An inkjet print head (10) includes one or more laser sources (12). each laser source (12) is actuable to emit laser radiation and each laser source is associated with one or more ink chambers (18). each ink chamber (18) includes a nozzle aperture (20) through which ink is dispensed and is arranged to, in use, communicate with an ink supply. each chamber has a membrane (16) arranged to contact the ink in the ink chamber, the membrane being responsive to laser radiation from an associated laser source to produce an acoustic emission capable of displacing ink from the chamber.
|
1. An inkjet print head comprising one or more laser sources, each laser source being actuable to emit laser radiation and each laser source being associated with one or more ink chambers, each ink chamber including a nozzle aperture through which ink is dispensed and being arranged to, in use, communicate with an ink supply, each chamber having a membrane arranged to contact the ink in the ink chamber, said membrane being responsive to laser radiation from an associated laser source to produce an acoustic emission capable of displacing ink from said chamber.
18. An inkjet print head comprising one or more laser sources, each laser source being actuable to emit laser radiation and each laser source being associated with one or more ink chambers, each ink chamber including a nozzle aperture through which ink is dispensed and being arranged to, in use, communicate with an ink supply, each chamber further including a membrane disposed between said chamber and an associated laser source, said membrane being responsive to laser radiation from an associated laser source to produce an acoustic emission capable of displacing ink from said chamber.
17. A method of operating of a printer, said printer including an inkjet print head comprising one or more laser sources, each laser source being associated with one or more ink chambers, each ink chamber being arranged to, in use, communicate with an ink supply and including a nozzle aperture through which ink is dispensed and a membrane arranged to contact ink in the ink chamber, the method comprising:
selectively actuating each laser source to emit sufficient laser radiation towards a membrane of an ink chamber to that said laser radiation produces an acoustic emission capable of displacing ink from said chamber.
16. A method of fabricating an inkjet print head comprising:
providing one or more laser sources, each laser source being actuable to emit laser radiation; providing one or more ink chambers, each ink chamber being associated with a laser source; providing in each ink chamber a nozzle aperture through which, in use, ink is dispensed; providing a communication path between each ink chamber and an ink supply; and providing in each chamber a membrane arranged to contact the ink in the ink chamber, said membrane being responsive to laser radiation from an associated laser source to produce an acoustic emission capable of displacing ink from said chamber.
2. An inkjet print head as claimed in
3. An inkjet print head as claimed in
4. An inkjet print head as claimed in
5. An inkjet print head as claimed in
6. An inkjet print head as claimed in
8. An inkjet print head as claimed in
9. An inkjet print head as claimed in
10. An inkjet print head as claimed in
11. An inkjet print head as claimed in
12. An inkjet print head as claimed in
13. An inkjet print head as claimed in
14. A print cartridge comprising a cartridge body incorporating a print head as claimed in
15. A printer including a print cartridge as claimed in
|
The present invention relates to an inkjet print head, a method of fabricating an inkjet print head, a print cartridge including such a print head and a printer arranged to operate such a print cartridge. Particularly, but not exclusively, the invention provides an inkjet print head which includes a laser source for generating acoustic waves which in turn produce a driving pressure for ink expulsion.
In the present specification, the term acoustic is used to describe a longitudinally propagating pressure wave through any of a solid, liquid or gas. In view of the operating frequency of print heads, this pressure wave may in fact have an ultrasonic frequency.
Currently inkjet print head cartridges deliver ink using two basic mechanisms, thermal or piezoelectric. Thermal systems rely on rapid heating to generate bubbles in an ink firing chamber, which expand and expel ink. Piezoelectric systems rely on the flexing of a crystal to generate a pressure wave to drive ink out of an ink firing chamber.
Thermal systems are limited in resolution (minimum drop size) by the lack of control over the bubble generation process, and in delivery rate by the recovery/cooling cycle and time for ink to refill the void left by the bubble. The ink compositions must also be such as to withstand the thermal cycling of the system.
Piezoelectric devices are relatively expensive to build and limited in firing rate, typically in the order of MHz, by the response times of the material.
In both cases it is difficult to further miniaturize the systems. In particular, for piezo-crystals it is difficult to make them smaller whilst increasing their operating frequency and generating sufficient deflection to drive ink ejection.
At the same time, it is known that laser generated acoustic waves in solids can be produced by two mechanisms. In the thermoelastic regime, which occurs at low laser power densities, laser induced temperature rises produce rapid thermal expansion and transient acoustic waves. Such waves were detected early in the development of laser processing, see `Calorimetric and acoustic study of ultraviolet laser ablation of polymers`, G. Gorodetsky et al, Appl. Phys. Lett. Vol 46 (1985) pp 828-830. Laser generation of ultrasound in the thermoelastic regime is a nondestructive process. However, in the ablation regime, which occurs at high peak powers, the recoil forces generated by vaporized material leaving the sample generate strong acoustic waves or shock waves. This regime involves the removal of very thin layers of material, although this layer may be a renewable material such as an oil or liquid coating.
EP1008451A2, `Laser-Initiated Ink-Jet Printing Method and Apparatus`, filed Dec. 11, 1999 describes a laser driven ink jet printing head relying on the laser generation of acoustic waves. In this system, single or possibly multiple scanning laser beams are each focussed to generate respective acoustic waves in a liquid contained in a first chamber located above an ink-firing chamber. The acoustic waves are transmitted from the first chamber to the ink-firing chamber through an intermediate body which lies between the chambers and which is almost transparent to the acoustic waves. When the transmitted acoustic wave enters the ink-firing chamber, it causes a droplet of ink to be ejected from a nozzle lying in register with the focussed laser beam. However, in this system, the intermediate body must have sufficient thickness and strength to protect the ink chamber from the pressure perturbations generated by bubble formation and collapse etc in the first chamber, as well as being able to act as an acoustic window allowing acoustic waves to be transmitted to the firing chamber. These two requirements (acoustic window and protective barrier) limit the type and thickness of material that can be used for the intermediate body. These are major disadvantages to the cost and flexibility of a commercial inkjet printing system.
According to the present invention there is provided an inkjet print head as claimed in claim 1.
The present invention relies on laser produced pressure waves to generate a driving pressure for ink expulsion. In this sense it could offer the advantages of piezoelectric devices, in that the mechanism is independent of ink chemistry. However, laser devices can be operated at variable pulse repetition rates of up to GHz, overcoming the firing rate limitations of piezoelectric devices. The laser pulse energy is also infinitely variable, offering fine control over the driving pressure and droplet size.
Preferably the wall comprises a membrane. The prior art makes no reference to the provision within a print head of a laser cooperating with a membrane or to the permanent physical displacement of ink with the resultant pressure waves.
The present invention overcomes many of the problems of conventional inkjet mechanisms. In relation to firing rate limitations, it will be seen that in principle the firing rate of the print head can be increased to the pulsing rate of the laser source, currently GHz and increasing in the future.
By using acoustic emissions to directly expel the ink, rather than heat as in the prior art, the requirement of the ink chemistry to withstand rapid temperature cycling is mitigated, allowing a broader range of ink chemistries to be employed within inkjet print heads.
Because the laser sources used to generate the driving force for ink ejection are in general highly controllable, the print head provides more control over droplet size and speed.
Preferably, the laser sources are based on semiconductor technology and therefore readily miniaturized and integrated into electrical systems.
In principle the size of the laser generated acoustic source is limited by the focussability of the laser (around the wavelength of the laser light). In implementing the present invention, a smaller focussed spot or output beam could be an advantage, as for a given laser pulse energy this increases the energy density and this could generate more driving pressure for ink ejection.
This miniaturization means higher nozzle densities should be possible, thus increasing print head resolution.
The present invention differs from EP1008451 in the following respects:
1. The invention generates acoustic waves, preferably using a thermoelastic mechanism, in a solid material rather than an opto-acoustic effect in a liquid.
2. The invention generates the acoustic wave directly in a membrane. The superficially similar intermediate body in EP1008451 is an acoustic window and plays no part in the generation of the acoustic wave.
3. The membrane of the invention need not be made of an acoustically transparent material, if sufficiently thin. The intermediate body in EP100851 must be acoustically transparent and cannot be made arbitrarily thin as it also acts to protect the ink chamber from pressure perturbations associated with bubble generation in the buffer solution.
4. Since the membrane used in the current invention is a solid material, bubble formation does not result after deposition of the laser energy. Therefore, there is no disruption to further laser pulses, which might limit the firing rate of the system.
5. The current invention does not require an optical system to focus and distribute the laser beam as required for EP1008451. Neither does it use a buffer liquid. The print head is much simpler with fewer moving parts.
6. In a preferred embodiment of the invention, the laser sources are integrated into the print head and therefore there is no requirement to synchronize the movement of the laser, laser beam and print head mechanism to allow full page width coverage, again making the print head of the invention much simpler.
Embodiments of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
FIGS. 1(a) to 1(c) show in schematic form a firing sequence for a laser generated acoustic wave driven print head nozzle of one embodiment of the invention;
FIGS. 2(a) and 2(b) show in schematic form two variations a laser generated acoustic wave driven print head nozzle of a second embodiment of the invention;
Referring now to
Alternatively, in this embodiment, it will be seen that one laser source may be associated with more than one nozzle, with the focussing system being movable to shift the focus of the beam from one nozzle to another.
In any case, for any given nozzle, the beam is focussed on a membrane 16 which acts to close one side of an ink chamber 18 associated with the nozzle. A nozzle aperture 20 is defined in the ink chamber, which is also in fluid communication with an ink supply (not shown). FIG. 1(a) shows the system at rest, where the ink is contained within the chamber. In FIG. 1(b) a laser pulse is emitted and the laser beam focussed down onto the membrane 16. Either through the thermoelastic mechanism, or by ablation, a strong acoustic wave is generated in the thin membrane 16. It will be seen that a pressure pulse generated in the ablation regime, especially a shock wave, is likely to be stronger than that generated in the thermoelastic regime. The pressure pulse generated by thermal expansion and/or momentum transfer, propagates through the membrane and is transmitted into the ink, generating a pressure pulse in the ink chamber which in turn causes the ejection of an ink droplet 22, FIG. 1(c). The sequence shown in
In an alternative embodiment of the invention,
For either of the embodiments of
More particularly, polyimide (Kapton®) is an example of a suitable membrane material. Firstly, it is known that polyimide finds application as a radiating film for audio loudspeakers, which suggests that it may have a suitable lifetime for use in a print head. Furthermore, this material has been extensively studied with UV lasers and the ablation threshold found to be in the range 0.1-0.3 J/cm2, see Gorodetsky et al. At these energy densities both acoustic emission and deflection have been detected in other polymers such as polymethylmethacrylate (Acrylic), see `Nanometer-Nanosecond Oscillatory Expansion and Contraction Behaviour of Polymer films Induced by 248 nm Excimer Laser Excitation`, T. Masubuchi et al., ChemPhysChem Vol 3 (2000) pp 137-139 (see appendix A), which is incorporated herein by reference, and these too may be useful as membrane materials.
It is clear that to provide a practical laser driven print head, the laser source itself should be miniaturized preferably to have dimensions of the order of approx. 100 μm. Furthermore, the laser would need to be selected for maximum peak power and for the desired pulsing rate for application in a print head, regardless of the operating wavelength. As mentioned more generally above, one potential laser source is a pulsed semiconductor laser diode chip.
There are numerous pulsed laser diodes on the market and the characteristics of the two are given below, by way of example:
Peak | Pulse | Emitting | Energy | ||
Wavelength | Power | Length | Area | Density | |
Make & Model | (nm) | (W) | (nsec) | (μm × μm) | (J/cm2) |
Laser Diode Inc. | 905 | 4 | 50 | 3000 × 80 | 0.083 |
CVD 60 | |||||
Hamamatsu | 860 | 23 | 100 | 300 × 1 | 0.766 |
L5758 | |||||
If the lasers are placed sufficiently close to the target, especially as in the case of the embodiment of
However, currently individual laser diode chips are packaged with circuitry etc to form packages of 5-10 mm size and these would probably be too large for practical use.
A more ideal semiconductor laser type for the print-head application would be a vertical cavity surface-emitting laser (VCSEL), such as those manufactured by EMCORE, New Jersey, see "Optical Devices," which is incorporated herein by reference and which appears as appendix B to this application. These are produced as semiconductor diode arrays, currently to a maximum of 12 on a 3.2×0.4 mm die and as such have dimensions of the order required to produce a practical print head.
In a third embodiment of the invention,
Referring now to
The process begins by fabricating a plurality of Vertical Cavity Surface Emitting Laser (VCSEL) diodes 30 directly on the silicon wafer substrate 32. In the present embodiment, each VCSEL diode is 30×30 μm in size indicated by the numeral d.
A polymer barrier layer 36 defined by conventional photolithographic and etch steps is then deposited around the VCSEL diodes to planarize the substrate. As explained below, the layer 36 is preferably deeper than the VCSELs to define a cavity in the region of the VCSEL. Furthermore, the layer 36 need not actually contact the sides of the VCSEL so providing for heat dissipation.
Following this step a polyimide membrane layer 16, corresponding to the membrane of the first two embodiments, is deposited and patterned as necessary as it need only extend over the openings in the layer 36 in which the VCSELs are located. As in the second embodiment, this layer covers the field of view of each VCSEL disposed beneath the layer 16 and lies close enough to the laser source so as not to require focusing optics between the laser source and the layer. If the layer 16 is in intimate contact with the VCSEL, then there may be some burning during operation of the device. For this reason, in a preferred embodiment, the layer 16 is spaced slightly from the emitting surface of the VCSEL. This can be achieved using a number of different fabrication techniques. For example, the polyimide could be provided in tape form and rolled over the surface of the wafer after the layer 36 has been formed. As long as the layer 36 is slightly deeper than the VCSELs and air gap will be formed within the VCSEL cavity. The tape layer can then be patterned and etched as required.
Alternatively, the VCSEL cavity could be filled with a temporary soluble filler such as a wax. The polyimide could be provided in liquid form and spun over the surface of the wafer and cured. The VCSEL cavity would then need to be suitably shaped to allow the filler to be dissolved in the region of the VCSEL. It may also be possible to do without the filler and simply shape the VCSEL cavity to allow the polyimide layer to be etched back from around the VCSEL.
In any case, once the membrane 16 has been laid down, a further polymer barrier layer 40 is then deposited on the membrane layer and patterned to form the walls of respective ink chambers 18 corresponding to each VCSEL. As in a conventional ink jet print head, each ink chamber 18 is in fluid communication (as indicated by the numeral 39) with an ink feed slot which passes through the substrate 32 to supply ink from a reservoir (not shown) within the body of the cartridge through to the nozzles. Again, in a colour print head, it will be seen that different groups of nozzles will communicate with respective ink feed slots for different colours, however, this does not affect the description or implementation of the present invention.
Finally, a metallic or polymer orifice plate 42 with pre-drilled holes corresponding to the nozzle apertures 18 is applied to the layer 40. It is this surface through which, in use, ink will be ejected from the print head as a result of the acoustic wave generated by the VCSELs within the print head.
Referring now to
Finally, it is acknowledged that
It will be seen that variations of the above embodiments are possible. For example, there is an opportunity to use the properties of a coherent laser source to provide a pattern of focussed light on the membrane and so form acoustic sources of different patterns. This approach is possible particularly where the laser beam is very strongly absorbed in the membrane and as such the resultant acoustic waves are effectively generated from a surface source i.e. optical absorption depth<<wavelength of acoustic wave, rather than a volume source. The acoustic waves will therefore have a high degree of coherence.
The most general form of this technique would be to use diffractive optical elements (DOE), to shape the laser beam, see the document entitled `Pattern Formation DOEs` by the Diffractive Optics Group, Heriot-Watt University, a copy of which document appears as appendix C to this application. This document is incorporated herein by reference. This would allow almost any light pattern to be generated on the membrane, offering considerable scope in the acoustic source shapes available. One known technique is to use a series of concentric rings to generate focussed acoustic waves through constructive interference (see `Micromachined Acoustic-wave Liquid Ejector`, by X. Zhu et al., a copy of which is appended hereto as appendix D and which is incorporated herein by reference), in effect forming the acoustic equivalent of an optical Fresnel lens. As with conventional optical elements, it has been shown to be possible to integrate DOEs directly onto semiconductor laser structures, see "Optoelectronics" published by Chalmers University of Technology, a copy of which is appended hereto as appendix E and which is incorporated herein by reference.
An alternative miniature laser source could be a fibre laser, or a higher power laser source fed to a fibre bundle, which is then split to drive multiple firing chambers.
Patent | Priority | Assignee | Title |
7334871, | Mar 26 2004 | Hewlett-Packard Development Company, L.P. | Fluid-ejection device and methods of forming same |
Patent | Priority | Assignee | Title |
3655379, | |||
4480259, | Jul 30 1982 | Hewlett-Packard Company | Ink jet printer with bubble driven flexible membrane |
4520375, | May 13 1983 | SEIKO EPSON CORPORATION | Fluid jet ejector |
4531138, | Oct 02 1980 | Canon Kabushiki Kaisha | Liquid jet recording method and apparatus |
4607267, | Dec 19 1983 | Ricoh Company, Ltd. | Optical ink jet head for ink jet printer |
5021808, | Feb 10 1986 | Kabushiki Kaisha Toshiba | Laser actuated recording apparatus |
5121141, | Jan 14 1991 | Xerox Corporation | Acoustic ink printhead with integrated liquid level control layer |
5568170, | Jun 14 1993 | Sony Corporation | Laser recording apparatus for vaporizing colder dye across a gap, and recording method thereof |
5808636, | Sep 13 1996 | Xerox Corporation | Reduction of droplet misdirectionality in acoustic ink printing |
6056389, | Oct 31 1997 | Samsung Electronics Co., Ltd.; SAMSUNG ELECTRONICS CO , LTD | Inkjetting device for an inkjet printer |
6120130, | Apr 01 1998 | Sony Corporation | Recording method and recording apparatus |
6474783, | Dec 09 1998 | HEWLETT PACKARD INDUSTRIAL PRINTING LTD | Ink-jet printing apparatus and method using laser initiated acoustic waves |
EP1008451, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 10 2002 | Hewlett-Packard Development Company, L.P. | (assignment on the face of the patent) | / | |||
Oct 07 2002 | HEWLETT-PACKARD MANUFACTURING LIMITED | Hewlett-Packard Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013811 | /0390 | |
Oct 07 2002 | SCOTT, GRAEME | Hewlett-Packard Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013811 | /0390 | |
Jan 31 2003 | Hewlett-Packard Company | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013776 | /0928 |
Date | Maintenance Fee Events |
Dec 26 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 31 2007 | REM: Maintenance Fee Reminder Mailed. |
Sep 23 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 26 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 22 2007 | 4 years fee payment window open |
Dec 22 2007 | 6 months grace period start (w surcharge) |
Jun 22 2008 | patent expiry (for year 4) |
Jun 22 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 22 2011 | 8 years fee payment window open |
Dec 22 2011 | 6 months grace period start (w surcharge) |
Jun 22 2012 | patent expiry (for year 8) |
Jun 22 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 22 2015 | 12 years fee payment window open |
Dec 22 2015 | 6 months grace period start (w surcharge) |
Jun 22 2016 | patent expiry (for year 12) |
Jun 22 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |