The present invention relates generally to structure layout and marking during construction. More particularly, the present invention relates to an automated layout system that acquires data directly from the architectural drawing, blueprint, or CAD (computer aided design). The automated layout system then generates a full banner for denoting the precise location of building elements such as studs, doors, windows, etc., for a structure under construction.
|
35. A banner sized to overlay an elongated framing element of a building structure, comprising:
an elongated sheet of material; a plurality of marks on the elongated sheet of material for indicating a location for at least one component of said structure, and wherein the plurality of marks are colored; a component identification number printed onto the elongated sheet of material; and a list of component quantities and dimensional information printed onto the elongated sheet of material.
1. An apparatus comprising:
an input system for acquiring an architectural design of a structure; a processing system for converting the architectural design into a plurality of component locations of the structure; and an output system for receiving at least one component location from the processing system and for outputting each component location as markings on a banner, the banner being sized to overlay a first surface of an elongated framing element of the structure, the elongated framing element having a rectangular cross section defined by said first surface, an opposite surface and two narrower side surfaces.
23. A method comprising the steps of:
providing an architectural design of a framing structure; with a computer aided design system, generating a digitized data file from the architectural design; with a processing system, converting the digitized data file into a plurality of component locations of the structure; and marking the location for at least one component of said plurality of component locations onto at least one banner, the banner being sized to overlay a first surface of an elongated reference component of the framing structure, the reference component having a rectangular cross section defined by the first surface, an opposite surface and a pair of narrower side surfaces.
4. The apparatus of
5. The apparatus of
7. The apparatus of
12. The apparatus of
13. The apparatus of
15. The apparatus of
17. The apparatus of
18. The apparatus of
19. The apparatus of
20. The apparatus of
21. The apparatus of
22. The apparatus of
24. The method of
25. The method of
26. The method of
27. The method of
28. The method of
29. The method of
30. The method of
31. The method of
32. The method of
33. The method of
34. The method of
38. The banner of
39. The banner of
|
The present invention relates generally to a structure layout and marking during construction. More particularly, the present invention relates to an automated layout system that acquires data directly from the architectural design (e.g., drawing, blueprint, or CAD (computer aided design)) to generate a template to locate the building elements of a structure.
Generally building construction includes framing. In platform framing, which is used for most residential construction, the first floor is built on top of the foundation walls as though it were a platform. The floor 15 provides a base upon which the carpenter can assemble wall sections and then raise them into place. The wall sections may support a platform for the second floor where the wall sections and partitions are again built and erected. Each floor is framed separately. The roof is framed above the upper walls.
Typically, a carpenter must read a building blueprint to determine the dimensions for each wall. The carpenter then uses a flexible measuring tape to make manual measurements of distances along a structural member such as a top or bottom plate of a wall. Markings are manually applied to the structural member to locate the positions of various members such as studs, jack posts, cripples, etc. Additionally, the locations for doors and windows have to be manually marked.
The manual marking method is time consuming and requires a large number of measurements. The measurements may also require the assistance of another person. Measuring and marking errors may result in misplaced components such as doors or windows. These mistakes can result in costly construction delays involving reinstallation and rebuilding of structural elements.
The present invention provides an automated layout system that acquires data directly from the architectural design (e.g, drawing, blueprint, or CAD (computer aided design)). The automated layout system then generates a full size template, hereafter referred to as "banner," for denoting the precise location of building components such as studs, doors, windows, etc., for a building under construction.
The present invention in one embodiment generally provides an apparatus comprising:
an input system for acquiring an architectural design of a structure;
a processing system for converting the architectural design into a plurality of component locations of the static structure; and
an output system for receiving at least one component location from the processing system and for outputting each component location.
The present invention provides a method comprising the steps of:
providing an architectural design of a static structure;
providing a computer aided design system for generating a digitized data file from the architectural design;
providing a processing system for converting the digitized data file into a plurality of component locations of the structure; and
marking the location for at least one component onto at least one banner.
The present invention in another embodiment comprises:
a sheet of material;
a plurality of marks on the sheet of material for indicating a location for at least one component, and wherein the plurality of marks are colored;
a component identification number printed onto the sheet of material; and
a list of dimensional information printed onto the sheet of material.
The features of the present invention will best be understood from a detailed description of the invention and a preferred embodiment thereof selected for the purposes of illustration and shown in the accompanying drawings in which:
Although certain preferred embodiments of the present invention will be shown and described in detail, it should be understood that various changes and modifications may be made without departing from the scope of the appended claims. The scope of the present invention will in no way be limited to the number of constituting components, the materials thereof, the shapes thereof, the relative arrangement thereof, etc., which are disclosed simply as an example of the preferred embodiment. The features and advantages of the present invention are illustrated in detail in the accompanying drawings, wherein like reference numerals refer to like elements throughout the drawings. Although the drawings are intended to illustrate the present invention, the drawings are not necessarily drawn to scale.
The architectural design 30 includes component 40 information. The component 40 information may include a structural member 40A, a window 40B, a door 40C, an electrical element 40D, a plumbing element 40E, and a heating, ventilation, air conditioning element 40F, etc. The structural member 40A may include a wooden member 40G a metallic member 40H, or other building material of the structure 32. The component 40 information is transmitted through the input system 12 to the processing system 14.
The architectural design 30 may include an architectural drawing 42, such as a blueprint. The architectural drawing 42 may be fed through a scanning system 22. The scanning system 22 generates a digital drawing data file 36A that is transmitted through the input system 12 into the processing system 14.
The architectural design 30 may include Uniform Building Code (UBC) 44 data that is transmitted through the input system 12 into the processing system 14. The UBC 44 data contains local building code standards that a structure must meet. These standards include, for example, structural member 40A thickness dimensions and spacings.
The processing system 14 combines the component 40 information, the digital drawing data file 36, 36A, and the UBC 44 data. The processing system 14 calculates and generates the dimensional location for each of the component 40 (e.g., structural member 40A, window 40B, door 40C, electrical element 40D, plumbing element 40E, heating, ventilation, air conditioning element 40F, etc.) within the structure 32. The dimensional location of each component 40 is digitized and automatically transferred to the output system 16.
The output system 16 may send the digitized dimensional location of each component 40 to a network 20. The network 20 may be, e.g., an internet connection, a computer network, etc. The network 20 may transmit digitized dimensional location information for each component 40 to a remote computer system 28. The remote computer system 28 may be used to output a banner 48A. Additionally, the output system 16 may store the digitized location for each component 40 on any suitable storage media (e.g., hard disk, floppy disk, tape, etc.). The storage media may then be transported and inserted into the remote computer system 28. The remote computer system 28 may be used to output the banner 48A.
The output system 16 sends the digitized dimensional location of each component 40 to the printing system 18. The printing system 18 prints a banner 48. The banner 48 is a full size template including a plurality of markings 50, a plurality of component identification numbers 52, colored markings 54, dimensional data 56 (e.g., English, Metric, etc.)and so on. The banner 48 may be made from any suitable durable waterproof sheet material, for example, TYVEK™ (DuPont), plastic, etc. The TYVEK™ includes spunbonded olefin fibres. The markings 50 show the location for each component 40 of the structure 32 on the banner 48. The markings may be uniformly spaced, for example, at 16 inch intervals to indicate stud spacing. The markings 50 may be colored markings 54 to indicate a component type, such as black for the structural member 40A, red for the electrical element 40D, blue for the plumbing element 40E, and green for the heating, ventilation, and air conditioning element 40F. Identification numbers 52 (e.g., vendor part numbers) may be printed on the banner 48 adjacent to the location of the component such as a window 40B or a door 40C. Dimensional data 56 for structural member 40A lengths may be printed on the banner 48. The dimensional data 56 may be printed in any suitable standard (e.g., English, Metric, etc.). One or more different types of the markings 50 may be pre-printed on the sheet material forming the banner 48 (e.g., by the manufacture of the sheet material of the banner 48, by other manufacturers, or by a printing company, etc.) prior to the banner 48 being printed by the printing system 18. For example, indicia, such as uniformly spaced lines arranged 16" on center, may be pre-printed on the sheet material forming the banner 48.
The printing system 18 may print a listing of components 58. The listing of components 58 includes a printout of all of the components 40 in a structure 32 for each banner 48 within the structure 32. The printing system 18 may print a schematic plan view 60 of the banner 48 locations within the structure 32.
As illustrated in
Cutting along the cut line 94 of the banner 48 separates the first reference component 62A from the second reference component 63A (FIG. 6). Thus, the banner 48 is separated into a first banner portion 96A and a second banner portion 97A. The first banner portion 96A remains attached to the first reference component 62A, and the second banner portion 97A remains attached to the second reference component 63A. The first reference component 62A forms the bottom plate of the structure 32. The second reference component 63A forms the top plate of the structure 32. The markings 50 include a direction arrow 92A printed on the first banner portion 96A, and a direction arrow 92B printed on the second banner portion 97A. The direction arrows 92A and 92B are kept pointing in the same direction when the first reference component 62A and the second reference component 63A are placed into position as bottom 98 and the top 100 of the structure 32.
A plurality of studs 102 are cut to the appropriate selected length and are located and attached to the first reference component 62A and the second reference component 63A at the stud location 64 markings 50 (FIG. 7). The jacks 80, the cripples 82, the sill 84, the headers 86, and the header sill 87 are cut to the lengths as indicated on the printed list 88 on the banner 48 (FIG. 3). The jacks 80 are located and attached to the first reference component 62A as indicated by the jack location 66 markings 50. The cripples 82 are located and attached to the first reference component 62A as indicated by the cripple location 68 markings 50. The sill 84 is attached to the cripples 82 and jacks 80. The header sill 87 is attached to the jacks 80. The headers 86 are attached to the studs 102 and the second reference component 63A. The jacks 80, the sill 84 and the header sill 87 form a window opening 104.
Similar to the banner 48, cutting along the cut line 94B of banner 48B separates the first reference component 62B from the second reference component 63B. The banner 48B is separated into a first banner portion 96B and a second banner portion 97B. The first banner portion 96B remains attached to the first reference component 62B, and the second banner portion 97B remains attached to the second reference component 63B. The first reference component 62B is a bottom plate of the structure 32B and the second reference component 63B is a top plate of the structure 32B as illustrated in FIG. 9.
A plurality of studs 102 are cut to a uniform selected length and are located and attached to the first reference component 62B and the second reference component 63B at stud location 64 markings 50. The jacks 80B, the header sill 87B, and the headers 86B are cut to the lengths as indicated on the printed list 108 on the banner 48B (FIG. 8). The jacks 80B are located and attached to the first reference component 62B as indicated by the jack location 66 markings 50. The header sill 87B is attached to the jacks 80B. The headers 86B are attached to the studs 102 and the second reference component 63B. After the structure 32B is erected, cuts 116A and 116B are made through the first reference component 62B. Then a portion 110 of the first reference component 62B is removed from the door opening 112.
As illustrated in
The foregoing description of the present invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed, and many modifications and variations are possible in light of the above teaching. For example, the automated layout system 10 may be used to create banners 48 for any suitable structure (e.g., a residential building, a commercial building, a warehouse, a boat, etc.). Such modifications and variations that may be apparent to a person skilled in the art are intended to be included within the scope of this invention as defined by the accompanying claims.
Patent | Priority | Assignee | Title |
10017951, | Aug 07 2016 | Method of using a panel framing device to build panels for use in house construction | |
10197391, | May 22 2009 | Pictometry International Corp. | System and process for roof measurement using imagery |
10214924, | Aug 03 2017 | Method of using a panel framing device to build panels for use in house construction | |
10648800, | May 22 2009 | Pictometry International Corp. | System and process for roof measurement using imagery |
11041304, | Sep 06 2018 | Interface strips for structural framing and related framing methods | |
11060857, | May 22 2009 | Pictometry International Corp. | System and process for roof measurement using imagery |
7035713, | Apr 19 2001 | FOUNTAIN PATENTS B V I O | Method for forming container racks |
7561996, | Jan 13 2006 | FCA US LLC | Automated dimensional drawing generating apparatus |
7813902, | Jul 30 2004 | Dormer calculator | |
8249832, | Dec 05 2009 | The Boeing Company | Correlation of inspection information and computer-aided design data for structural assessment |
8353131, | Jan 12 2006 | Loq-kit building component system | |
8401222, | May 22 2009 | PICTOMETRY INTERNATIONAL CORP | System and process for roof measurement using aerial imagery |
9342634, | Jul 30 2004 | Dormer calculator | |
9690396, | Dec 15 2011 | Paperless blueprint drafting table system | |
9933254, | May 22 2009 | Pictometry International Corp. | System and process for roof measurement using aerial imagery |
Patent | Priority | Assignee | Title |
3628232, | |||
3785060, | |||
3816931, | |||
4367590, | Mar 27 1981 | Calibrated tape for use in constructing wall with vertical studs | |
4845858, | Jun 29 1987 | Stud locating tape | |
5195249, | Jan 17 1992 | Wall panel template | |
5627763, | Dec 27 1994 | System and method for construction guidance and control | |
5724246, | Jan 17 1996 | Arrangement for the controlled notching and cutting of framing components | |
5755072, | May 13 1996 | Construction method | |
5819498, | Oct 29 1996 | Home construction methodology |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Jan 28 2008 | REM: Maintenance Fee Reminder Mailed. |
Jun 25 2008 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jun 25 2008 | M2554: Surcharge for late Payment, Small Entity. |
Jan 20 2012 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Jan 19 2016 | M3553: Payment of Maintenance Fee, 12th Year, Micro Entity. |
Jan 19 2016 | STOM: Pat Hldr Claims Micro Ent Stat. |
Date | Maintenance Schedule |
Jul 20 2007 | 4 years fee payment window open |
Jan 20 2008 | 6 months grace period start (w surcharge) |
Jul 20 2008 | patent expiry (for year 4) |
Jul 20 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 20 2011 | 8 years fee payment window open |
Jan 20 2012 | 6 months grace period start (w surcharge) |
Jul 20 2012 | patent expiry (for year 8) |
Jul 20 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 20 2015 | 12 years fee payment window open |
Jan 20 2016 | 6 months grace period start (w surcharge) |
Jul 20 2016 | patent expiry (for year 12) |
Jul 20 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |