A medical sling is made from material that is in a shape suitable for use in a medical application. One or more cuts are disposed in the material. The width of the sling remains substantially constant when the sling is exposed to substantially longitudinal tensioning force in connection with its implantation inside the body of a patient. The cuts on the sling provide open areas to permit tissue ingrowth and crosslinking when the sling is implanted inside the body of the patient.
|
1. A sling for use in a medical application, comprising:
a sheet including a first end portion and a second end portion the second end portion disposed opposite and away from the first end portion along a first axis, the sheet also including a first side and a second side, the second side disposed opposite and away from the first side by a distance and along a second axis that is substantially perpendicular to the first axis and that intersects the first axis at substantially the midpoint of the first axis, the sheet further including one or more cuts solely disposed substantially along a portion of the second axis at least at the intersection of the first and second axis.
23. A method of making a sling, comprising:
providing a sheet in a shape suitable for a medical application, the sheet including a first end portion and a second end portion, the second end portion disposed opposite and away from the first end portion along a first axis, the sheet also including a first side and a second side, the second side disposed opposite and away from the first side by a distance and along a second axis that is substantially perpendicular to the first axis, and that intersects the first axis at substantially the midpoint of the first axis; and forming one or more cuts in the sheet solely disposed substantially along a portion of the second axis at least at the intersection of the first and second axis.
48. A sling for use in a medical application, comprising a sheet including a first end portion and a second end portion, the second end portion disposed opposite and away from the first end portion along a first axis, the sheet also including a first side and a second side, the second side disposed opposite and away from the first side by a distance and along a second axis that is substantially perpendicular to the first axis and that intersects the first axis at substantially the midpoint of the first axis, the sheet further including one or more cuts, wherein each cut is disposed substantially equidistant from the first end portion and the second end portion along a portion of the second axis at least at the intersection of the first and second axis.
30. A method of treating a damaged portion of a patient's body, comprising:
providing a sling comprising a sheet including a first end portion and a second end portion, the second end portion disposed opposite and away from the first end portion along a first axis, the sheet also including a first side and a second side, the second side disposed opposite and away from the first side by a distance and along a second axis that is substantially perpendicular to the first axis and that intersects the first axis at substantially the midpoint of the first axis, the sheet further including one or more cuts solely disposed substantially along a portion of the second axis at least at the intersection of the first and second axis; securing the first end portion of the sheet to a first anatomical structure in the body of the patient; applying tensioning force substantially along the first axis of the sheet; securing the second end portion of the sheet to a second anatomical structure in the body of the patient, and supporting a damaged portion of the patient's body with the secured sheet.
3. The sling of
4. The sling of
5. The sling of
6. The sling of
7. The sling of
8. The sling of
10. The sling of
12. The sling of
13. The sling of
14. The sling of
16. The sling of
18. The sling of
19. The sling of
20. The sling of
22. The sling of
24. The method of
25. The method of
26. The method of
27. The method of
28. The method of
29. The method of
31. The method of
32. The method of
33. The method of
34. The method of
35. The method of
36. The method of
37. The method of
38. The method of
39. The method of
44. The method of
45. The method of
46. The method of
47. The method of
|
This invention generally relates to medical slings, methods of making such slings, kits including such slings, and methods of treating a damaged portion of a patient's body using such slings.
Urinary incontinence is a disorder that generally affects people of all ages. The inability to control urination can impact a patient both physiologically and psychologically. Urinary incontinence can interfere with a patient's daily activity and impair quality of life. Stress urinary incontinence is one type of urinary incontinence. Actions including straining, coughing, and heavy lifting can cause those with stress urinary incontinence to void urine involuntarily.
Various physiological conditions cause urinary incontinence in women. Stress urinary incontinence generally is caused by two conditions that occur independently or in combination, intrinsic sphincter deficiency and hypermobility. Intrinsic sphincter deficiency (ISD) is a condition where the urethral sphincter fails to coapt properly. When functioning properly, the urethral sphincter muscles relax to enable the patient to void, and the sphincter muscles are otherwise constricted to retain urine. ISD may cause urine to leak out of the urethra during stressful actions. Hypermobility is a condition where the pelvic floor is weakened or damaged causing the bladder neck and proximal urethra to rotate and descend in response to increases in intraabdominal pressure. When intraabdominal pressure increases (due, for example, to strain resulting from coughing), the hypermobility condition may cause urine leakage. Some women suffer from a combination of ISD and hypermobility.
The methods for treating stress urinary incontinence include placing a sling to either compress the urethral sphincter or placing a sling to support, elevate or provide a "back stop" to the bladder neck and proximal urethra. Providing support to the bladder neck and proximal urethra maintains the urethra in the normal anatomical position and elevation places the urethra above the normal anatomical position. The "back stop" prevents descent according to the hammock theory such that the back stop prevents the bladder neck from descending upon application of strain.
Generally, slings are employed to support anatomical structures. Slings may be made from one or more materials derived from mammalian tissue(s), synthetic material(s), or from a combination of mammalian tissue(s) and synthetic material(s).
After implantation in a patient, slings made from mammalian tissues typically require a six to twelve month period to be absorbed by the patient's body, after which the implanted mammalian tissue is not recognizable from the patient's surrounding tissue. Mammalian tissue slings include tissue harvested from the patient or a donor. In some instances, the mammalian tissue may be human cadaveric tissue.
The success of mammalian tissue sling surgery is limited when the tissue sling shifts after surgery from the implantation site causing the sling to become incorporated by patient tissue in an improper position. Improper sling placement can also result when the sling comprised of mammalian tissue shrinks after placement inside the patient. Excess tension, shifting, and shrinkage may occur independently or in combination to cause failed sling retention.
The present invention relates to slings disposed with cuts, methods of making such slings, medical kits including such slings, and methods of treating a damaged portion of a patient's body using such slings. Various known surgical procedures employ slings to support anatomical structures. Exemplary surgical applications include the treatment of urinary incontinence, the repair of herniation, and orthopedics generally.
In accordance with the invention, cuts are disposed through the sling material to provide open areas in the sling which enable rapid tissue ingrowth into the sling material while maintaining a high tensile strength. The cuts can be slits, holes, and apertures. The sling with the cuts according to the invention maintains a substantially constant width during and after implantation in a patient's body. The risk of pressure necrosis or erosion of the damaged portion of the patient's body caused by uneven sling pressure is reduced because the sling width remains substantially constant even when the sling is stretched longitudinally during the implantation procedure.
The benefits of such a sling, which can comprise synthetic material, mammalian tissue, or a combination of synthetic and mammalian tissue material with cuts disposed through the material, include rapid fibrosing of the sling, a shortened healing period, and little or no sling movement after implantation. In accordance with the invention, when a sling is employed to treat female urinary incontinence connective tissue resembling scar tissue will begin to infiltrate one or more open areas disposed in the sling (which is positioned underneath the patient's urethra). The formation of scar tissue generally adds bulk that compresses the urethra and provides the support to improve patient continence. The scar tissue that infiltrates the sling holds the sling at the site of implantation and inhibits or prevents its movement.
In general, in one aspect, the invention involves a sling for use in a medical application. The sling is made of a sheet of synthetic material, mammalian tissue, or a combination of mammalian tissue and synthetic material. The sheet has a longitudinal axis with a first end portion and a second end portion. The second end portion of the sheet is disposed opposite and away from the first end portion along a longitudinal axis. The sheet also includes a first side and a second side, the second side is disposed opposite and away from the first side by a distance and along a perpendicular axis. The perpendicular axis is perpendicular or substantially perpendicular to the first axis (i.e., for example a longitudinal axis). The perpendicular axis intersects the longitudinal axis at the midpoint or substantially the midpoint of the longitudinal axis. The sheet further includes one or more cuts disposed substantially along at least a portion of the second axis (i.e., for example a perpendicular axis). The cuts are disposed such that upon exposure to tensioning force applied to the sheet substantially along the longitudinal axis during the medical application, the distance along the perpendicular axis remains substantially constant.
Embodiments of this aspect of the invention can include the following features. The cuts disposed on the sling may be a slit disposed through the sheet of material. The slits may be disposed such that at least some of the slits open upon exposure to the tensioning force applied during the medical application. The open slits provide open areas on the sling which permit tissue crosslinking and ingrowth therein when implanted inside the body of a patient.
Alternatively, the cuts may comprise any aperture disposed through the sheet of the sling. Upon exposure to the tensioning force applied during the medical application, at least some, and generally all, of the apertures on the sling remain open. The apertures that remain open provide open areas on the sling. The open areas permit tissue crosslinking and ingrowth into the cuts when the sling is implanted inside the body of a patient.
According to the invention, the cuts may be disposed substantially along the perpendicular axis of the sling. In some embodiments the cuts may be equidistant from one another.
In other embodiments, a line may be disposed, as a visual indicator, substantially along at least a portion of the perpendicular axis of the sling. The line can be made by applying a surgical ink to the sling material.
The material of the sling may be derived from mammalian tissue source(s), synthetic material(s), or a combination of mammalian tissue(s) and synthetic material(s). The mammalian tissue source may be human, human cadaveric, or tissue-engineered human tissue. The mammalian tissue may alternatively be from an animal source. Suitable sources of animal tissues may include porcine, ovine, bovine, and equine tissue sources. The material may be an omnidirectional material, a material that has equivalent tensile strength from any direction, such as pericardium or dermis. Alternatively, the material of the sling may be an oriented material, a material that has a single direction where the tensile strength of the material is the highest. Oriented materials may include rectus fascia and/or facia lata.
The synthetic material may be a solid material, a weave, a braid, a mesh, or some other suitable construction. The synthetic material source may be nylon, polyethylene, polyester, polypropylene, fluoropolymers, copolymers thereof, and other suitable synthetic materials. The material may be a synthetic material that is absorbable by the patient's body. Suitable absorbable synthetic materials may include polyglycolic acid, polylactic acid, and other suitable absorbable synthetic materials. The synthetic material may be oriented and have a single direction where the tensile strength of the material is highest. Alternatively, the material may be omnidirectional such that any direction of the synthetic material may have equivalent tensile strength.
The cuts can be formed through a sheet made of oriented tissue material along the grain, i.e., along a single direction where the tensile strength of the material is the highest. By disposing the cuts along the grain of the oriented material, the strength of the sheet may be substantially maintained. Upon exposure to tensioning force applied to the sheet substantially along the longitudinal axis, the distance along the perpendicular axis of the oriented sheet remains substantially constant. Likewise, by forming cuts through and along the highest tensile strength direction of a sheet of synthetic sling material, the strength of the synthetic sheet may be substantially maintained.
In one embodiment, one or more fasteners are disposed on the sheet of sling material. The fasteners may be disposed in regions of the sheet where there are no cuts. The fasteners may be disposed, for example, at each of the first end portion and the second end portion of the sheet. Alternatively, or in addition, one or more eyelets may be disposed through both the first end portion and the second end portion of the sheet. In one particular embodiment, a fastener, for example a suture, is secured to a sling by threading it through an eyelet disposed through the sling.
The sling of the invention may be made of a sheet that is in a shape suitable for a medical application. Suitable shapes may include rectangular and substantially rectangular. The sling may be octagonal, hexagonal, trapezoidal, elliptical, or some other shape that is suitable to the slings intended placement location within the body. In some embodiments, the sheet has elongated members, which extend substantially from a central portion of the sheet. The elongated members may be anchored to an anatomical structure in the patient without use of a suture.
In general, in another aspect, the invention relates to a method of making a sling by forming one or more cuts in a sheet of material provided in a shape suitable for use in a medical application. The sheet provided may be derived from mammalian tissue(s), synthetic material(s), or a combination of mammalian tissue(s) and synthetic material(s). The sheet includes a first end portion and a second end portion. The second end portion of the sheet is disposed opposite and away from the first end portion along a longitudinal axis. The sheet also includes a first side and a second side. The second side is disposed opposite and away from the first side by a distance and along a perpendicular axis. The perpendicular axis is substantially perpendicular to the longitudinal axis. The perpendicular axis intersects the longitudinal axis at substantially the midpoint of the longitudinal axis. The one or more cuts are formed substantially along at least a portion of the perpendicular axis of the sheet. The cuts are formed in the sheet such that the distance along the perpendicular axis of the sheet remains substantially constant upon exposure to the tensioning force applied to the sheet substantially along the longitudinal axis during a medical application.
Embodiments of this other aspect of the invention can include the following features. The method of making the sling can further comprise forming a line substantially along at least a portion of the perpendicular axis of the sling. The line can be formed by applying surgical ink to the sling material. The line may be used as a visual indicator during a medical application.
The method of making the sling can further comprise disposing one or more fasteners at the first end portion of the sheet. One or more fasteners may also be disposed at the second end portion of the sheet. The fasteners may be disposed on regions of the first end portion and the second end portion of the sheet where cuts are not disposed through the material.
The method of making the sling can further comprise sterilizing the material and sterilizing the sling according to methods known in the art to make the sling suitable for use in various medical applications. The method of making the sling may include packaging the sling in a sterile holder. According to methods of the invention, the sling may be packaged under conditions that are dry and protective from ultra-violet light.
In general, in a further aspect, the invention involves a method of treating a damaged portion of a patient's body. A sling is provided and then used. The sling is made of a sheet of material that has cuts disposed through the sheet to provide open areas upon implantation inside the patient's body. The material of the sheet may be derived from mammalian tissue(s), synthetic material(s), or a combination of mammalian tissue(s) and synthetic material(s). The sheet includes a first end portion and disposed opposite and away from the first end portion along a longitudinal axis is a second end portion. The sheet also includes a first side and disposed opposite and away from the first side by a distance and along a perpendicular axis is a second side. The perpendicular axis is substantially perpendicular to and intersects the longitudinal axis at substantially the midpoint of the longitudinal axis. The sheet further includes one or more cuts disposed substantially along at least a portion of the perpendicular axis. The first end portion of the sling sheet is secured to a first anatomical structure in the body of the patient. Tensioning force is applied substantially along the longitudinal axis of the sheet. The second end portion of the sling is secured to a second anatomical structure in the body of the patient. The sling is secured inside the body of the patient such that it's perpendicular axis lies substantially along a portion of the patient's body. The one or more cuts are disposed such that the distance along the perpendicular axis of the sheet remains substantially constant when the sling is secured. The secured sling supports a damaged portion of the patient's body.
The method of using the sling of the invention may further comprise securing the first end portion to an anatomical structure using a surgical fastener. Surgical fasteners employed to secure the sling may include a suture, a clip, a bone anchor, a staple, or other suitable fasteners.
The sling may be secured to an anatomical structure in the body of the patient. Suitable anatomical structures include: bone, fascia, ligament, or muscle.
The method of using the sling can further comprise centering the sling at the damaged portion of a patient's body using a line disposed substantially along at least a portion of the perpendicular axis as a visual indicator. The line may provide a visual indication of where the one or more cuts are disposed on the sling and the line may be employed to help align the cuts with the damaged portion of the patient's body.
When the cuts are slits, at least some of the slits can be open when supporting the damaged portion of the patient's body. Alternatively, when the cuts are apertures, at least some of the apertures can remain open when supporting the damaged portion of the patient's body. The open cuts provide open areas on the sling which permit the patient's tissue to crosslink and grow into the open areas on the sling once the sling is secured inside the body of the patient. The scar tissue ingrowth both secures the sling inside the patient's body and provides support to the areas of the body into which the tissues grow.
The method may further comprise evenly distributing pressure on a damaged portion of a patient's body with the secured sling material. In one embodiment, the sling is employed to treat a female patient with urinary incontinence. The sling material may be implanted to evenly distribute pressure on a patient's urethra. The sling may be delivered and implanted to treat female urinary incontinence according to transvaginal, transabdominal, or combined transvaginal and transabdominal procedures.
In one embodiment, the sling is employed to treat a patient suffering from ISD. The sling may be implanted such that the one or more cuts on the sling contact the underside of the patient's sphincter muscle, the first side of the sling contacts the under portion of the distal bladder neck and second side of the sling contacts the under portion of the urethra. The sling can be implanted such that the sling material evenly distributes pressure on a patient's sphincter muscle without applying pressure to the urethra or bladderneck. Alternatively, the method may be employed to treat a patient with bladderneck hypermobility and the cuts on the sling may be placed adjacent to the patient's mid urethra.
The patient's body can absorb the material of the sling after implantation of the sling in the body. The sling material absorbed by the patient's body may be made from mammalian tissue. Alternatively, synthetic absorbable sling material may be absorbed by the patient's body after implantation therein.
The foregoing and other objects, aspects, features, and advantages of the invention will become more apparent from the following description and from the claims.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
Referring to
The sling 2 can be rectangular or substantially rectangular in shape or the sling 2 can be an octagonal shape. In alternative embodiments, the sling 2 has other shapes suitable to its intended placement location within the body such as trapezoidal, hexagonal, or elliptical shapes.
The sheet 6 includes one or more cuts 10 disposed along at least a portion of the length of the perpendicular axis 38. The cuts 10 are disposed such that the length of the perpendicular axis 38 remains substantially constant following the application of tension applied substantially along the longitudinal axis 34 of the sheet 6. Such tension may be applied, for example, during implantation of the sling 2 in a patient. The cuts 10 can be, for example, slits or alternatively apertures disposed through the full thickness of sheet 6. In some embodiments, the cuts 10 may not extend through the entire thickness of the sheet 6. In a particular embodiment, cuts 10 through the sheet 6 parallel the direction of high tensile strength of the synthetic sling material may substantially maintain the strength of the synthetic material.
In one embodiment, the longitudinal axis 34 of the sheet 6 ranges from about 2.5 cm to about 30 cm in length, and the perpendicular axis 38 ranges from about 1.0 cm to about 3.0 cm. The cuts 10 are disposed substantially parallel to the longitudinal axis 34 and the cuts 10 range from about 0.5 cm to about 28 cm in length. In some embodiments, the cuts 10 range from about 0.5 cm to about 1.5 cm in length. The thickness of the sheet 6 (not depicted in the plan view of
In one embodiment, according to the invention, the sheet 6 may be made of mammalian tissue(s), synthetic material(s), or a combination of mammalian tissue(s) and synthetic material(s). One or more mammalian tissues including porcine, ovine, bovine, equine, human cadaveric, or tissue-engineered tissue(s) may be employed to make the sheet 6. The sheet 6 may be derived from omnidirectional tissue(s), tissues where the material has equivalent tensile strength from any direction. Exemplary omnidirectional materials include dermis and/or pericardium. Suitable materials for use in accordance with this invention include a chemically processed acellular human dermis product that preserves, undamaged, the bioactive structural dermal matrix and which is freeze-dried for storage, such as AlloDerm® acellular tissue available form Lifecell (Branchburg, N.J.)
In another embodiment, oriented mammal tissue(s), i.e., tissues having a single direction where the tensile strength of the tissue material is highest, including rectus fascia and/or facia lata may be used for the sheet 6. Suitable cleaned and sterilized oriented human tissue materials may be obtained from tissue banks.
In one embodiment according to the invention, animal tissues may be selected from tissues available from government regulated slaughter houses. Animal tissues may be dehydrated with a dehydrating fluid, such as ethyl alcohol or the like, prior to treatment with chemical cross-linking agents, to allow for improved penetration. The cross-linking agent cross-links collagen in the tissues to make the tissue stronger and reduce the antigenicity of the tissue. Other agents such as pepsin may also be used to further reduce antigenicity. In one embodiment according to the invention, the tissues may be cross-linked by using one or more of the following treatment agents: glutaraldehyde, dialdehyde, glutaraldehyde starch, dialdehyde starch, an epoxy compound or ionizing radiation. Certain processes (such as heat, radiation or pH change) or agents such as halogens, enzymes, organic solvents, detergents, sodium hydroxide, hydrochloric acid, sodium hypochlorite or hydrogen peroxide) may be used to inactivate viruses with and without protein coats during the manufacturing process. The tissue may also be treated with a highly volatile chemical such as, for example, propylene oxide, to assist with the sterilization of the tissue. Sterilization may be accomplished using one or more of the following treatments: glutaraldehyde, alcohol, propylene oxide or irradiation sterilization. The treatment of the tissue, with a combination of these materials and processes, can both cross-link the tissue and render the tissue sterile for implantation inside the body of a patient.
In another embodiment according to the invention, the synthetic sling material may be a solid material, a weave, a braid, a mesh or an alternate material construction. The synthetic material may be a polymer. Suitable polymer sources for the sling 2 may include nylon, polyethylene, polyester, polypropylene, fluoropolymers or copolymers thereof. An exemplary synthetic polyester material suitable for use in the sling 2 according to the invention is available under the trade designation Dacron®, from E. I. du Pont de Nemours and Company (Wilmington, Del.). In another embodiment, suitable synthetic materials include the fluoropolymers polytetrafluoroethylene (PTFE), which has non-melt processible characteristics, and fluorinated ethylene propylene (FEP), which has melt-processible characteristics, both fluoropolymers are available under the trade designation Teflon®, from E. I. du Pont de Nemours and Company (Wilmington, Del.). A suitable PTFE material of solid material construction is a available under the trade designation GORE-TEX®, from W. L. Gore & Associates, Inc. (Flagstaff, Ariz.).
In yet another embodiment absorbable synthetic materials may be suitable for use sling 2 in accordance with the invention. For example, polyglycolic acid (PGA), polylactic acid (PLA), and other available absorbable synthetic materials may be suitable. A PGA material that may be suitable for use in sling 2 is available under the trade designation Dexon®, from American Cyanamid Company (Wayne, N.J.). Other suitable polymeric and non-polymeric synthetic materials may be employed in accordance with the invention.
In another embodiment, combinations of synthetic materials and mammalian tissues may also be used according to the invention. These combinations may include material having a combination of parts, including, for example, parts made of synthetic polymers and parts made of processed animal tissues. Such combinations also include materials that have both synthetic polymers and animal cells that are treated so as to cross-link the collagen or other commonly antigenic fibers in the animal cells.
According to one embodiment of the invention, following implantation of a sling 2 in the body of the patient, at least some, and generally all or most, of the cuts 10 provide open areas through the sling 2. Tissue will begin to grow into these open areas. The tissue ingrowth secures the sling 2 position inside the patient's body.
In one particular embodiment illustrated in
In some embodiments, the cuts 10 are disposed such that the distance between adjacent cuts 160 is equal. The distance between equally distanced adjacent cuts 160 may range from about 5 mm to about 1.25 cm in length, for example. The cuts 10 disposed adjacent and equidistant may be disposed along the perpendicular axis 38 from the first side 18 to the second side 28 of the sling 2. In one embodiment, the cuts 10 are disposed about the region of the sling 2 where the perpendicular axis 38 and the longitudinal axis 34 intersect. A single cut 10 may be employed and it can be disposed at any point along the perpendicular axis 38. The cuts 10 are disposed such that the distance 150 remains substantially constant upon exposure to a tensioning force applied substantially along the longitudinal axis 34 during a medical application (such as a procedure to implant the sling 2 in the body of a patient to treat ISD).
In one embodiment, a sling made of a synthetic material is disposed with cuts 10 that are slits 10A. The unimplanted sling 2 distance 150 is 2.0 cm. After exposure to tensioning force, the implanted sling 2 has a distance 150 that ranges between about 1.6 cm and about 2.0 cm. In an embodiment, as shown in
In one embodiment, the sheet 6 is derived from the oriented human cadaveric tissue fascia lata, and the cuts 10 are disposed through and along the grain of the sheet 6 made of oriented material. The cuts 10 are disposed on the sheet 6 so that the width of the sheet 6 (at least along the perpendicular axis 38) is maintained at substantially the same distance 150 before, during, and after the application of tensioning force substantially along the longitudinal axis 34 such as would be applied to the sheet 6 during a medical application. Such tensioning force is applied to the sling 2 when, for example, the sling 2 is implanted inside a female patient in a medical procedure designed to treat stress urinary incontinence.
Generally, material derived from mammalian tissue does not have any cuts or open areas. The time period for slings made from mammalian tissue material lacking any cuts or open areas to absorb into the patient host is generally six to twelve months. Likewise, solid, tightly woven, or closely knit absorbable synthetic materials generally do not have open areas. The time period typically required for such synthetic absorbable materials to be absorbed by the patient's body is between about one to about six months. Disposing the cuts 10 through the sheet 6 allows rapid tissue ingrowth, which anchors the sling 2 at the location where it was implanted and generally lessens the time it takes for the sheet 6 to absorb into the patient's body and thus lessens the healing process.
On a sling 2 made of mammalian tissue or absorbable synthetic material, the cuts 10 open areas will be absorbed into the area adjacent to the patient's body within a few weeks after implantation. The time period required for the entire sling 2 made from mammalian tissue or absorbable synthetic material to be absorbed by the patient's body may be reduced in proportion to the open surface area on the sling 2. Thus, where cuts 10 are disposed so that sling 2 made of mammalian tissue has fifty percent open surface area, the time period for the sling 2 to be absorbed into the patient's body may be reduced to between about three and twelve months as compared to the minimum six months for mammalian tissue material lacking any cuts.
As shown in
In one embodiment, the slits 10A are disposed through the sheet 6, and they open upon exposure to a substantially longitudinal tensioning force that is applied to the sling 2 during a medical application. One exemplary medical application is the implantation of the sling 2 into the body of a female patient to treat stress urinary incontinence. The opened slits 10A provide open areas that allow rapid scar tissue formation and tissue ingrowth generally. These opened slits 10A permit tissue crosslinking and tissue ingrowth into the sling 2 once the sling 2 is secured inside the body of the patient.
The slits 10A are disposed on the sling 2 such that when the sling 2 is implanted inside the patient's body, the slits 10A provide openings that allow tissue ingrowth at the site of the damaged portion of the patient's body that the sling 2 is employed to support. In one embodiment, the sling 2 is employed to support a patient's urethra. The slits 10A are disposed on the sling 2 along the perpendicular axis 38 such that when implanted adjacent to the patient's urethra, the open areas allow ingrowth to the regions of the urethra which require support. In some embodiments, one or more of the slits 10A are opened when the sling 2 is positioned at an angle surrounding the patient's urethra.
In the embodiment of
The apertures 10B provide open areas in sling 2 once disposed through the sheet 6. At least some, and usually all, of the apertures 10B remain open upon exposure to tensioning force applied along the longitudinal axis 34 of the sling 2 during the medical application. When, for example, the sling 2 is implanted inside the patient, the apertures 10B open areas generally permit scar tissue to grow into the sling 2. The size, shape, and placement of each of the apertures 10B may be selected to provide a desired surface area when implanted. In one embodiment, the size of the apertures 10B and the aperture 10B location on the sling 2 are selected such that when implanted inside the patient, scar tissue will grow through the apertures 10B to support an adjacent damaged portion of a patient's body. The apertures 10B are shown as diamond shapes in
According to the invention, the choice of the size, shape, quantity, and location of the cuts 10 and the choice of sheet 6 may be made to maximize open surface area while maintaining the distance 150 substantially constant upon exposure to a surgical tensioning force.
The percentage by which the distance 150 reduces will depend on the number of cuts 10 and the material type 6, whether from mammalian tissue, synthetic material, or a combination of mammalian tissue and synthetic material. The placement of the cuts 10 on the material will also impact the percentage by which the distance 150 may reduce. When, for example, the cuts 10 are formed along the grain of an oriented mammalian tissue, the distance 150 of the sling 2 may be reduced by a lower percentage then if an omnidirectional tissue material were employed.
In one embodiment where the sheet 6 is derived from an oriented tissue and the cuts 10 are disposed along the grain of the sheet 6, when exposed to surgical tensioning force the sling 2 will maintain a substantially constant distance 150. Generally, an oriented material sling 2 will support more cuts 10 while maintaining a substantially constant distance 150 when exposed to the same surgical tensioning force than an otherwise identical sling 2 made of a sheet 6 derived from an omnidirectional tissue material.
Cuts 10 that are apertures 10B generally have a larger open surface area than cuts 10 that are slits 10A, which results in a greater reduction in the perpendicular distance 150 due to more of the sheet 6 stretching in the longitudinal direction upon exposure to tensioning force. Generally, the distance 150 of slings 2 disposed with cuts 10 that are slits 10A will reduce by between about zero and about twenty percent upon exposure to surgical tensioning force and/or when implanted. The implanted distance 150 of slings 2 disposed with cuts 10 that are apertures 10B will generally reduce by between about zero and about fifty percent upon exposure to surgical tensioning force and/or when implanted.
In one particular embodiment, the sling 2 is employed to treat female stress urinary incontinence and is used to support the patient's urethra. During implantation, the surgeon applies tension to the sling 2 and visually aligns line 42 such that it is adjacent to the portion of the patient's urethra requiring support. The slits 2 are selectively disposed about line 42 to target these portions of the patient's urethra. Some or all of the slits 10A disposed on line 42 of the implanted sling 2 provide open areas to the patient's urethra. Some or all of the slits 10A may open when the sling 2 is bent around to surround the patient's urethra. Other slits 10A may open upon exposure to substantially longitudinal tensioning force during the medical application. Very soon after being placed inside the patient's body, scar tissue will begin to grow into the slings 2 open areas to support the targeted portion of the patient's urethra.
In the embodiment of
In one embodiment, the fastener 46 is a suture. In alternative embodiments, the fastener 46 is pre-attached to the sling 2 and may include a clip, a bone anchor, a staple, and/or other suitable fasteners.
In a particular embodiment, the sling of
The slings 2 of
The slings 2 of
A method of making a sling 2 of the invention (depicted in, for example,
A first step in making the sling 2 is obtaining sheet 6 in a shape suitable for use in a medical application. Exemplary materials may be obtained from mammalian tissues, synthetic material or a combination of mammalian tissue and synthetic material. Mammalian tissue sources include human cadaveric, tissue-engineered products, porcine, ovine, bovine, equine and/or other tissues. The mammalian material may be omnidirectional, oriented, or a combination of the two.
Omnidirectional tissues include dermis and pericardium. One chemically processed acellular human dermis product that preserves, undamaged, the bioactive structural dermal matrix and which is freeze-dried for storage is suitable for use as the sheet 6 in accordance with this invention. The removal of cells from the otherwise intact dermal matrix reduces the risk of rejection and inflammation and the matrix provides a basis for soft tissue reconstruction. Such an acellular human matrix is available from Lifecell (Branchburg, N.J.) and is referred to as AlloDerm® acellular tissue.
Oriented materials suitable for use in the present invention include human fascia lata and rectus fascia. Cleaned and sterilized oriented human tissue materials may be obtained from tissue banks. Suitable Animal tissues may be suitable for use in accordance with the invention after the Animal tissues are cleaned, chemically treated, and sterilized according to various methods that are available in the art. Such Animal tissues may be available from government regulated slaughterhouses, for example.
Suitable synthetic materials may be a solid material, a weave, a braid, a mesh or an alternate material construction. The synthetic material may be a polymer. Suitable polymer sources may include nylon, polyethylene, polyester, polypropylene, fluoropolymers or copolymers thereof. An exemplary synthetic polyester material suitable for use in according to the invention is available under the trade designation Dacron®, from E. I. du Pont de Nemours and Company (Wilmington, Del.). Other suitable synthetic materials include the fluoropolymers available under the trade designation Teflon®, from E. I. du Pont de Nemours and Company (Wilmington, Del.). Suitable absorbable synthetic materials may be employed in accordance with the invention. Such absorbable synthetic materials include polyglycolic acid (PGA), polylactic acid (PLA), and other available absorbable synthetic materials. A PGA material that may be suitable for use in accordance with the invention is available under the trade designation Dexon®, from Davis and Geck (Wayne, N.J.). Other suitable polymeric and non-polymeric synthetic materials may be employed in accordance with the invention.
Combinations of synthetic materials and mammalian tissues may also be used according to the invention. These combinations may include material having a combination of parts, including, for example, parts made of synthetic polymers and of processed animal tissues. Such combinations also include materials that include both synthetic polymers and animal cells that are treated so as to cross-link the collagen or other commonly antigenic fibers in the animal cells.
The sheet 6 is provided in a shape suitable for a medical application. Suitable shapes of sheets 6 may be rectangular and substantially rectangular. The material may be shaped such that elongated members extend from a central portion of the sheet 6. Other suitable shapes of the sheet 6 include octagonal, trapezoidal, elliptical and hexagonal shapes.
A second step of making the sling 2 is forming one or more cuts 10 in the sheet 6 positioned substantially along at least a portion of the material's 6 perpendicular axis 38. The cuts 10 are disposed so that upon exposure to tensioning force applied substantially along the longitudinal axis 34 of the sheet 6, pursuant to a medical application, the distance 150 remains substantially constant. Multiple cuts 10 may all be formed at the same time. Alternatively, cuts 10 can be formed one at a time. A cut 10 may be formed by extending a straight blade edge through the sheet 6 for the length of the cut 10. The cuts 10 may also be formed by pressing a die in the shape of cut 10 into the sheet 6 to punch out and separate the shape of the punched cut 10 from the sheet 6. For example, a sharpened die in the shape of aperture 10B pressed into sheet 6 will form the aperture 10B in the sheet 6 by punching out and separating the shape of aperture 10B from the sheet 6. Other methods may be employed to form cut(s) in the sheet 6.
In some embodiments, exposing the cuts 10 to heat when forming the cuts 10 or after they are formed in the sheet 6 seals the cuts 10 and prevents the sheet 6 from fraying at the site of each cut 10. Heat sealing the sheet 6 at the site of the cuts 10 may be useful when, for example, the sheet 6 is a synthetic polymer material of solid, woven, braided, mesh or other construction.
The cuts 10 may be sealed ultrasonically, by exposing the cuts 10 to mechanical heat to seal the cuts 10. Alternatively, the cut 10 may be a slit 10A that is made with a straight blade edge that is heated to a sufficient temperature to seal the slit 10A. In one particular embodiment, a sharpened die in the shape of aperture 10B is heated and the aperture 10B is cut and sealed in one step by pressing the heated die into sheet 6 to punch out and form a sealed aperture 10B in the sheet 6.
In one embodiment, one or more of the cuts 10 are slits 10A that extend through the thickness of the sheet 6 for the length of the slit 10A. Alternatively, for example, the slits 10A do not extend through the entire thickness of the material for the length of the slit 10A. However, upon exposure to tensioning force applied during the implantation, the slit 10A may extend through the sheet 6 to provide open surface area through the material. In another embodiment, as disclosed in
An alternative embodiment, as shown in
Another embodiment, as disclosed in
In an alternative embodiment, as shown in
The sling 2 may be sterilized and packaged in a sterile holder. The packaging conditions may be dry and the package protective of the sling 2 during transport and storage. The packaging may be designed to protect the sheet 6 of the sling 2 from ultra-violet light to prevent damage. The sling 2 disclosed herein is packaged in a shape and size suitable for its intended purpose. Upon opening the protective package, the sling 2 may be hydrated, if necessary, with, for example, saline solution, and thereafter implanted in the patient without any additional alteration by the surgeon performing the surgical procedure. In an embodiment where, for example, the sling 2 made of mammalian tissue material is employed, the sling 2 is hydrated in saline solution prior to implantation.
In one embodiment, in accordance with the invention, a method of treating a damaged portion of a patient's body employs the sling 2. The method includes, in overview, providing the sling 2, as described herein. Securing the first end portion 14 of the sheet 6 of the sling 2 to a first anatomical structure in the body of the patient. Applying tensioning force substantially along the longitudinal axis 34 of the sheet 6. Securing the second end portion 24 of the sheet 6 to a second anatomical structure in the body of the patient. The perpendicular axis 38 of sling 2 is positioned so that it lies substantially along a portion of the patient's body. The one or more cuts 10 disposed along the perpendicular axis 38 are disposed such that the distance 150 remains substantially constant with the sheet 6 secured. Supporting a damaged portion of the patient's body with the secured sheet 6. In some embodiments, the sheet 6 evenly distributes pressure on a damaged portion of a patient's body.
In one particular embodiment, the sling is employed to treat a female patient suffering from stress urinary incontinence. Physiological conditions that cause stress urinary incontinence include ISD, bladderneck hypermobility, and a combination of the two conditions. When a sling is employed to treat these conditions, it may be used to provide support to the patient's urethra. Where the physiological condition is ISD, the sling may be implanted to improve improper coaption of the urethral sphincter. Alternatively, where the condition is hypermobility, the sling may be implanted to support, elevate or "back stop" the midurethra. In the patient who suffers from a combination of ISD and hypermobility, a sling 2 may be implanted to support one or both of these sites.
Methods of sling delivery and implantation to treat female stress incontinence include transvaginal, transabdominal, and combined transvaginal and transabdominal procedures. Preoperatively, according to these sling delivery methods, the patient receives broad spectrum antibiotics, such as gentamicin and ampicillin. The patient is placed in the dorsal lithotomy position and regional or general anesthesia is administered. Preparation of the patient may include isolation of the anus with a stapled towel or plastic drape. A Foley catheter is placed.
In the transvaginal method, a midline incision is made in the upper vaginal wall beneath the bladderneck, such as at the urethro-vesical junction. Starting adjacent to the bladder neck on either side of the urethra, a 1 cm incision is made through the anterior vaginal wall approximately 1 cm lateral to and parallel to the midline of the urethra. The vaginal wall is retracted to allow access to the endopelvic fascia. The surgeon then inserts an instrument such as surgical scissors through the incision in the upper vaginal wall and bluntly dissects the tissue on both sides of the urethra to create a pocket for the sling.
The pocket can also be created and the sling can be inserted using a variety of other minimally invasive instruments/methods including the transvaginal, hiatal and percutaneous approaches disclosed in U.S. Pat. No. 6,053,935 entitled "Transvaginal Anchor Implantation Device" issued Apr. 25, 2000, U.S. patent application Ser. No. 09/023,965 entitled "Percutaneous and Hiatal Devices and Methods for Use in Minimally Invasive Pelvic Surgery" filed Feb. 13, 1997, and U.S. Pat. No. 6,099,547 entitled "Method and Apparatus for Minimally Invasive Pelvic Surgery" issued Aug. 8, 2000, which are incorporated herein by reference.
In one embodiment, the sling is secured to the pubic bone with a suture attached to a bone anchor. Referring to
An anchor implantation device is introduced through the opening in the vaginal wall 200. The leading edge of the anchor implantation device is pressed through the anterior vaginal wall incision to the side of the bladder neck, and inserted into the inferior edge of the posterior aspect of the pubic bone. In some embodiments, the anchor implant site is located lateral to the symphysis pubis and cephalad to the inferior edge of the pubic bone. In one particular embodiment, the anchor implant site is located approximately 1 cm lateral to the symphysis pubis and 1 cm cephalad to the inferior edge of the posterior aspect of the pubic bone.
After the anchor is driven into the pubic bone 230, the anchor implantation device is withdrawn and removed leaving the two free ends of suture exiting the endopelvic fascia and trailing the two free ends of the suture from the vaginal wall 200 incision. The above procedure is repeated on the opposite side of the urethra 210 to implant a second anchor.
A pre-sized sling 2 may be selected to suit the size of the patient. The sling 2 is removed from its sterile packaging. In some embodiments, the surgeon will remove excess portions of the sling 2 to suit the patient. In an embodiment where the sheet 6 is made from mammalian tissue, the surgeon may cut off excess portions of the sling 2 without further treatment of the sheet 6 to prevent fraying. In embodiments where the sheet 6 is made from a synthetic material, the surgeon may heat seal the edge where excess sheet 6 was removed from the sling 2 to prevent the material from fraying. Thereafter, the sling 2 is hydrated in preparation for implantation. Water, saline, or other solutions may be employed to hydrate the sling. Furthermore, the hydrating solution may include an antimicrobial and/or an antibiotic.
The sling 2 is positioned in the pocket formed under the urethra 210. The free ends of suture from the two anchors on each side of the urethra 210 are then tied to the first end portion 14 and the second end portion 24 of the sling 2. The sutures are then tied off with the appropriate amount of tension to support the urethra 210. In one particular embodiment, slits 10A are disposed about line 42 on sling 2 and line 42 is aligned with the portion of the patient's urethra 210 requiring support. Upon implantation, at least some of the slits 10A will provide open areas to patient's urethra. The vaginal wall 200 incision is then closed.
In an alternative transvaginal procedure, the sling is implanted inside the patient as depicted in FIG. 8B. The sling 2 is similar to the sling 2 described above and shown in FIG. 4. The sling 2 is rectangular in shape and is comprised of mammalian tissue. The sling has both a visual indication line 42 and slits 10A disposed along the perpendicular axis 38. The sling 2 is implanted inside the patient and the first end portion 14 and the second end portion 24 of the sheet 6 are secured to the muscular and/or fascial urethral supports 220. The sling 2 is located between the urethra 210 and the exterior of the anterior vaginal wall 200. The sling 2 supports the urethra 210.
The pocket is formed as described above. The sling 2 size may be pre-selected to suit the patient. The surgeon selects the sling size according to the patient size and area the sling 2 is employed to support. The sling 2 is removed from the sterile packaging, any excess portions of the sling 2 are cut off to suit the patient and, if necessary, the sling 2 is sealed to prevent fraying where portions of sheet 6 were removed from the sling 2. Thereafter, water, saline, an antimicrobial and/or an antibiotic solution, or other solutions are employed to hydrate the sling 2 in preparation for implantation.
A suture is attached to the first end portion 14 of the sling 2. The suture is threaded through a surgical needle and is introduced inside the patient's body through the opening in the vaginal wall 200. The surgical needle and suture are pressed through the muscular and fascial urethral support 220. The suture anchors the sling 2 to the muscular and fascial urethral support 220. Once the first end portion 14 of sling 2 is anchored to the anatomical structure, the needle is detached from the suture. The surgeon then applies tension to the sling 2 and visually aligns line 42, thereby aligning the slits 10A, with the portion of the patient's urethra requiring support. Thereafter, the above procedure is repeated on the opposite side of the urethra 210 to anchor the second end portion 24 of sling 2 to the muscular and/or fascial urethral support 220. The surgeon confirms that an appropriate level of tension is applied to the sling 2 to support the patient's urethra. Some or all of the slits 10A will provide open areas to the patient's urethra upon implantation inside the patient's body. The vaginal wall 200 incision is then closed.
In an alternative embodiment, the sling 2 is secured to the body of the patient with a sutureless fastener. Exemplary fasteners that may be used include staples, bone anchors and clips. In another embodiment, the slings shown in
The placement of sling 2 relative to the urethra varies according to the condition being treated. Where the condition being treated is bladderneck hypermobility, the sling may be implanted to support, elevate or "back stop" the midurethra and the distal urethra. The sling may be implanted to stabilize or kink the urethra and improve urethral closing pressure, thereby improving continence.
Generally, the implanted distance 150 of slings 2 disposed with slits 10A will reduce by between about zero and about twenty percent. The percentage by which the distance 150 reduces upon exposure to surgical tensioning force will depend on the number of slits 10A and the material type 6, whether from mammalian tissue, synthetic material, or a combination of mammalian tissue and synthetic material. The placement of the slits 10A on the material will also impact the percentage by which the distance 150 may reduce. When, for example, the slits are formed along the grain of an oriented mammalian tissue or along the high tensile strength direction of a synthetic material, the distance 150 may be reduced by a lower percentage then if an omnidirectional tissue material or a synthetic with equivalent tensile strength at all directions were employed.
In
As shown in
The sling of
In one particular embodiment, the slits 10A are disposed about the line 42 on sling 2. The line 42 is employed to visually align the sling 2 with the patient's midurethra and distal urethra. In one embodiment, the sheet 6 of sling 2 evenly distributes pressure on the urethra. In another embodiment, the sling 2 evenly distributes pressure on the midurethra without applying pressure to other portions of the urethra.
Upon implantation inside the patient, some or all of the slits 10A provide open areas to the mid-urethra and distal urethra. Some of the slits 10A may become open when the slits 10A are bent around to surround the patient's urethra during implantation. Very soon thereafter, cells infiltrate the open areas of the sling 2 and tissue growth begins. The tissue on both sides of the sling 2 cross communicates such that tissue from both the anterior vaginal wall 200 and urethra 210 grows into the open areas on the sling 2 that they surround. This scar tissue growth provides support to the portions of the mid-urethra and the distal urethra adjacent to the open areas. This tissue growth also secures the sling 2 at the site of implantation, thus improving urethra closing pressure and patient continence.
Within a few weeks of implantation, the area where the slits 10A are on sling 2 made of mammalian tissue material will be absorbed into the portion of the patient's body adjacent to the slits 10A. The time period required for the entire sling 2 made from mammalian tissue material to be absorbed by the patient's body may be reduced in proportion to the open surface area on the sling 2. Thus, where slits 10A provide the implanted sling 2 with fifty percent open surface area, then the time period for the sling 2 to be absorbed into the patient's body may be reduced to between about three and twelve months compared to the minimum six months for mammalian tissue material lacking any cuts. The sling 2 embodied
In some embodiments, where the condition being treated is ISD, the sling may be implanted to support the distal bladder neck, the sphincter muscle, and the urethra in order to improve improper coaption of the urethral sphincter.
The sling of
In one embodiment the sling 2 depicted in
The distance 150 of the sling 2 made of omnidirectional mammalian tissue sheet 6 depicted in
The apertures 10B are disposed about the line 42 on sling 2. The line 42 is visually aligned with the patient's bladderneck, sphincter muscle, and urethra. In one embodiment, the midpoint of the perpendicular axis 38 distance 150 is located adjacent to the urethral sphincter muscle, the first side 18 is adjacent to the distal bladderneck, and the second side 28 is adjacent to the urethra. In one embodiment, the sheet 6 of sling 2 evenly distributes pressure on the patient's bladderneck, sphincter muscle, and urethra. In another embodiment, the sheet 6 evenly distributes pressure on the sphincter muscle alone without applying pressure to the bladderneck and urethra.
Upon implantation, some or all of the apertures 10B maintain an open surface area. Very soon after implantation, tissue begins to grow into the open areas on the sling 2. The tissue on both sides of the sling 2 cross communicates, whereby the tissues from the anterior vaginal wall 200 and urethra 210 and bladderneck grow into the open areas. This tissue growth provides support to urethral sphincter muscle, urethra, and bladderneck adjacent to the open areas. This tissue ingrowth also secures the sling 2 at the site of implantation. The tissue ingrowth will improve coaption of the urethral sphincter, which will improve patient continence.
In an embodiment where the sling 2 is made of mammalian tissue, the area where the apertures 10B provide open areas on the sling 2 will be locally absorbed into the body of the patient, into the urethral sphincter muscle, urethra, and bladderneck, within a few weeks after implantation. The time period required for the sling 2 to be absorbed by the patient's body may be reduced in proportion to the open surface area on the sling 2 provided by the apertures 10B disposed through the sling 2. Thus, if fifty percent of the sling 2 provides open surface area when implanted inside the patient's body the time period to absorb may be reduced to between about three months and about twelve months. The sling 2 shown in
In the combination transvaginal and transabdominal method, the sling is introduced transvaginally, through insertion into pocket through the upper vaginal wall, as described above. Either before or after creating the pocket, an anchor is introduced into the pubic bone 230 for fixation of suspensory sutures, with or without predrilling a hole in the pubic bone. For instance, the anchor is introduced using an anchor implantation device of a type such as that illustrated in
The surgeon selects the sling 2. The above described sling 2 comprises sheet 6 disposed with cuts 10 substantially along at least a portion of the perpendicular axis 38. In some embodiments, the sling 2 has a line 42 disposed substantially along at least a portion of the perpendicular axis 38.
An incision is made in the anterior vaginal wall and a pocket is formed as described above. A suture passer is introduced inside the patient's body through the opening in the vaginal wall. Thereafter, the surgeon attaches the sutures to the sling 2. In alternative embodiments, the sutures are pre-attached to the sling 2 of the invention. This step is unnecessary in embodiments were a suture is pre-attached to the sling 2 of the invention, as in
In one embodiment, the one or more of the sutures can be laterally attached to anatomical support structures other than the pubic bone, for example, the ileal pectineal ligament (termed Cooper's ligament), the arcus tendinous fascia pelvis, or the pubococcygenous muscle complex. In one particular embodiment, the first end portion 14 of the sling 2 is secured to the pubic bone and the second end portion 24 is attached to the arcus tendinous fascia pelvis (termed the White Line).
In order to minimize postoperative urinary blockage caused by excessive tension, suture tension is regulated by tying the first and second ends of the sutures across a suture tensioner of a type, for example, illustrated in and described with respect to FIGS. 46-49 of U.S. Pat. No. 5,611,515 entitled "Bladderneck Suspension Procedure", issued Mar. 19, 1997, and the U.S. patent application Ser. No. 09/184,468 entitled "Transvaginal Suture Spacer Devices and Methods of Use", filed Nov. 2, 1998 (both of which are incorporated herein by reference). The suture tensioner is thereafter removed and the position of the sling 2 is reconfirmed prior to closing the vaginal and suprapubic wounds. Transabdominal surgical methods may also be employed to implant the sling 2 in accordance with the invention.
The slings disclosed herein are designed to be secured to any suitable support structure of a patient's body. Examples of such structures include but are not limited to the bones, ligaments, fascia and appropriate muscle structures proximate to the site of attachment. For example, sutures may be used to attach the sling 2 to the Cooper's ligament or the rectus fascia without using a bone anchor.
Variations, modifications, and other implementations of what is described herein will occur to those of ordinary skill in the art without departing from the spirit and the scope of the invention. Accordingly, the invention is not to be limited by the preceding illustrative description.
Patent | Priority | Assignee | Title |
10028813, | Jul 22 2010 | Boston Scientific Scimed, Inc | Coated pelvic implant device and method |
10034735, | Mar 28 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implants, tools, and methods for treatments of pelvic conditions |
10039628, | Jul 31 2008 | Methods and implants for treating urinary incontinence | |
10039629, | Mar 28 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implants, tools, and methods for treatment of pelvic conditions |
10058240, | Jun 29 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Systems, implants, tools, and methods for treatments of pelvic conditions |
10064714, | May 21 2004 | Coloplast A/S | Implantable device configured to treat pelvic organ prolapse |
10076394, | Oct 12 2000 | Coloplast A/S | Method of treating urinary incontinence |
10098721, | Sep 01 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Pelvic implant needle system and method |
10265152, | Oct 13 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Pelvic implant sizing systems and methods |
10271936, | Jun 16 2006 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Surgical implants, tools, and methods for treating pelvic conditions |
10271937, | Dec 05 2008 | Boston Scientific Scimed, Inc. | Insertion device and method for delivery of a mesh carrier |
10278800, | Jul 05 2000 | Coloplast A/S | Method and device for treating urinary incontinence |
10314572, | Sep 02 2011 | Boston Scientific Scimed, Inc. | Multi-arm tool for delivering implants and methods thereof |
10390813, | Aug 05 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Systems, implants, tools, and methods for treatments of pelvic conditions |
10441400, | Jun 22 2006 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Adjustable tension incontinence sling assembles |
10449025, | Oct 12 2000 | Coloplast A/S | Surgical device implantable to treat female urinary incontinence |
10470861, | Dec 30 2009 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Elongate implant system and method for treating pelvic conditions |
10492897, | Oct 06 2010 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implants with absorbable and non-absorbable features for the treatment of female pelvic conditions |
10500027, | Jun 30 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implants, tools, and methods for treatments of pelvic conditions |
10537416, | Aug 25 2008 | Boston Scientific Scimed, Inc. | Minimally invasive implant and method |
10582923, | Apr 17 2009 | Boston Scientific Scimed, Inc. | Apparatus for delivering and anchoring implantable medical devices |
10603074, | Apr 30 2009 | Boston Scientific Scimed, Inc. | Dissection and retraction device for vaginal sacral colpopexy |
10639138, | Feb 28 2008 | Coloplast A/S | Method for providing support to a urethra in treating urinary incontinence |
10653411, | Jun 30 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implants, tools, and methods for treatments of pelvic conditions |
10682213, | Mar 30 2001 | Coloplast A/S | Surgical implant consisting of non-absorbable material |
11039909, | Feb 09 2012 | Boston Scientific Scimed, Inc. | Implants, tools, and methods for treatments of pelvic conditions |
11207166, | Dec 28 2007 | Boston Scientific Scimed, Inc. | Devices and methods for treating pelvic floor dysfunctions |
11207169, | Mar 24 2015 | Hexagon Health, Inc. | Gender-specific mesh implant with barrier for inguinal hernia repair |
11219516, | Mar 24 2015 | Hexagon Health, Inc. | Gender-specific mesh implant with barrier for inguinal hernia repair |
11284983, | Jul 22 2011 | Boston Scientific Scimed, Inc. | Pelvic implant system and method |
11324579, | Mar 24 2015 | HEXAGON HEALTH, INC | Gender-specific mesh implant with barrier for inguinal hernia repair |
11547542, | Aug 25 2008 | Boston Scientific Scimed, Inc. | Minimally invasive implant and method |
11602425, | Mar 24 2015 | HEXAGON HEALTH, INC | Gender-specific mesh implant with barrier for inguinal hernia repair |
11833021, | Feb 04 2005 | Boston Scientific Scimed, Inc. | Transobturator methods for installing sling to treat incontinence, and related devices |
11883272, | Jul 15 2005 | Boston Scientific Scimed, Inc. | Tension-adjustable surgical sling assembly |
7087065, | Oct 04 2001 | Ethicon, Inc | Mesh for pelvic floor repair |
7198597, | May 07 2002 | Boston Scientific Scimed, Inc | Male urethral prosthesis with tensioning member |
7273448, | Apr 24 2003 | Boston Scientific Scimed, Inc | Male urethral prosthesis |
7361138, | Jul 31 2003 | Boston Scientific Scimed, Inc | Bioabsorbable casing for surgical sling assembly |
7402133, | Dec 17 2002 | Boston Scientific Scimed, Inc | Spacer for sling delivery system |
7422557, | Feb 04 2005 | Boston Scientific Scimed, Inc | Needle design for male transobturator sling |
7465270, | Oct 05 2001 | Boston Scientific Scimed, Inc | Expandable surgical implants and methods of using them |
7517313, | Sep 07 2000 | STASKIN, DAVID, MD, DR | Implantable article and method |
7524281, | Nov 17 2003 | Boston Scientific Scimed, Inc | Systems and methods relating to associating a medical implant with a delivery device |
7722528, | Feb 04 2005 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Surgical implants and related methods and systems |
7824326, | Jul 31 2003 | Boston Scientific Scimed, Inc. | Bioabsorbable casing for surgical sling assembly |
7878970, | Sep 28 2005 | Boston Scientific Scimed, Inc | Apparatus and method for suspending a uterus |
7905825, | Feb 04 2005 | Boston Scientific Scimed, Inc | Pelvic implants and related methods |
7914437, | Feb 04 2005 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Transobturator methods for installing sling to treat incontinence, and related devices |
7972262, | Jan 23 2001 | STASKIN, DAVID, MD, DR | Sling assembly with secure and convenient attachment |
7981024, | Nov 17 2003 | PROLAPSE, INC | Pelvic implant with anchoring frame |
7998055, | May 07 2002 | Boston Scientific Scimed, Inc | Male urethral prosthesis with tensioning member |
8007430, | Oct 12 2000 | COLOPLAST A S | Apparatus and method for treating female urinary incontinence |
8033982, | Aug 03 2005 | Boston Scientific Scimed, Inc. | Systems, devices and methods relating to a shape resilient sling-like support for treating urinary incontinence |
8033983, | Mar 09 2001 | Boston Scientific Scimed, Inc | Medical implant |
8070672, | Feb 04 2005 | Boston Scientific Scimed, Inc | Needle design for male transobturator sling |
8097007, | Aug 02 2002 | C R BARD, INC | Self-anchoring sling and introducer system |
8118727, | Oct 12 2001 | Coloplast A/S | Method for supporting pelvic anatomy |
8118728, | Oct 12 2000 | Coloplast A/S | Method for implanting an adjustable surgical implant for treating urinary incontinence |
8123673, | Oct 12 2000 | Coloplast A/S | Adjustable surgical implant for treating urinary incontinence |
8128554, | Apr 11 2002 | Coloplast A/S | System for introducing a pelvic implant |
8157722, | Feb 04 2005 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Surgical implants and related methods and systems |
8162816, | Mar 09 2001 | Boston Scientific Scimed, Inc | System for implanting an implant and method thereof |
8162818, | Oct 12 2001 | Coloplast A/S | Adjustable surgical implant for pelvic anatomy |
8167785, | Oct 12 2000 | COLOPLAST A S | Urethral support system |
8170686, | Mar 14 2006 | Boston Scientific Scimed, Inc. | Heatable sling support for an anatomical location |
8182412, | Apr 11 2002 | Coloplast A/S | Pelvic implant with fibrous anchor |
8182413, | Apr 11 2002 | Coloplast A/S | Method for fibrous anchoring of a pelvic support |
8215310, | May 21 2004 | Coloplast A/S | Implant for treatment of vaginal and/or uterine prolapse |
8273011, | Oct 12 2000 | Coloplast A/S | Adjustable surgical implant and method for treating urinary incontinence |
8323179, | Nov 17 2003 | Boston Scientific Scimed, Inc. | Systems and methods relating to associating a medical implant with a delivery device |
8337386, | Aug 14 2003 | Boston Scientific Scimed, Inc | Surgical slings |
8376928, | Oct 05 2001 | Boston Scientific Scimed, Inc. | Expandable surgical implants and methods of using them |
8430807, | Dec 28 2007 | Boston Scientific Scimed, Inc. | Devices and methods for treating pelvic floor dysfunctions |
8449450, | Oct 12 2000 | Coloplast A/S | Pass through introducer and sling |
8449573, | Dec 05 2008 | Boston Scientific Scimed, Inc. | Insertion device and method for delivery of a mesh carrier |
8454492, | Oct 12 2000 | Coloplast A/S | Absorbable anchor and method for mounting mesh to tissue |
8460169, | Jun 22 2006 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Adjustable tension incontinence sling assemblies |
8469875, | Jul 05 2000 | Coloplast A/S | Method and device for treating urinary incontinence |
8469877, | Apr 11 2002 | Coloplast A/S | System for introducing a pelvic implant |
8480559, | Sep 13 2006 | C R BARD, INC | Urethral support system |
8512223, | Oct 12 2000 | Coloplast A/S | Pelvic implant with selective locking anchor |
8535217, | Jul 26 2005 | ASTORA WOMEN S HEALTH, LLC | Methods and systems for treatment of prolapse |
8557581, | Mar 16 2005 | Musculoskeletal Transplant Foundation | Soft tissue processing |
8574148, | Oct 12 2000 | Coloplast A/S | System for introducing soft tissue anchors |
8574149, | Nov 13 2007 | C. R. Bard, Inc. | Adjustable tissue support member |
8585576, | Feb 04 2005 | Boston Scientific Scimed, Inc | Pelvic implants and related methods |
8617048, | Mar 09 2001 | Boston Scientific Scimed, Inc | System for implanting an implant and method thereof |
8628463, | Jun 22 2006 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Adjustable tension incontinence sling assemblies |
8632453, | Dec 17 2002 | Boston Scientific Scimed, Inc. | Spacer for sling delivery system |
8668635, | Oct 12 2000 | Coloplast A/S | Pelvic implant with suspending system |
8709471, | Mar 27 2003 | COLOPLAST A S | Medicament delivery device and a method of medicament delivery |
8727963, | Jul 31 2008 | Boston Scientific Scimed, Inc | Methods and implants for treating urinary incontinence |
8734319, | Feb 28 2007 | Boston Scientific Scimed, Inc | Apparatus for organ suspension |
8771168, | Feb 04 2005 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Transobturator methods for installing sling to treat incontinence, and related devices |
8784295, | Jan 23 2001 | STASKIN, DAVID, MD, DR | Sling assembly with secure and convenient attachment |
8801596, | Oct 12 2000 | Coloplast A/S | Sling with support and suspending members formed from same polymer |
8808162, | Mar 28 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implants, tools, and methods for treatment of pelvic conditions |
8821369, | Oct 12 2000 | Colorplast A/S | Method for soft tissue anchoring with introducer |
8821370, | Oct 12 2000 | Coloplast A/S | Device, system and methods for introducing soft tissue anchors |
8834350, | Jun 16 2006 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Surgical implants, tools, and methods for treating pelvic conditions |
8845512, | Nov 14 2005 | C. R. Bard, Inc. | Sling anchor system |
8845514, | May 07 2002 | Boston Scientific Scimed, Inc | Male urethral prosthesis with tensioning member |
8852075, | Oct 12 2000 | Coloplast A/S | Pelvic implant systems and methods with expandable anchors |
8876691, | Aug 14 2003 | Boston Scientific Scimed, Inc. | Surgical slings |
8888678, | Oct 12 2000 | Coloplast A/S | Pelvic implant with suspending system |
8905911, | Aug 14 2003 | Boston Scientific Scimed, Inc | Surgical slings |
8911347, | Oct 12 2000 | Coloplast A/S | System and method for treating urinary incontinence |
8920302, | Nov 17 2003 | Prolapse Inc. | Pelvic implant with anchoring frame |
8920304, | Jul 05 2000 | Coloplast A/S | Method and device for treating urinary incontinence |
8920308, | Oct 12 2000 | Coloplast A/S | Surgical implant with anchor introducer channel |
8932202, | Oct 12 2000 | Coloplast A/S | Incontinence implant with soft tissue anchors and length not allowing abdominal wall penetration |
8968178, | Mar 07 2002 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Transobturator surgical articles and methods |
8998803, | Apr 30 2009 | Boston Scientific Scimed, Inc. | Dissection and retraction device for vaginal sacral colpopexy |
9005222, | Aug 02 2002 | Coloplast A/S | Self-anchoring sling and introducer system |
9017243, | Aug 25 2008 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Minimally invasive implant and method |
9022922, | Jul 31 2008 | Boston Scientific Scimed, Inc | Methods and implants for treating urinary incontinence |
9060838, | May 21 2004 | Coloplast A/S | Tissue supported implantable device |
9060839, | Jul 26 2005 | ASTORA WOMEN S HEALTH, LLC | Methods and systems for treatment of prolapse |
9078727, | Mar 16 2006 | Boston Scientific Scimed, Inc | System and method for treating tissue wall prolapse |
9078728, | Dec 28 2007 | Boston Scientific Scimed, Inc. | Devices and methods for delivering female pelvic floor implants |
9084664, | May 19 2006 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Method and articles for treatment of stress urinary incontinence |
9089393, | Mar 28 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implants, tools, and methods for treatment of pelvic conditions |
9089394, | Oct 12 2000 | Coloplast A/S | Pelvic implant with suspending system |
9089396, | Oct 12 2000 | Coloplast A/S | Urinary incontinence treatment and devices |
9113992, | Oct 12 2000 | Coloplast A/S | Apparatus and method for treating urinary incontinence |
9125716, | Apr 17 2009 | Boston Scientific Scimed, Inc. | Delivery sleeve for pelvic floor implants |
9125717, | Feb 23 2011 | Boston Scientific Scimed, Inc | Implant tension adjustment system and method |
9144483, | Jan 13 2006 | Boston Scientific Scimed, Inc | Placing fixation devices |
9168120, | Sep 09 2011 | Boston Scientific Scimed, Inc. | Medical device and methods of delivering the medical device |
9179991, | Feb 04 2005 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Transobturator methods for installing sling to treat incontinence, and related devices |
9179992, | Mar 28 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implants, tools, and methods for treatment of pelvic conditions |
9179993, | May 07 2002 | Boston Scientific Scimed, Inc | Male urethral prosthesis with tensioning member |
9186489, | Mar 27 2003 | Coloplast A/S | Implantable delivery device system for delivery of a medicament to a bladder |
9192458, | Feb 09 2012 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implants, tools, and methods for treatments of pelvic conditions |
9248010, | Jul 15 2005 | Boston Scientific Scimed, Inc | Tension-adjustable surgical sling assembly |
9271754, | Dec 16 2010 | Boston Scientific Scimed, Inc. | Movable curved needle for delivering implants and methods of delivering implants |
9282958, | Dec 28 2007 | Boston Scientific Scimed, Inc | Devices and method for treating pelvic dysfunctions |
9283064, | Jul 26 2005 | ASTORA WOMEN S HEALTH, LLC | Methods and systems for treatment of prolapse |
9289204, | Dec 05 2008 | Boston Scientific Scimed, Inc. | Insertion device and method for delivery of a mesh carrier |
9301750, | Nov 03 2009 | Boston Scientific Scimed, Inc.; Boston Scientific Scimed, Inc | Device and method for delivery of mesh-based devices |
9339362, | Sep 28 2005 | Boston Scientific Scimed, Inc | Apparatus and method for suspending a uterus |
9345472, | Sep 02 2011 | Boston Scientific Scimed, Inc. | Multi-arm tool for delivering implants and methods thereof |
9345867, | Mar 27 2003 | Coloplast A/S | Device implantable in tissue of a prostate gland or a bladder |
9351723, | Jun 30 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implants, tools, and methods for treatments of pelvic conditions |
9364308, | Dec 30 2009 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implant systems with tensioning feedback |
9375302, | Jun 22 2006 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Adjustable tension incontinence sling assemblies |
9381075, | Jan 31 2011 | Boston Scientific Scimed, Inc. | Deflection member for delivering implants and methods of delivering implants |
9387061, | Sep 02 2010 | Boston Scientific Scimed, Inc | Pelvic implants and methods of implanting the same |
9414903, | Jul 22 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Pelvic implant system and method |
9452038, | Feb 04 2005 | Boston Scientific Scimed, Inc | Pelvic implants and related methods |
9468512, | Oct 06 2010 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implants with absorbable and non-absorbable features for the treatment of female pelvic conditions |
9492191, | Aug 04 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Tools and methods for treatment of pelvic conditions |
9492259, | Mar 30 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Expandable implant system |
9532861, | Aug 02 2002 | Coloplast A/S | Self-anchoring sling and introducer system |
9532862, | Aug 02 2002 | Coloplast A/S | Self-anchoring sling and introducer system |
9555168, | Mar 27 2003 | Coloplast A/S | System for delivery of medication in treatment of disorders of the pelvis |
9572648, | Dec 21 2010 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implantable slings and anchor systems |
9615905, | May 07 2002 | Boston Scientific Scimed, Inc | Male urethral prosthesis with tensioning member |
9668845, | Apr 17 2009 | Boston Scientific Scimed, Inc. | Delivery sleeve for pelvic floor implants |
9737388, | Mar 28 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implants, tools, and methods for treatment of pelvic conditions |
9750590, | Mar 28 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implants, tools, and methods for treatment of pelvic conditions |
9782245, | Mar 30 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Implants, tools, and methods for treatment of pelvic conditions |
9814555, | Mar 12 2013 | Boston Scientific Scimed, Inc. | Medical device for pelvic floor repair and method of delivering the medical device |
9872750, | Aug 02 2002 | Coloplast A/S | Self-anchoring sling and introducer system |
9918816, | Aug 25 2008 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Minimally invasive implant and method |
9918817, | Feb 28 2008 | Coloplast A/S | Method of post-operatively adjusting a urethral support in treating urinary incontinence of a woman |
9943390, | Mar 30 2001 | Coloplast A/S | Method of treating pelvic organ prolapse in a female patient by accessing a prolapsed organ trans-vaginally through a vagina |
9962251, | Oct 17 2013 | Boston Scientific Scimed, Inc. | Devices and methods for delivering implants |
9968430, | Oct 12 2000 | Coloplast A/S | Surgical device implantable to treat female urinary incontinence |
9974639, | Dec 28 2007 | Boston Scientific Scimed, Inc. | Devices and methods for treating pelvic floor dysfunctions |
D721175, | Sep 08 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Backers for surgical indicators |
D721807, | Sep 08 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Surgical indicators |
D736382, | Sep 08 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Surgical indicator with backers |
D746462, | Sep 08 2011 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | Surgical indicators |
Patent | Priority | Assignee | Title |
2671444, | |||
3054406, | |||
3124136, | |||
3364200, | |||
3580313, | |||
3666750, | |||
3705575, | |||
3744495, | |||
4085756, | Jul 09 1975 | Method and apparatus for performing an electrosurgical procedure | |
4172458, | Nov 07 1977 | Surgical ligature carrier | |
4193137, | May 06 1977 | LifeShield Sciences LLC | Warp-knitted double-velour prosthesis |
4347847, | Jun 06 1980 | Method of hernia repair | |
4400833, | Jun 10 1981 | Baxter International Inc | Means and method of implanting bioprosthetics |
4409974, | Jun 29 1981 | Bone-fixating surgical implant device | |
4414967, | Jun 22 1981 | Linvatec Corporation | Internal fixation of bone, tendon, and ligaments |
4452245, | Jun 06 1980 | Surgical mesh and method | |
4520821, | Apr 30 1982 | The Regents of the University of California | Growing of long-term biological tissue correction structures in vivo |
4545374, | Sep 03 1982 | Method and instruments for performing a percutaneous lumbar diskectomy | |
4549545, | Mar 05 1984 | Ethicon Inc. | Segmented polyurethane surgical buttressing pledgets |
4633873, | Apr 26 1984 | Sherwood Services AG | Surgical repair mesh |
4652264, | Apr 25 1985 | Sherwood Services AG | Prosthetic tubular article |
4655221, | May 06 1985 | Sherwood Services AG | Method of using a surgical repair mesh |
4741330, | May 20 1982 | Method and apparatus for anchoring and manipulating cartilage | |
4769038, | Mar 18 1986 | C. R. Bard, Inc. | Prostheses and techniques and repair of inguinal and femoral hernias |
4784126, | Oct 04 1983 | Implico BV | Surgical device |
4838884, | Apr 26 1984 | Sherwood Services AG | Method of using a surgical repair mesh |
4854316, | Oct 03 1986 | Apparatus and method for repairing and preventing para-stomal hernias | |
4857041, | May 07 1986 | British Technology Group Limited | Urinary incontinence prostheses |
4872451, | Feb 02 1987 | ORTHOPEDIC SYSTEMS, INC | Glenohumeral ligament repair |
4873977, | Feb 11 1987 | AVANT, OTIS LYNN | Stapling method and apparatus for vesicle-urethral re-anastomosis following retropubic prostatectomy and other tubular anastomosis |
4905692, | Mar 28 1986 | K T MEDICAL, INC | Medical and orthopedic support fabric |
4911165, | Jan 12 1983 | Ethicon, Inc. | Pliabilized polypropylene surgical filaments |
4938760, | Mar 29 1989 | AMS Research Corporation | Female suspension procedure |
4969892, | Mar 29 1989 | WPAMS ACQUISITION CORP | Suturing anchoring device for use in a female suspension procedure |
4973300, | Sep 22 1989 | GENESEE BIOMEDICAL, INC | Cardiac sling for circumflex coronary artery surgery |
4986831, | Apr 25 1988 | Angeion Corporation | Medical implant |
4997434, | Feb 15 1984 | Prosthetic ligaments and instruments for use in the surgical replacement of ligaments | |
5002551, | Aug 22 1985 | JOHNSON & JOHNSON MEDICAL INC | Method and material for prevention of surgical adhesions |
5012822, | Oct 11 1988 | MARGER, JOHNSON, MCCOLLOM ET AL | Method for controlling urinary incontinence |
5013292, | Feb 24 1989 | R LABORIE SURGICAL LTD | Surgical correction of female urinary stress incontinence and kit therefor |
5019032, | Apr 03 1990 | Refined suspension procedure with implement for treating female stress incontinence | |
5026398, | Jul 01 1988 | The Minnesota Mining and Manufacturing Company | Abrasion resistant prosthetic device |
5064434, | Apr 04 1990 | Genitourinary implant | |
5112344, | Oct 04 1988 | Covidien AG; TYCO HEALTHCARE GROUP AG | Surgical instrument and method of utilization of such |
5122155, | Mar 11 1991 | Cook Incorporated | Hernia repair apparatus and method of use |
5147374, | Dec 05 1991 | FLARED PATCH, INC | Prosthetic mesh patch for hernia repair |
5149329, | Dec 12 1990 | Wayne State University | Surgical suture carrier and method for urinary bladder neck suspension |
5176692, | Dec 09 1991 | Method and surgical instrument for repairing hernia | |
5178630, | Aug 28 1990 | Maquet Cardiovascular, LLC | Ravel-resistant, self-supporting woven graft |
5195542, | Apr 27 1989 | Reinforcement and supporting device for the rotator cuff of a shoulder joint of a person | |
5252701, | Jul 06 1990 | Sherwood Services AG | Segmented absorbable copolymer |
5254133, | Apr 24 1991 | Surgical implantation device and related method of use | |
5256133, | Sep 05 1990 | Device for correcting stress urinary incontinence | |
5258000, | Nov 25 1991 | Cook Medical Technologies LLC | Tissue aperture repair device |
5263969, | Apr 17 1992 | Tool for the laparoscopic introduction of a mesh prosthesis | |
5289963, | Oct 18 1991 | Tyco Healthcare Group LP | Apparatus and method for applying surgical staples to attach an object to body tissue |
5290217, | Oct 10 1991 | Earl K., Sipes | Method and apparatus for hernia repair |
5292328, | Oct 18 1991 | United States Surgical Corporation | Polypropylene multifilament warp knitted mesh and its use in surgery |
5304220, | Jul 03 1991 | LifeShield Sciences LLC | Method and apparatus for implanting a graft prosthesis in the body of a patient |
5328077, | Nov 19 1992 | Method and apparatus for treating female urinary incontinence | |
5337736, | Sep 30 1992 | Method of using a laparoscopic retractor | |
5354292, | Mar 02 1993 | Surgical mesh introduce with bone screw applicator for the repair of an inguinal hernia | |
5356064, | Mar 31 1992 | Tyco Healthcare Group LP | Apparatus and method for applying surgical staples to attach an object to body tissue |
5362294, | Sep 25 1992 | Sling for positioning internal organ during laparoscopic surgery and method of use | |
5364002, | Oct 18 1991 | Tyco Healthcare Group LP | Apparatus and method for applying surgical staples to attach an object to body tissue |
5366460, | Oct 11 1990 | Cook Medical Technologies LLC | Apparatus and method for laparoscope hernia repair |
5366479, | Oct 18 1991 | Tyco Healthcare Group LP | Surgical staple for attaching an object to body tissue |
5368602, | Feb 11 1993 | Surgical mesh with semi-rigid border members | |
5370650, | Feb 24 1992 | United States Surgical Corporation | Articulating mesh deployment apparatus |
5381943, | Oct 09 1992 | Ethicon, Inc | Endoscopic surgical stapling instrument with pivotable and rotatable staple cartridge |
5383477, | Aug 02 1991 | Method and apparatus for laparoscopic repair of hernias | |
5397332, | Sep 02 1993 | Ethicon, Inc. | Surgical mesh applicator |
5425737, | Apr 08 1992 | Sherwood Services AG | Surgical purse string suturing instrument and method |
5425984, | Jul 19 1991 | United States Surgical Corporation | Bioabsorbable melt spun fiber based on glycolide-containing copolymer |
5437603, | Sep 14 1993 | C.R. Bard, Inc. | Apparatus and method for implanting prostheses within periurethral tissues |
5441508, | Apr 27 1989 | Reinforcement and supporting device for the rotator cuff of a shoulder joint of a person | |
5451235, | Nov 05 1991 | CHILDREN S MEDICAL CENTER CORPORATION | Occluder and method for repair of cardiac and vascular defects |
5474543, | May 17 1993 | Single needle apparatus and method for performing retropublic urethropexy | |
5507796, | Apr 28 1994 | Method of suspending a pelvic organ and instrument for performing the method | |
5527341, | May 24 1991 | Synthes (U.S.A) | Resorbable tendon and bone augmentation device |
5527342, | Dec 14 1993 | Biomet Manufacturing, LLC | Method and apparatus for securing soft tissues, tendons and ligaments to bone |
5544664, | Dec 03 1992 | Boston Scientific Scimed, Inc | Method of advancing a suture through tissue |
5549619, | Jun 04 1991 | Clinical Product Development Limited | Medical/surgical devices |
5569273, | Jul 13 1995 | C R BARD, INC | Surgical mesh fabric |
5582188, | Dec 03 1992 | Boston Scientific Scimed, Inc | Method of tensioning a suspended tissue mass |
5591163, | Jun 14 1995 | DEXTERITY SURGICAL, INC | Apparatus and method for laparoscopic urethropexy |
5611515, | Mar 12 1991 | Boston Scientific Scimed, Inc | Bladder neck suspension procedure |
5620012, | Apr 05 1993 | Boston Scientific Scimed, Inc | Method of percutaneously anchoring a suture to a bone |
5634931, | Sep 29 1994 | BARD ASDI INC | Hernia mesh patches and methods of their use |
5634944, | Feb 23 1995 | The Nemours Foundation; NEMOURS FOUNDATION, THE | Body membrane prosthesis |
5641502, | Jun 07 1995 | United States Surgical Corporation | Biodegradable moldable surgical material |
5641566, | Jul 27 1994 | W L GORE & ASSOCIATES, INC | High strength porous PTFE sheet material |
5643288, | Jun 14 1995 | DEXTERITY SURGICAL, INC | Apparatus and method for laparoscopic urethropexy |
5643596, | Nov 03 1993 | Clarion Pharmaceuticals, Inc. | Hemostatic patch |
5645849, | Nov 03 1993 | Clarion Pharmaceuticals, Inc. | Hemostatic patch |
5645915, | Jul 27 1994 | W L GORE & ASSOCIATES, INC | High strength porous PTFE sheet material |
5681310, | Jul 20 1994 | SDGI Holdings, Inc | Vertebral auxiliary fixation device having holding capability |
5690655, | May 03 1996 | Innovasive Devices, Inc. | Suture tensioning device |
5697931, | Jun 14 1995 | DEXTERITY SURGICAL, INC | Apparatus and method for laparoscopic urethopexy |
5707647, | Apr 04 1994 | Atrix Laboratories, Inc. | Adjunctive polymer system for use with medical device |
5733337, | Apr 07 1995 | Organogenesis, Inc | Tissue repair fabric |
5766221, | Dec 03 1991 | Boston Scientific Scimed, Inc | Bone anchor implantation device |
5769864, | Sep 29 1994 | BARD ASDI INC | Hernia mesh patch |
5807403, | Nov 13 1992 | AMS Research Corporation | Medical anchor device with suture thread and method for implantation into bone |
5813975, | Nov 09 1994 | Double layer dynamic prosthesis for surgical treatment of the inguinal hernia | |
5816258, | Jun 13 1996 | General Surgical Innovations, Inc.; General Surgical Innovations, Inc | Bladder neck suspension method |
5824082, | Jul 14 1997 | BROWN, RODERICK, DR | Patch for endoscopic repair of hernias |
5836314, | Dec 03 1991 | Boston Scientific Scimed, Inc | Surgical treatment of stress urinary incontinence |
5836961, | Jun 02 1992 | General Surgical Innovations, Inc. | Apparatus and method for developing an anatomic space for laparoscopic hernia repair and patch for use therewith |
5840011, | Nov 17 1995 | Ethicon, Inc | Implant for suspension of the urinary bladder in cases of incontinence of urine in women |
5899909, | Aug 30 1994 | Ethicon, Inc | Surgical instrument for treating female urinary incontinence |
5916225, | Sep 29 1994 | BARD ASDI INC | Hernia mesh patch |
5922026, | May 01 1997 | Origin Medsystems, Inc.; ORIGIN MEDSYSTEMS, INC | Surgical method and prosthetic strip therefor |
5934283, | Apr 15 1997 | Uroplasty, Inc. | Pubovaginal sling device |
5997554, | Jun 14 1995 | DEXTERITY SURGICAL, INC | Surgical template and surgical method employing same |
6039686, | Mar 18 1997 | Boston Scientific Corporation; Boston Scientific Scimed, Inc | System and a method for the long term cure of recurrent urinary female incontinence |
6042534, | Feb 13 1997 | Boston Scientific Scimed, Inc | Stabilization sling for use in minimally invasive pelvic surgery |
6042536, | Aug 13 1998 | ConSert, LLC | Bladder sling |
6042583, | Jun 14 1995 | DEXTERITY SURGICAL, INC | Bone anchor-insertion tool and surgical method employing same |
6053935, | Nov 08 1996 | Boston Scientific Corporation | Transvaginal anchor implantation device |
6059801, | Mar 24 1997 | Bladder saver retropubic ligature carrier device | |
6068591, | Feb 17 1998 | Pubo-urethral support harness apparatus for percutaneous treatment of female stress urinary incontinence | |
6090116, | Oct 03 1997 | PRODESCO,INC | Knitted surgical mesh |
6099547, | Feb 13 1997 | Boston Scientific Scimed, Inc | Method and apparatus for minimally invasive pelvic surgery |
6102921, | Dec 21 1990 | University of New Mexico | Nerve anastomosis sling and method |
6110101, | Aug 13 1998 | ConSert, LLC | Bladder sling |
6221005, | Feb 17 1998 | Pubo-urethral support harness apparatus for percutaneous treatment of female stress urinary incontinence with urethal hypemobility | |
6306079, | Dec 07 1999 | Mesh pubovaginal sling | |
20020095064, | |||
DE19544162, | |||
EP248544, | |||
EP334046, | |||
EP599772, | |||
EP778749, | |||
GB2268690, | |||
JP6114067, | |||
SE503271, | |||
SE506164, | |||
WO74633, | |||
WO8801853, | |||
WO9216152, | |||
WO9310715, | |||
WO9310731, | |||
WO9319678, | |||
WO9419029, | |||
WO9428799, | |||
WO9606567, | |||
WO9713465, | |||
WO9730638, | |||
WO9743982, | |||
WO9812971, | |||
WO9835632, | |||
WO139670, | |||
WO9916381, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 17 2001 | GELLMAN, BARRY N | SciMed Life Systems, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012244 | /0933 | |
Jul 27 2001 | SciMed Life Systems, Inc. | (assignment on the face of the patent) | / | |||
Jan 01 2005 | SciMed Life Systems, INC | Boston Scientific Scimed, Inc | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 018505 | /0868 |
Date | Maintenance Fee Events |
Feb 27 2004 | ASPN: Payor Number Assigned. |
Sep 14 2007 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 23 2011 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 16 2015 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 29 2007 | 4 years fee payment window open |
Dec 29 2007 | 6 months grace period start (w surcharge) |
Jun 29 2008 | patent expiry (for year 4) |
Jun 29 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 29 2011 | 8 years fee payment window open |
Dec 29 2011 | 6 months grace period start (w surcharge) |
Jun 29 2012 | patent expiry (for year 8) |
Jun 29 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 29 2015 | 12 years fee payment window open |
Dec 29 2015 | 6 months grace period start (w surcharge) |
Jun 29 2016 | patent expiry (for year 12) |
Jun 29 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |