The invention relates to a computed tomography apparatus which includes a scanning unit which is rotatable, relative to an examination zone (13), around an axis of rotation (14) which extends through the examination zone (13), and also includes a radiation source (S) for generating a primary fan beam (41) which traverses the examination zone (13), and a two-dimensional detector array (D) which includes a plurality of detector elements and a part of the measuring surface of which detects primary radiation from the primary fan beam (41) whereas an other part of its measuring surface detects scattered radiation produced in the examination zone (13). In order to avoid reconstruction artefacts as much as possible in a computed tomography apparatus of this kind, in accordance with the invention it is proposed to arrange a modulation unit (33) between the radiation source (S) and the examination zone (13) in order to realize a temporally and spatially periodic modulation of the primary fan beam (41).

Patent
   6744845
Priority
Apr 03 2001
Filed
Apr 03 2002
Issued
Jun 01 2004
Expiry
Aug 01 2022
Extension
120 days
Assg.orig
Entity
Large
104
10
EXPIRED
17. A method of computed tomography comprising the steps of:
projecting a fan-shaped beam of radiation from a radiation source towards an examination region;
modulating the fan-shaped beam of radiation temporally and spatially 7 using a modulation unit disposed between the radiation source and the examination region;
detecting primary radiation and scattered radiation using a radiation detector array after the primary and scattered radiation have passed through the examination region; and
obtaining a momentum transfer spectrum of the scattered radiation.
9. A computed tomography apparatus comprising:
a scanning unit which is rotatable, relative to an examination zone, around a scanner axis of rotation which extends through the examination zone;
a radiation source for generating a radiation beam directed towards the examination zone;
a detector disposed across the examination zone from the radiation source, said detector including a plurality of detector elements for detecting primary radiation and scattered radiation that passes through the examination zone;
a modulation unit disposed between the radiation source and the examination zone for temporally and spatially modulating the radiation beam; and
cross-correlation means for cross-correlating the spattered radiation with a modulation signal used for the modulation of the radiation beam whereby a location-dependent momentum transfer spectrum is reconstructed.
1. A computed tomography apparatus comprising:
a scanning unit which is rotatable, relative to an examination zone, around an axis of rotation which extends through the examination zone;
a radiation source for generating a primary radiation fan beam which traverses the examination zone;
a two-dimensional detector array which includes a plurality of detector elements defining a measuring surface, a first part of the measuring surface for detecting primary radiation from the primary fan beam and a second part of the measuring surface for detecting scattered radiation produced in the examination zone;
a modulation unit for the temporally and spatially periodic modulation of the primary fan beam, said modulation unit disposed between the radiation source and the examination zone and,
a determining unit for determining a momentum transfer spectrum from cross-correlations between the measured scattered radiation of the individual detector elements and a modulation signal used for the modulation of the primary fan beam.
2. A computed tomography apparatus as claimed in claim 1, wherein the modulation unit is constructed such that the intensity of the modulated primary fan beam has an intensity that is temporally modulated and a phase position that is spatially modulated.
3. A computed tomography apparatus as claimed in claim 1, wherein the modulation unit is cylindrically symmetrically arranged around a modulation axis which extends perpendicularly to the axis of rotation and the connecting line between the focal point of the radiation source and the center of the detector array, and comprises two diaphragm elements which are diametrically arranged relative to the modulation axis, are arranged helically around the modulation axis, and are rotatable about the modulation axis.
4. A computed tomography apparatus as claimed in claim 3, wherein the diaphragm elements are rotatable at a constant angular speed around the modulation axis for the temporal and spatial modulation of the primary fan beam.
5. A computed tomography apparatus as claimed in claim 3, wherein the diaphragm elements comprise diaphragm blades which are radiation attenuating and are mounted so as to be helical and 180°C offset on a shaft extending along the modulation axis.
6. A computed tomography apparatus as claimed in claim 3, wherein the modulation unit comprises a radiation attenuating external wall and the diaphragm elements include two radiation transparent slits which extend helically and in an offset fashion in the external wall.
7. A computed tomography apparatus as claimed in claim 1, wherein in order to subdivide the primary fan beam, the modulation unit is subdivided into a plurality of neighboring fan beam units and is arranged for the separate modulation of the fan beam units.
8. A computed tomography apparatus as claimed in claim 1, wherein the modulation unit comprises means for sinusoidal temporal and spatial modulation of the primary fan beam.
10. A computed tomography apparatus as claimed in claim 9, wherein the modulation unit comprises temporal means for temporally modulating the intensity of the modulated radiation beam and spatial means for spatially modulating the phase position of the modulated radiation beam.
11. A computed tomography apparatus as claimed in claim 9, wherein the modulation unit is cylindrically symmetrically arranged around a modulation axis which extends perpendicularly to the scanner axis of rotation and a line passing from the focal point of the radiation source and the center of the detector array, and comprises a plurality of diaphragm elements arranged helically around the modulation axis.
12. A computed tomography apparatus as claimed in claim 11, wherein the diaphragm elements rotate at a constant angular speed around the modulation axis.
13. A computed tomography apparatus as claimed in claim 11, wherein the diaphragm elements comprise diaphragm blades which are radiation attenuating and are mounted so as to be helical and 180°C offset from one another on a shaft extending along the modulation axis.
14. A computed tomography apparatus as claimed in claim 11, wherein the modulation unit comprises a radiation attenuating external wall and the diaphragm elements include radiation transparent slits which extend helically and in an offset fashion from one another in the external wall.
15. A computed tomography apparatus as claimed in claim 9, wherein the modulation unit comprises dividing means for dividing the radiation beam into a plurality of radiation beam units.
16. A computed tomography apparatus as claimed in claim 9, wherein the modulation unit comprises sinusoidal means for sinusoidally modulating the radiation beam temporally and spatially.
18. A method of computed tomography according to claim 17 wherein the step of modulating the fan-shaped beam of radiation includes sinusoidally modulating the fan-shaped beam of radiation.

The invention relates to a computed tomography apparatus which includes a scanning unit which is rotatable, relative to an examination zone, around an axis of rotation which extends through the examination zone, and also includes a radiation source for generating a primary radiation fan beam which traverses the examination zone, and a two-dimensional detector array which includes a plurality of detector elements and a part of the measuring surface of which detects primary radiation from the primary radiation fan beam whereas another part of its measuring surface detects scattered radiation produced in the examination zone.

A computed tomography apparatus of this kind is described in European patent application No. 01200652.4. This arrangement detects so-called elastic or coherent scattered X-rays. As is known, such X-rays occur when the X-ray quanta do not loose energy during the scattering process; the type of scattering which involves a loss of energy is referred to as Compton scatter. The elastic scatter is dominant in the case of small scatter angles (for example, angles <10°C) whereas the Compton scatter is dominant in the case of large scatter angles. As opposed to Compton scatter, the elastically scattered radiation allows for a characterization of the modular structure of the matter present in the examination zone.

In order to enable detection of coherent scattered radiation by means of the computed tomography apparatus disclosed in the cited European patent application No. 01200652.4, the fan-shaped radiation beam is subdivided into a number of segments which are referred to as pencil beams, so that the detector elements present in a column parallel to the axis of rotation are exposed to primary or scattered radiation from the same segment. Such a subdivision into a number of segments is realized by way of a plurality of lamellas of a collimator device which is arranged between the examination zone and the detector array.

The momentum transfer searched, being proportional to the product of the energy of the scattered X-ray quanta and the sine of half the scatter angle (the scatter angle is the angle enclosed by the path of the scattered X-ray quantum relative to the path that would have been followed by the X-ray quantum in the absence of scattering), can then be reconstructed by means of an iterative algebraic reconstruction technique. For each voxel in the examination zone which is traversed by a primary beam such a reconstruction yields a momentum transfer spectrum (the momentum transfer spectrum represents the intensity of the scattered radiation as a function of the momentum transfer) which is characteristic of the matter in the relevant voxel and hence enables information to be derived as regards the physical composition.

Because the space between the examination zone and the detector array is often very limited, only short lamellas, for example, lamellas having a length of less than 10 cm in the radiation direction, can be used in the described computed tomography apparatus. This leads to segments of the primary fan beam which diverge in the direction of the source, ultimately leading to artefacts in the reconstruction. Therefore, it is an object of the present invention to construct a computed tomography apparatus in such a manner that fan-shaped radiation beam is influenced in such a manner that the coherent scattered radiation incident on the individual detector elements enables unambiguous determination of the momentum transfer and hence a reconstruction which is as free from artefacts as possible.

This object is achieved in accordance with the invention in that a modulation unit for the temporally and spatially periodic modulation of the primary fan beam is arranged between the radiation source and the examination zone. Because of such modulation of the primary fan beam produced by the radiation source, the coherent scattered radiation from each segment of the primary fan beam can be unambiguously determined by correlation of the measured detector signal with the modulation signal used for the modulation of the radiation. In the section between the radiation source and the examination zone usually enough room is available to accommodate such a modulation unit which requires only a limited amount of space any way. Moreover, unlike the described lamellas of a collimator device, such a modulation unit need not have as large as possible dimensions between the examination zone and the detector array.

Further preferred embodiments are disclosed in the dependent claims.

The primary fan beam can in principle be modulated in different ways. However, the intensity of the primary fan beam is preferably modulated temporally while the phase position of the primary fan beam is modulated spatially as in the embodiment disclosed in claim 2. Furthermore, the modulation is conceived to be such that the transmission factor of the modulation unit, being dependent on the location and the time, exhibits an as large as possible variation, meaning notably that it covers the range from 0 to 1 as well as possible.

A large number of possibilities exist as regards the construction of the modulation unit. Claim 3 discloses a preferred possibility. This embodiment is provided with two diaphragm elements which are diametrically arranged relative to the modulation axis, the modulation axis extending perpendicularly to the axis of rotation and transversely of the direction of propagation of the primary fan beam. These diaphragm elements are arranged helically around the modulation axis and are capable of rotating about this axis so as to achieve the desired modulation by such rotation. In this helical arrangement, the diaphragm elements are led once through 180°C around the modulation axis; however, they may also be led an integer multiple of 180°C around the modulation axis.

Various implementations of the embodiment of the computed tomography apparatus as disclosed in claim 3, notably of the diaphragm elements, are given in the claims 4 to 6.

As is indicated in claim 7, the modulation unit may also be configured in such a manner that there is formed a plurality of radiation beam units with each time a separate modulation.

Modulation is realized in the simplest way by selecting a sinusoidal modulation function, meaning that the transmission factor of the modulation unit, being dependent on the location and the time, varies sinusoidally in dependence on the location and the time.

The invention will be described in detail hereinafter with reference to the drawings.

FIG. 1 is a diagrammatic representation of a computed tomography apparatus in accordance with the invention,

FIG. 2 shows a part of the computed tomography apparatus in accordance with the invention as shown in FIG. 1,

FIG. 3 shows a first embodiment of a modulation unit in accordance with the invention,

FIG. 4 is a cross-sectional view of a modulation unit as shown in FIG. 3,

FIG. 5 shows a second embodiment of a modulation unit in accordance with the invention, and

FIG. 6 shows a variation of the transmission factor in the modulation unit shown in FIG. 5.

The computed tomography apparatus shown in FIG. 1 includes a gantry 1 which is capable of rotation about an axis of rotation 14; to this end, the gantry 1 is driven by a motor 2. A radiation source S, for example, an X-ray source, is mounted on the gantry 1. Using a first diaphragm device 32, first a conical radiation beam 40 is generated, said beam being incident on a second diaphragm arrangement 31, being a so-called slit diaphragm, which forms a fan-shaped radiation beam 41, that is, a so-called primary fan beam, therefrom. The primary fan beam 41 extends perpendicularly to the axis of rotation 14 and, because of the small slit width, it has only small dimensions in the direction of the axis of rotation 14 (for example, 1 mm). The primary fan beam 41 is then incident on a modulation unit 33 which temporally and spatially modulates the radiation, thus yielding a modulated primary fan beam 42.

The modulated primary fan beam 42 penetrates a cylindrical examination zone 13 in which, for example, a patient on a patient table (both not shown) or a technical object may be present so as to be examined. After having traversed the examination zone 13, the fan beam 42 is incident on a two-dimensional detector array D which is mounted on the gantry 1 and includes a plurality of detector elements which are arranged in the form of a matrix. The detector elements are arranged in rows and columns, the columns extending parallel to the axis of rotation 14 while the rows extend in planes perpendicular to the axis of rotation 14, for example, along an arc of a circle around the radiation source S. Generally speaking, the detector rows comprise significantly more detector elements (for example, 1000) than the detector columns (for example, 16). The primary fan beam 42 is oriented in such a manner that it is incident on the central detector row of the detector array D which is denoted by shading in FIG. 1.

A linear movement of the examination zone 13 along the axis of rotation 14 under the influence of the motor 5 can be superposed on the rotary movement of the gantry 1, resulting in a helical scanning motion of the radiation source S and the detector array D. When a technical object is to be examined, the gantry 1 may also be stationary and the object may be rotated around the axis of rotation 14.

The measuring data acquired by the detector array D is applied to an image processing computer 10 which reconstructs the desired images or evaluates the measuring data in another manner. The reconstructed images or other data determined can be displayed on a display screen 11. The image processing computer 10 is controlled by a control unit 7, like the motors 2 and 5.

FIG. 2 shows a detail of the computed tomography apparatus shown in FIG. 1. Starting from the X-ray source S, the first diaphragm 32 forms a conical X-ray beam 40 which is subsequently incident on the slit diaphragm 31. From this diaphragm primary radiation 41 emerges in the form of a fan beam which is also incident on the modulation unit 33 so that the desired modulated primary fan beam 42 is generated; this beam is subsequently incident on the examination zone which is not shown herein.

The slit of the slit diaphragm 31 has a small dimension of, for example, only 1 mm in the w direction. The slit, however, is significantly wider in the v direction. This dimension can also be characterized by an angle Φ which characterizes the angle between the direct connecting line 20 between the focal point of the X-ray source S and the center of the detector D or the center of rotation of the computed tomography apparatus and a primary beam 21 of the primary radiation beam 41. The angle variable Φ satisfies the condition -Φfan/2≦Φ≦Φfan/2, where Φfan/2 corresponds to half the angle of the primary fan beam 41. The modulation unit 33 is configured in such a manner that its transmission factor T(Φt) varies periodically as a function of the angle Φ and with the time t, be it that the condition 0≦T(Φ,t)≦1 is always satisfied. The primary fan beam 41 is thus spatially and temporally modulated; this offers special advantages for the evaluation of the scattered radiation measured by the detector array D as will be described in detail hereinafter.

For example, the transmission factor T of the modulation unit 33 may be chosen in conformity with the following rule:

T(Φ,t)=A0 sin(A1·Φ+A2·t).

As can be clearly seen from this rule, in the case of a fixed angle Φ the transmission varies periodically as a function of time at a frequency A2/(2π). The phase of this transmission rule is repeated even at points of the v axis along the slit of the slit diaphragm 31, that is, each time after an interval ΔΦ=2π/A1. The variable A1 should, therefore, have values of 2πn/Φfan, where n represents a positive integer value. The significance of the choice of the parameter n will be explained in detail hereinafter.

The FIGS. 3 and 4 show a feasible embodiment of the modulation unit 33 which satisfies the above conditions. FIG. 3 is a side elevation of such a modulation unit 33 from the same perspective as FIG. 2. In a radiation transparent housing 34 there is shown a shaft 37 which extends along a modulation axis 16 extending in the v direction. On the shaft 37 two diaphragm elements 35, 36 are arranged so as to be diametrically oppositely situated, said elements extending helically around the shaft 37 in the v direction. These diaphragm elements 35, 36 may be compared, for example, with two threads of a screw which are arranged so as to be rotated 180°C relative to one another while commencing from the same point along the v axis.

FIG. 4 shows cross-sections of the modulation unit 33 along the planes E1, E2, E3, E4 shown in FIG. 3, that is, planes extending perpendicularly to the v axis. The primary beam 43 is represented by a dotted line therein and extends through the modulation axis 16. Inside the housing 34 the diaphragm elements 35, 36 are shown in a cross-sectional view, the Figure showing different cross-sections in an adjacent fashion. The shaded position of the diaphragm elements 351, 361 represents the cross-section of the diaphragm elements 35, 36 in the plane E1. The further positions 352, 353, 354 and 362, 363, 364 represent the respective cross-section of the diaphragm elements 35, 36 in the planes E2, E3, E4. Thus, a linear relationship exists between the illustrated cross-sections of the diaphragm elements 35, 36 and the angle Φ as shown in FIG. 2; this means that, in dependence on the angle Φ considered, the diaphragm elements 35, 36 occupy a different angular position in a cross-sectional view as shown in FIG. 4.

The diaphragm elements 35, 36 are preferably made of a material such as aluminium. Using a motor (not shown), the diaphragm elements 35, 36 or the shaft 37 can be driven in such a manner that the diaphragm elements 35, 36 rotate around the modulation axis 16 with a known phase and a constant angular speed in such a manner that the primary radiation is temporally encoded at a fixed angle Φ, the phase of the modulation being known and linearly proportional to the angle Φ. It is to be noted that the embodiment of the modulation unit 33 shown could be compared with the cutting device of a hand-operated lawn mower provided with two diametrically arranged cutting blades extending helically around the axis of rotation of the cutting device.

The thickness of the diaphragm elements 35, 36 is chosen to be such that a sinusoidal transmission is obtained when they are rotated. For example, for the variable A0 of the above transmission rule the value 0.495 could be chosen and the value 0.505 for the variable A2. The modulation unit shown in the FIGS. 3 and 4 realizes a temporal modulation of the intensity of the primary radiation 41 where the phase of the modulation is linked to the position along the fan beam 41.

The gantry 1 rotates for the acquisition of measuring values, so that the detector elements of the detector array D detect the primary radiation and the scattered radiation from a plurality of angular positions. The detector element or elements at the center of each detector column detects (detect) the primary radiation whereas the scattered radiation (secondary radiation) is detected by the detector elements which are situated further outwards in each column. The momentum transfer, whose spectrum is to be reconstructed as a function of the location u, v, is known to be the product of the energy of the scattered X-ray quanta and the sine of half the scatter angle. In order to enable the momentum transfer to be determined, on the one hand the scatter angle must be known and on the other hand the energy of the scattered X-ray quantum. The scatter angle is given by the position of the detector element and the position of the point in the primary fan beam in which the scatter process has taken place. The energy of the scattered X-ray quanta must either be measured, implying that the detector elements should be capable of energy-resolved measurement, or use must be made of X-rays with quantum energies from an as small as possible range (monochromatic X-rays in the ideal case).

In order to reconstruct the location-dependent momentum transfer spectrum, it is first necessary to carry out a phase-sensitive detection as described, for example, in D. C. Champeney "Fourier transforms and their physical applications", Academic Press, 1973, for the scattered signal arriving at the detector. To this end, a cross-correlation is performed between the scatter signal detected by a given detector element, that is, the scattered radiation measured by a given detector element, and the sinusoidal modulation signal generated by the modulation unit for the corresponding segment of the primary fan beam. This segment of the primary fan beam is situated in a plane which is determined by the focus of the X-ray source and the detector column in which the relevant detector element is situated. Because the scatter signal is always in phase with the primary beam wherefrom the associated scatter has originated by scattering on an object, the cross-correlation always produces a positive result, whereas a cross-correlation of two signals which are not in phase tends towards zero.

The coherent scatter of a pencil-shaped beam has the highest intensity value in the case of a small scatter angle and tends towards zero as the scatter angle increases. When a given detector element is considered, therefore, the contributions of scatter from segments of the primary fan beam decrease when the scatter angle of scatter incident on the relevant detector element increases. For scatter angles larger than 10°C, therefore, no coherent scatter can reach a detector element from neighboring segments of the primary fan beam. Therefore, the primary fan beam can be subdivided into a given number of, for example, five sections (as shown in FIG. 2), each section having an identical phase characteristic. In this case the above parameter A1 of the transmission rule would have the value 2πn/Φfan, where n=5.

In addition to the described possibilities for modulation, other possibilities are feasible. It is to be ensured merely that the temporal modulation regularly varies at each fixed point of the primary fan beam and that the phase of the temporal modulation varies continuously along the primary fan beam.

FIG. 5 shows a further embodiment of a modulation unit 33. The modulation unit therein has a housing 70 which is made of a material having a thickness such that the incident X-rays are practically completely absorbed. One of the hollow shafts 71 is connected to a motor in order to enable rotation of the modulation unit 33 around the modulation axis 16. In the housing there are provided two helical slits 72, 73 which are mutually offset, extend around the axis of modulation 16 and allow passage of the X-rays. The inclinations of the slits 72, 73, the number of turns, their axial length and width as well as their relative positions are adapted to the desired modulation and are shown merely by way of example herein. Such a modulation unit is also capable of achieving the desired modulation of the primary fan beam. The primary fan beam is thus decomposed into a kind of "comb" function as shown in FIG. 6 where the "teeth" P of the "comb" extend along the axis v in a regularly recurrent fashion.

It is also to be noted that one or more lamellas of a collimator array as described in the European patent application 01200652.4 may also be provided between the object to be examined and the detector array.

The invention has been described with reference to the preferred embodiment. Obviously, modifications and alterations will occur to others upon reading and understanding the preceding detailed description. It is intended that the invention be construed as including all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.

Harding, Geoffrey, Schlomka, Jens Peter

Patent Priority Assignee Title
10007019, Jul 23 2002 Rapiscan Systems, Inc. Compact mobile cargo scanning system
10038739, Aug 27 2007 PME IP PTY LTD Fast file server methods and systems
10043482, Nov 23 2007 PME IP PTY LTD Client-server visualization system with hybrid data processing
10070839, Mar 15 2013 PME IP PTY LTD Apparatus and system for rule based visualization of digital breast tomosynthesis and other volumetric images
10098214, May 20 2008 Rapiscan Systems, Inc. Detector support structures for gantry scanner systems
10261212, Jul 25 2013 Analogic Corporation Generation of diffraction signature of item within object
10311541, Nov 23 2007 PME IP PTY LTD Multi-user multi-GPU render server apparatus and methods
10317566, Jan 31 2013 Rapiscan Systems, Inc. Portable security inspection system
10320684, Mar 15 2013 PME IP PTY LTD Method and system for transferring data to improve responsiveness when sending large data sets
10373368, Mar 15 2013 PME IP PTY LTD Method and system for rule-based display of sets of images
10380970, Nov 23 2007 PME IP PTY LTD Client-server visualization system with hybrid data processing
10395398, Jul 28 2015 PME IP PTY LTD Appartus and method for visualizing digital breast tomosynthesis and other volumetric images
10430914, Nov 23 2007 PME IP PTY LTD Multi-user multi-GPU render server apparatus and methods
10441230, Jul 15 2014 KONINKLIJKE PHILIPS N V Projection data acquisition apparatus
10540803, Mar 15 2013 PME IP PTY LTD Method and system for rule-based display of sets of images
10614543, Nov 23 2007 PME IP PTY LTD Multi-user multi-GPU render server apparatus and methods
10631812, Mar 15 2013 PME IP PTY LTD Apparatus and system for rule based visualization of digital breast tomosynthesis and other volumetric images
10670769, Jul 23 2002 Rapiscan Systems, Inc. Compact mobile cargo scanning system
10686868, Oct 08 2015 PME IP PTY LTD Fast file server methods and systems
10706538, Nov 23 2007 PME IP PTY LTD Automatic image segmentation methods and analysis
10762687, Mar 15 2013 PME IP PTY LTD Method and system for rule based display of sets of images
10762872, Nov 23 2007 PME IP PTY LTD Client-server visualization system with hybrid data processing
10764190, Mar 15 2013 PME IP PTY LTD Method and system for transferring data to improve responsiveness when sending large data sets
10820877, Mar 15 2013 PME IP PTY LTD Apparatus and system for rule based visualization of digital breast tomosynthesis and other volumetric images
10825126, Nov 23 2007 PME IP PTY LTD Multi-user multi-GPU render server apparatus and methods
10832467, Mar 15 2013 PME IP PTY LTD Method and system for rule based display of sets of images using image content derived parameters
10909679, Sep 24 2017 PME IP PTY LTD Method and system for rule based display of sets of images using image content derived parameters
11017568, Jul 28 2015 PME IP PTY LTD Apparatus and method for visualizing digital breast tomosynthesis and other volumetric images
11058369, Nov 15 2019 GE Precision Healthcare LLC Systems and methods for coherent scatter imaging using a segmented photon-counting detector for computed tomography
11075978, Aug 27 2007 PME IP PTY LTD Fast file server methods and systems
11129578, Mar 15 2013 PME IP PTY LTD Method and system for rule based display of sets of images
11129583, Mar 15 2013 PME IP PTY LTD Apparatus and system for rule based visualization of digital breast tomosynthesis and other volumetric images
11181489, Jul 31 2018 Lam Research Corporation Determining tilt angle in patterned arrays of high aspect-ratio structures by small-angle x-ray scattering
11183292, Mar 15 2013 PME IP PTY LTD Method and system for rule-based anonymized display and data export
11244495, Mar 15 2013 PME IP PTY LTD Method and system for rule based display of sets of images using image content derived parameters
11244650, Nov 23 2007 PME IP PTY LTD Client-server visualization system with hybrid data processing
11296989, Mar 15 2013 PME IP PTY LTD Method and system for transferring data to improve responsiveness when sending large data sets
11315210, Nov 23 2007 PME IP PTY LTD Multi-user multi-GPU render server apparatus and methods
11328381, Nov 23 2007 PME IP PTY LTD Multi-user multi-GPU render server apparatus and methods
11514572, Nov 23 2007 PME IP PTY LTD Automatic image segmentation methods and analysis
11516282, Aug 27 2007 PME IP PTY LTD Fast file server methods and systems
11550077, Jan 31 2013 Rapiscan Systems, Inc. Portable vehicle inspection portal with accompanying workstation
11599672, Jul 31 2015 PME IP PTY LTD Method and apparatus for anonymized display and data export
11620773, Jul 28 2015 PME IP PTY LTD Apparatus and method for visualizing digital breast tomosynthesis and other volumetric images
11640809, Nov 23 2007 PME IP PTY LTD Client-server visualization system with hybrid data processing
11666298, Mar 15 2013 PME IP PTY LTD Apparatus and system for rule based visualization of digital breast tomosynthesis and other volumetric images
11669969, Sep 24 2017 PME IP PTY LTD Method and system for rule based display of sets of images using image content derived parameters
11701064, Mar 15 2013 PME IP PTY LTD Method and system for rule based display of sets of images
11763516, Mar 15 2013 PME IP PTY LTD Method and system for rule based display of sets of images using image content derived parameters
11810660, Mar 15 2013 PME IP PTY LTD Method and system for rule-based anonymized display and data export
11900501, Nov 23 2007 PME IP PTY LTD Multi-user multi-GPU render server apparatus and methods
11900608, Nov 23 2007 PME IP PTY LTD Automatic image segmentation methods and analysis
11902357, Aug 27 2007 PME IP PTY LTD Fast file server methods and systems
11916794, Mar 15 2013 PME IP PTY LTD Method and system fpor transferring data to improve responsiveness when sending large data sets
6839401, Nov 19 2002 Canon Kabushiki Kaisha X-ray computed tomography apparatus
6879657, May 10 2002 GE Medical Systems Global Technology, LLC; GE Medical Systems Global Technology Company, LLC Computed tomography system with integrated scatter detectors
7283613, Dec 16 2004 MORPHO DETECTION, LLC Method of measuring the momentum transfer spectrum of elastically scattered X-ray quanta
7418073, Nov 11 2002 Koninklijke Philips Electronics N V Computed tomography device and method with three-dimensional backprojection
7529341, Feb 24 2003 KONINKLIKE PHILIPS ELECTRONICS, N V Automatic material discrimination by using computer tomography
7564947, May 31 2003 United Kingdom Research and Innovation Tomographic energy dispersive X-ray diffraction apparatus comprising an array of detectors of associated collimators
7583783, Jan 22 2007 Morpho Detection, Inc X-ray computer tomograph and method for examining a test piece using an x-ray computer tomograph
7587021, Jan 12 2005 Koninklijke Philips Electronics N V Computer tomography apparatus
7609884, Dec 23 2004 PME IP PTY LTD Mutual information based registration of 3D-image volumes on GPU using novel accelerated methods of histogram computation
7616843, Dec 27 2005 NEC Corporation Optical functional device and fabrication process of the same
7623272, Mar 22 2005 General Electric Company Method and system for diagnosing an imaging system
7623732, Apr 26 2005 MERCURY SYSTEMS, INC Method and apparatus for digital image filtering with discrete filter kernels using graphics hardware
7693318, Jan 12 2004 PME IP PTY LTD Method and apparatus for reconstruction of 3D image volumes from projection images
7697664, May 15 2006 MORPHO DETECTION, LLC Systems and methods for determining an atomic number of a substance
7764764, Dec 28 2007 MORPHO DETECTION, LLC Method, a processor, and a system for identifying a substance
7778392, Nov 02 2004 PME IP PTY LTD Method of reconstructing computed tomography (CT) volumes suitable for execution on commodity central processing units (CPUs) and graphics processors, and apparatus operating in accord with those methods (rotational X-ray on GPUs)
8019151, Jun 11 2007 MERCURY SYSTEMS, INC Methods and apparatus for image compression and decompression using graphics processing unit (GPU)
8189002, Oct 29 2004 PME IP PTY LTD Method and apparatus for visualizing three-dimensional and higher-dimensional image data sets
8320518, Jan 30 2008 Varian Medical Systems, Inc. Methods, apparatus, and computer-program products for increasing accuracy in cone-beam computed tomography
8775510, Aug 27 2007 PME IP PTY LTD Fast file server methods and system
8837670, May 05 2006 Rapiscan Systems, Inc. Cargo inspection system
8908831, Feb 08 2011 Rapiscan Systems, Inc Covert surveillance using multi-modality sensing
8976190, Mar 15 2013 PME IP PTY LTD Method and system for rule based display of sets of images
9019287, Nov 23 2007 PME IP PTY LTD Client-server visualization system with hybrid data processing
9052403, Jul 23 2002 Rapiscan Systems, Inc. Compact mobile cargo scanning system
9167027, Aug 27 2007 PME IP PTY LTD Fast file server methods and systems
9218933, Jun 09 2011 Rapiscan Systems, Inc Low-dose radiographic imaging system
9223049, Jul 23 2002 Rapiscan Systems, Inc. Cargo scanning system with boom structure
9223050, Apr 15 2005 Rapiscan Systems, Inc. X-ray imaging system having improved mobility
9279901, May 05 2006 Rapiscan Systems, Inc. Cargo inspection system
9285498, Jun 20 2003 Rapiscan Systems, Inc. Relocatable X-ray imaging system and method for inspecting commercial vehicles and cargo containers
9332624, May 20 2008 Rapiscan Systems, Inc. Gantry scanner systems
9355616, Nov 23 2007 PME IP PTY LTD Multi-user multi-GPU render server apparatus and methods
9454813, Nov 23 2007 PME IP PTY LTD Image segmentation assignment of a volume by comparing and correlating slice histograms with an anatomic atlas of average histograms
9489752, Nov 21 2012 General Electric Company Ordered subsets with momentum for X-ray CT image reconstruction
9509802, Mar 15 2013 PME IP PTY LTD Method and system FPOR transferring data to improve responsiveness when sending large data sets
9524577, Mar 15 2013 PME IP PTY LTD Method and system for rule based display of sets of images
9531789, Aug 27 2007 PME IP PTY LTD Fast file server methods and systems
9557427, Jan 08 2014 Rapiscan Systems, Inc Thin gap chamber neutron detectors
9562866, Feb 08 2011 Rapiscan Systems, Inc. Covert surveillance using multi-modality sensing
9595242, Nov 23 2007 PME IP PTY LTD Client-server visualization system with hybrid data processing
9625606, Oct 16 2013 Rapiscan Systems, Inc. Systems and methods for high-Z threat alarm resolution
9728165, Nov 23 2007 PME IP PTY LTD Multi-user/multi-GPU render server apparatus and methods
9749245, Mar 15 2013 PME IP PTY LTD Method and system for transferring data to improve responsiveness when sending large data sets
9791590, Jan 31 2013 Rapiscan Systems, Inc.; Rapiscan Systems, Inc Portable security inspection system
9860300, Aug 27 2007 PME IP PTY LTD Fast file server methods and systems
9898855, Mar 15 2013 PME IP PTY LTD Method and system for rule based display of sets of images
9904969, Nov 23 2007 PME IP PTY LTD Multi-user multi-GPU render server apparatus and methods
9984460, Nov 23 2007 PME IP PTY LTD Automatic image segmentation methods and analysis
9984478, Jul 28 2015 PME IP PTY LTD Apparatus and method for visualizing digital breast tomosynthesis and other volumetric images
Patent Priority Assignee Title
4745631, Dec 27 1982 SCAN-TECH SECURITY L P Flying spot generator
4995066, Sep 01 1988 U. S. Philips Corporation Device for forming an X-ray or gamma beam of small cross-section and variable direction
4995107, Oct 17 1988 Siemens Aktiengesellschaft Computer tomography apparatus with axially displaceable detector rows
5038370, Mar 18 1989 Yxlon International X-Ray GmbH Directional variable small cross-sectional X-ray or gamma ray beam generating diaphragm with rotating helical slits
5835555, Nov 25 1994 Hologic, Inc X-ray bone densitometry apparatus with variable attenuation, modulation and collimation of penetrating radiation beam
6125165, Dec 22 1998 WARBURTON, WILLIAM K Technique for attentuating x-rays with very low spectral distortion
6470067, Feb 28 2000 Koninklijke Philips Electronics N V Computed tomography apparatus for determining the pulse momentum transfer spectrum in an examination zone
EP74021,
EP251407,
EP1062914,
///
Executed onAssignorAssigneeConveyanceFrameReelDoc
Apr 03 2002Koninklijke Philips Electronics N.V.(assignment on the face of the patent)
May 07 2002HARDING, GEOFFREYKoninklijke Philips Electronics N VASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0132670131 pdf
May 07 2002SCHOLOMKA, JENS PETERKoninklijke Philips Electronics N VASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0132670131 pdf
Date Maintenance Fee Events
Nov 30 2007M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 10 2007REM: Maintenance Fee Reminder Mailed.
Jan 16 2012REM: Maintenance Fee Reminder Mailed.
Jun 01 2012EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Jun 01 20074 years fee payment window open
Dec 01 20076 months grace period start (w surcharge)
Jun 01 2008patent expiry (for year 4)
Jun 01 20102 years to revive unintentionally abandoned end. (for year 4)
Jun 01 20118 years fee payment window open
Dec 01 20116 months grace period start (w surcharge)
Jun 01 2012patent expiry (for year 8)
Jun 01 20142 years to revive unintentionally abandoned end. (for year 8)
Jun 01 201512 years fee payment window open
Dec 01 20156 months grace period start (w surcharge)
Jun 01 2016patent expiry (for year 12)
Jun 01 20182 years to revive unintentionally abandoned end. (for year 12)