2017 Ford Global Technologies, LLC Vehicle light assembly
10300843, Jan 12 2016 Ford Global Technologies, LLC Vehicle illumination assembly
10308175, Sep 08 2016 Ford Global Technologies, LLC Illumination apparatus for vehicle accessory
10321550, May 11 2016 Ford Global Technologies, LLC Illuminated vehicle badge
10343622, Jun 09 2016 Ford Global Technologies, LLC Interior and exterior iridescent vehicle appliques
10363867, Nov 21 2013 Ford Global Technologies, LLC Printed LED trim panel lamp
10391943, Oct 09 2017 Ford Global Technologies, LLC Vehicle lamp assembly
10399483, Mar 08 2017 Ford Global Technologies, LLC Vehicle illumination assembly
10399486, May 10 2017 Ford Global Technologies, LLC Vehicle door removal and storage
10400978, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent lighting apparatus for vehicles
10420189, May 11 2016 Ford Global Technologies, LLC Vehicle lighting assembly
10422501, Dec 14 2016 Ford Global Technologies, LLC Vehicle lighting assembly
10427593, Feb 09 2017 Ford Global Technologies, LLC Vehicle light assembly
10434938, Oct 06 2016 Ford Global Technologies, LLC Smart drop off lighting system
10457196, Apr 11 2018 Ford Global Technologies, LLC Vehicle light assembly
10465879, Mar 27 2017 Ford Global Technologies, LLC Vehicular light assemblies with LED-excited photoluminescent lightguide
10483678, Mar 29 2017 Ford Global Technologies, LLC Vehicle electrical connector
10493904, Jul 17 2017 Ford Global Technologies, LLC Vehicle light assembly
10501007, Jan 12 2016 Ford Global Technologies, LLC Fuel port illumination device
10501025, Mar 04 2016 Ford Global Technologies, LLC Vehicle badge
10502690, Jul 18 2017 Ford Global Technologies, LLC Indicator system for vehicle wear components
10532691, Apr 06 2016 Ford Global Technologies, LLC Lighting assembly including light strip, photoluminescent structure, and reflector and positioned on vehicle panel
10562442, Dec 07 2016 Ford Global Technologies, LLC Illuminated rack
10569696, Apr 03 2017 Ford Global Technologies, LLC Vehicle illuminated airflow control device
10576893, Oct 08 2018 Ford Global Technologies, LLC Vehicle light assembly
10611298, Mar 13 2017 Ford Global Technologies, LLC Illuminated cargo carrier
10627092, Mar 05 2018 Ford Global Technologies, LLC Vehicle grille assembly
10631373, May 12 2016 Ford Global Technologies, LLC Heated windshield indicator
10703263, Apr 11 2018 Ford Global Technologies, LLC Vehicle light system
10720551, Jan 03 2019 Ford Global Technologies, LLC Vehicle lamps
10723257, Feb 14 2018 Ford Global Technologies, LLC Multi-color luminescent grille for a vehicle
10723258, Jan 04 2018 Ford Global Technologies, LLC Vehicle lamp assembly
10778223, Apr 23 2018 Ford Global Technologies, LLC Hidden switch assembly
10795068, Jun 19 2019 Ford Global Technologies, LLC Vehicle badge
6806644, Jul 17 2001 Casio Computer Co., Ltd. Electronic apparatus and liquid crystal display device for irradiating ultraviolet ray to luminescent layer
6990922, Oct 31 2001 Toyoda Gosei Co., Ltd. Indication system of meter part
7016264, Nov 29 2001 Casio Computer Co., Ltd. Light emission and display devices and electronic apparatus using the display device
7018081, Jun 19 2003 Pole light including navigation light and ultraviolet light source
7072533, Sep 26 2005 THE BANK OF NEW YORK MELLON, AS ADMINISTRATIVE AGENT Automotive optical touch sensitive switch method
7090368, Apr 26 2002 HEWLETT-PACKARD DEVELOPMENT COMPANY, L P Key for use in low light conditions
7095463, Aug 31 2001 Casio Computer Co., Ltd. Ultraviolet ray emitting apparatus and electronic apparatus using ultraviolet ray emitting elements
7122812, Feb 08 1996 Bright Solutions, Inc. Leak detection lamp
7123550, Apr 01 2003 Assembly and method for illuminating a watch
7216997, Oct 26 2004 REBO LIGHTING & ELECTRONICS, LLC Phosphor reactive instrument panel and gauges
7347576, May 13 2005 Continental Automotive Systems, Inc Ultraviolet light instrument cluster
7418726, Jan 02 2003 DYNAMIC UV, LLC Illuminated devices using UV-LED's
7431484, Mar 04 2005 Yazaki North America, Inc.; Yazaki North America, Inc Embroidered instrument cluster
7857503, Aug 31 2005 Timepiece for water sports items and beach accessories
7857504, Jan 17 2008 NIKE, Inc Crystal display shielded by one or more protective guards
7887222, May 09 2008 Yazaki North America, Inc. Display device with changeable display background
7997776, Mar 10 2005 Denso Corporation Indicating instrument for vehicle
8087820, Jan 17 2008 Nike, Inc. Crystal display shielded by one or more protective guards
8089351, Oct 06 2004 Visteon Global Technologies, Inc Instrument cluster lens information, telltails, and lighting
8777290, Mar 06 2013 Vehicle dashboard instrument assembly
9195812, Mar 13 2012 Hannes, Bonhoff Method for entering a password and computer program (therefor)
9212809, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent dynamic lighting
9290123, Nov 21 2013 Ford Global Technologies, LLC Vehicle light system with illuminating roof rack
9302616, Apr 21 2014 Ford Global Technologies, LLC Vehicle lighting apparatus with multizone proximity control
9315145, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent tailgate and step
9327643, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent lift gate lamp
9371033, Nov 21 2013 Ford Global Technologies, LLC Vehicle sunshade assembly
9376058, Nov 21 2013 Ford Global Technologies, LLC Fluid level indicator using photoluminescent illumination
9387802, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent power distribution box
9393903, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent engine compartment lighting
9393904, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent engine compartment lighting
9393905, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent vehicle compartment light
9399427, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent device holder
9409515, Nov 21 2013 Ford Global Technologies, LLC Luminescent seating assembly
9434294, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent vehicle badge
9434297, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent vehicle graphics
9434301, Nov 21 2013 Ford Global Technologies, LLC Hidden photoluminescent vehicle user interface
9434302, Nov 21 2013 Ford Global Technologies,LLC Photoluminescent bin lamp
9434304, Nov 21 2013 Ford Global Technologies, LLC Illuminated vehicle compartment
9440579, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent step handle
9440583, Nov 21 2013 Ford Global Technologies, LLC Vehicle dome lighting system with photoluminescent structure
9440584, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent vehicle console
9446709, Nov 21 2013 Ford Global Technologies, LLC Vehicle backlit assembly with photoluminescent structure
9452708, Nov 21 2013 Ford Global Technologies, LLC Vehicle badge
9452709, Jun 18 2014 Continental Automotive Systems, Inc. Illuminated instrument cluster
9457712, Nov 21 2013 Ford Global Technologies, LLC Vehicle sun visor providing luminescent lighting
9459453, Nov 21 2013 Ford Global Technologies, LLC Windshield display system
9463734, Nov 21 2013 Ford Global Technologies, LLC Illuminated seatbelt assembly
9463735, Oct 06 2015 Ford Global Technologies, LLC Vehicle visor assembly with illuminating check assembly
9463736, Nov 21 2013 Ford Global Technologies, LLC Illuminated steering assembly
9463737, Nov 21 2013 Ford Global Technologies, LLC Illuminated seatbelt assembly
9463738, Nov 21 2013 Ford Global Technologies, LLC Seatbelt lighting system
9463739, Nov 21 2013 Ford Global Technologies, LLC Sun visor with photoluminescent structure
9464776, Nov 21 2013 Ford Global Technologies, LLC Vehicle light system with illuminating exhaust
9464803, Nov 21 2013 Ford Global Technologies, LLC Illuminated speaker
9464886, Nov 21 2013 Ford Global Technologies, LLC Luminescent hitch angle detection component
9464887, Nov 21 2013 Ford Global Technologies, LLC Illuminated hitch angle detection component
9469244, Nov 21 2013 Ford Global Technologies, LLC Luminescent vehicle seal
9481297, Nov 21 2013 Ford Global Technologies, LLC Illuminated steering assembly
9487126, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent puddle lamp
9487127, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent vehicle step lamp
9487128, Nov 21 2013 Ford Global Technologies, LLC Illuminating running board
9487135, Nov 21 2013 Ford Global Technologies, LLC Dome light assembly
9487136, Nov 21 2013 Ford Global Technologies, LLC System and method to locate vehicle equipment
9492575, Nov 21 2013 Ford Global Technologies, LLC Color changing and disinfecting surfaces
9493113, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent cargo area illumination
9495040, Nov 21 2013 Ford Global Technologies, LLC Selectively visible user interface
9499090, Nov 21 2013 Ford Global Technologies, LLC Spoiler using photoluminescent illumination
9499092, Nov 21 2013 Ford Global Technologies, LLC Illuminating molding for a vehicle
9499093, Feb 08 2016 Ford Global Technologies, LLC Retractable running board with long-persistance phosphor lighting
9499094, Feb 08 2016 Ford Global Technologies, LLC Retractable running board with long-persistence phosphor lighting
9499096, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent vehicle reading lamp
9499113, Nov 21 2013 Ford Global Technologies, LLC Luminescent grille bar assembly
9500333, Dec 18 2015 Ford Global Technologies, LLC Phosphorescent lighting assembly
9517723, Jan 21 2016 Ford Global Technologies, LLC Illuminated tie-down cleat
9527438, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent blind spot warning indicator
9533613, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent fuel filler door
9538874, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent cupholder illumination
9539937, Nov 21 2013 Ford Global Technologies, LLC Vehicle step lamp
9539939, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent logo for vehicle trim and fabric
9539940, Nov 21 2013 Ford Global Technologies, LLC Illuminated indicator
9539941, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent cupholder illumination
9573516, Nov 21 2013 Ford Global Technologies, LLC Rear vehicle lighting system
9573517, Nov 21 2013 Ford Global Technologies, LLC Door illumination and warning system
9573518, Jul 15 2016 Ford Global Technologies, LLC Floor console IR bin light
9573519, Aug 08 2016 Ford Global Technologies, LLC Engine compartment lighting to moving parts
9573520, Aug 09 2016 Ford Global Technologies, LLC Luminescent console storage bin
9583968, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent disinfecting and charging bin
9586518, Nov 21 2013 Ford Global Technologies, LLC Luminescent grille bar assembly
9586519, Jan 27 2016 Ford Global Technologies, LLC Vehicle rear illumination
9586523, Nov 21 2013 Ford Global Technologies, LLC Vehicle lighting assembly
9586527, May 18 2016 Ford Global Technologies, LLC Wheel well step assembly of vehicle
9587800, Nov 21 2013 Ford Global Technologies, LLC Luminescent vehicle molding
9587967, Aug 04 2016 Ford Global Technologies, LLC Vehicle container illumination
9593820, Sep 28 2016 Ford Global Technologies, LLC Vehicle illumination system
9598632, Nov 21 2013 Ford Global Technologies, LLC Method for depositing photoluminescent material
9604567, Jun 15 2016 Ford Global Technologies, LLC Luminescent trailer hitch plug
9604568, Sep 01 2016 Ford Global Technologies, LLC Vehicle light system
9604569, Jul 19 2016 Ford Global Technologies, LLC Window lighting system of a vehicle
9607534, Nov 21 2013 Ford Global Technologies, LLC Illuminating prismatic badge for a vehicle
9613549, Nov 21 2013 Ford Global Technologies, LLC Illuminating badge for a vehicle
9616823, Aug 22 2016 Ford Global Technologies, LLC Illuminated badge for a vehicle
9623797, Feb 04 2016 Ford Global Technologies, LLC Lift gate lamp
9625115, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent vehicle graphics
9649877, Nov 21 2013 Ford Global Technologies, LLC Vehicle light system with illuminating wheel assembly
9656592, Mar 11 2016 Ford Global Technologies, LLC System and method of calibrating a vehicle badge having a number of light sources
9656598, Feb 23 2016 Ford Global Technologies, LLC Vehicle badge
9663967, Sep 11 2015 Ford Global Technologies, LLC Illuminated latch system
9664354, Feb 11 2016 Ford Global Technologies, LLC Illumination assembly
9682649, Nov 21 2013 Ford Global Technologies, Inc. Photoluminescent winch apparatus
9682651, Nov 21 2013 Ford Global Technologies, LLC Vehicle lighting system with improved substrate
9688186, Nov 21 2013 Ford Global Technologies, LLC Illuminating decal for a vehicle
9688189, Mar 09 2016 Ford Global Technologies, LLC Illuminated license plate
9688190, Mar 15 2016 Ford Global Technologies, LLC License plate illumination system
9688192, Nov 21 2013 Ford Global Technologies, LLC Vehicle having interior and exterior lighting on tailgate
9688215, May 11 2016 Ford Global Technologies, LLC Iridescent vehicle applique
9694739, Nov 10 2015 Ford Global Technologies, LLC Disinfecting handle
9694743, Nov 21 2013 Ford Global Technologies, LLC Dual purpose lighting assembly
9707887, Oct 19 2016 Ford Global Technologies, LLC Vehicle mirror assembly
9714749, May 10 2016 Ford Global Technologies, LLC Illuminated vehicle grille assembly
9738219, May 11 2016 Ford Global Technologies, LLC Illuminated vehicle trim
9746355, Nov 20 2014 Systems and methods for selective contextual illumination of digital information display devices and other information indication devices
9751458, Feb 26 2016 Ford Global Technologies, LLC Vehicle illumination system
9758088, May 10 2016 Ford Global Technologies, LLC Auxiliary lighting roof rack
9758090, Mar 03 2017 Ford Global Technologies, LLC Interior side marker
9764686, Nov 21 2013 Ford Global Technologies, LLC Light-producing assembly for a vehicle
9771019, Nov 21 2013 Ford Global Technologies, Inc.; Ford Global Technologies, LLC Photoluminescent vehicle illumination
9776557, Nov 21 2013 Ford Global Technologies, LLC Dual direction light producing assembly
9782504, Nov 21 2013 Ford Global Technologies, Inc. Self-disinfecting surface with printed LEDs for a surface of a vehicle
9789810, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent vehicle panel
9796304, Nov 21 2013 Ford Global Technologies, LLC Vehicle floor lighting system having a pivotable base with light-producing assembly coupled to base
9796325, Nov 21 2013 Ford Global Technologies, LLC Exterior light system for a vehicle
9797575, Nov 21 2013 Ford Global Technologies, LLC Light-producing assembly for a vehicle
9802531, Jan 27 2016 Ford Global Technologies, LLC Vehicle rear illumination
9802534, Oct 21 2016 Ford Global Technologies, LLC Illuminated vehicle compartment
9803822, Jun 03 2016 Ford Global Technologies, LLC Vehicle illumination assembly
9809160, Nov 21 2013 Ford Global Technologies, LLC Tailgate illumination system
9810401, Nov 21 2013 Ford Global Technologies, LLC Luminescent trim light assembly
9815402, Jan 16 2017 Ford Global Technologies, LLC Tailgate and cargo box illumination
9821708, Nov 21 2013 Ford Global Technologies, LLC Illuminated exterior strip
9821710, May 12 2016 Ford Global Technologies, LLC Lighting apparatus for vehicle decklid
9821717, May 18 2016 Ford Global Technologies, LLC Box step with release button that illuminates
9827903, Aug 18 2016 Ford Global Technologies, LLC Illuminated trim panel
9839098, Nov 21 2013 Ford Global Technologies, LLC Light assembly operable as a dome lamp
9840188, Feb 23 2016 Ford Global Technologies, LLC Vehicle badge
9840191, Jul 12 2016 Ford Global Technologies, LLC Vehicle lamp assembly
9840193, Jul 15 2016 Ford Global Technologies, LLC Vehicle lighting assembly
9845047, Aug 08 2016 Ford Global Technologies, LLC Light system
9849829, Mar 02 2017 Ford Global Technologies, LLC Vehicle light system
9849830, Feb 01 2017 Ford Global Technologies, LLC Tailgate illumination
9849831, Nov 21 2013 Ford Global Technologies, LLC Printed LED storage compartment
9855797, Jul 13 2016 Ford Global Technologies, LLC Illuminated system for a vehicle
9855799, Feb 09 2016 Ford Global Technologies, LLC Fuel level indicator
9855888, Jun 29 2016 Ford Global Technologies, LLC Photoluminescent vehicle appliques
9863171, Sep 28 2016 Ford Global Technologies, LLC Vehicle compartment
9868387, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent printed LED molding
9889791, Dec 01 2015 Ford Global Technologies, LLC Illuminated badge for a vehicle
9889801, Jul 14 2016 Ford Global Technologies, LLC Vehicle lighting assembly
9896020, May 23 2016 Ford Global Technologies, LLC Vehicle lighting assembly
9896023, Feb 09 2017 Ford Global Technologies, LLC Vehicle rear lighting assembly
9902314, Nov 17 2016 Ford Global Technologies, LLC Vehicle light system
9902320, Nov 21 2013 Ford Global Technologies, LLC Photoluminescent color changing dome map lamp
9905743, Nov 21 2013 Ford Global Technologies, LLC Printed LED heat sink double lock
9914390, Oct 19 2016 Ford Global Technologies, LLC Vehicle shade assembly
9925917, May 26 2016 Ford Global Technologies, LLC Concealed lighting for vehicles
9927114, Jan 21 2016 Ford Global Technologies, LLC Illumination apparatus utilizing conductive polymers
9931991, Nov 21 2013 Ford Global Technologies, LLC Rotating garment hook
9937855, Jun 02 2016 Ford Global Technologies, LLC Automotive window glazings
9950658, Nov 21 2013 Ford Global Technologies, LLC Privacy window system
9958138, Nov 21 2013 Ford Global Technologies, LLC Vehicle trim assembly
9961745, Nov 21 2013 Ford Global Technologies, LLC Printed LED rylene dye welcome/farewell lighting
9963001, Mar 24 2016 Ford Global Technologies, LLC Vehicle wheel illumination assembly using photoluminescent material
9963066, May 15 2017 Ford Global Technologies, LLC Vehicle running board that provides light excitation
9969323, Nov 21 2013 Ford Global Technologies, LLC Vehicle lighting system employing a light strip
9982780, Nov 21 2013 Ford Global Technologies, LLC Illuminated indicator
9989216, Nov 21 2013 Ford Global Technologies, LLC Interior exterior moving designs
9994089, Nov 29 2016 Ford Global Technologies, LLC Vehicle curtain
9994144, May 23 2016 Ford Global Technologies, LLC Illuminated automotive glazings
Patent Priority Assignee Title
3749977,
4208869, Jul 31 1976 Citizen Watch Co., Ltd. Illumination device for electronic timepiece
4775964, Jan 11 1988 Timex Corporation Electroluminescent dial for an analog watch and process for making it
4841155, May 30 1986 Nippondenso Co., Ltd. Indicator arrangement for motor vehicles
5029046, Dec 27 1988 Kanto Seiki Co., Ltd. Illuminated indicator gauge
5117334, Dec 27 1988 Kanto Seiki Co., Ltd. Illuminated indicator gauge
5130548, Feb 03 1988 Yazaki Corporation Indicator
5813753, May 27 1997 Philips Electronics North America Corp UV/blue led-phosphor device with efficient conversion of UV/blues light to visible light
5962971, Aug 29 1997 Solidlite Corporation LED structure with ultraviolet-light emission chip and multilayered resins to generate various colored lights
5997161, Dec 09 1997 GM Global Technology Operations LLC Black light instrument cluster assembly
6106127, Mar 19 1999 LUMINARY LOGIC, LTD Illuminating device for watches, gauges and similar devices
6208591, Sep 19 1997 Casio Computer Co., Ltd. Luminescent device, timepiece, electronic apparatus and method for manufacturing luminescent device
6299321, Mar 19 1999 Luminary Logic LTD Illuminating device for watches, gauges and similar devices
6402354, Jun 28 1999 Toyoda Gosei Co., Ltd. Indirect lighting system for vehicle interior
JP4346388,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
May 03 2002Luminary Logic Ltd.(assignment on the face of the patent)
Jul 22 2002THOMPSON, JAMES L LUMINARY LOGIC, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0131730986 pdf
Aug 05 2002FUWAUSA, MICHELLE JILLIANLUMINARY LOGIC, INC ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0131730986 pdf
Date Maintenance Fee Events
Nov 12 2007REM: Maintenance Fee Reminder Mailed.
Apr 24 2008M2551: Payment of Maintenance Fee, 4th Yr, Small Entity.
Apr 24 2008M2554: Surcharge for late Payment, Small Entity.
Dec 19 2011REM: Maintenance Fee Reminder Mailed.
Jan 24 2012M2552: Payment of Maintenance Fee, 8th Yr, Small Entity.
Jan 24 2012M2555: 7.5 yr surcharge - late pmt w/in 6 mo, Small Entity.
Nov 04 2015M2553: Payment of Maintenance Fee, 12th Yr, Small Entity.


Date Maintenance Schedule
May 04 20074 years fee payment window open
Nov 04 20076 months grace period start (w surcharge)
May 04 2008patent expiry (for year 4)
May 04 20102 years to revive unintentionally abandoned end. (for year 4)
May 04 20118 years fee payment window open
Nov 04 20116 months grace period start (w surcharge)
May 04 2012patent expiry (for year 8)
May 04 20142 years to revive unintentionally abandoned end. (for year 8)
May 04 201512 years fee payment window open
Nov 04 20156 months grace period start (w surcharge)
May 04 2016patent expiry (for year 12)
May 04 20182 years to revive unintentionally abandoned end. (for year 12)