A bulk modulus elastomeric element is employed in the present invention. The material from which the invention is fabricated is formed as a sheet, which has a plurality of channels that run through, or partially through it. The holes in the sheet are angled such that the remaining material may be of a parallelogram shape. The top and bottom surfaces of the particular element may be rectangular, circular, hexagonal, or other shapes, since the shape of the end surface is not important to the invention. An edge of an upper end surface is displaced from a remote edge of the lower surface so that a vertical line from one edge normal to the upper surface, is displaced from the remote edge of the lower surface, so that it preferably does not intersect any part of the lower surface when no forces are applied to the surfaces. However, in some instances, under load, a small overlap at the cross-sectional areas of the upper surface and lower surfaces, may be desirable. A method of determining the desired overlap the elastomeric elements for given applications is also provided.
|
1. An apparatus for damping at least one of shock and vibration, comprising:
at least four of damping elements formed from an elastomeric material wherein each damping element comprises: a first external surface having a first apex; a second external surface having a second apex and that extends parallel to the first external surface; four curved sides that extend between the first external surface and the second external surface; four straight sides that extend between the first external surface and the second external surface and that extend between two of the curved sides; and the first external surface and the second external positioned relative to one another such that a first line originating at the first apex and drawn normal to said first external surface extending through the second external surface and a second line originating at the second apex and drawn normal to the second external surface extending through the first external surface define an overlap between the first external surface and the second external surface; the at least four damping elements connected along at least one of the four straight sides of each of the damping elements to form a sheet of elastomeric material, the at least four damping elements connected such that the at least one of the at least four curved sides of each of the at least four damping elements define at least one cavity in the sheet of elastomeric material; and wherein a sample of the elastomeric material extending between the first external surface and the second external surface and defined between the first line and the second line is configured to buckle upon an application of a minimum dynamic force normal to at least one of the first external surface and the second external surface of each damping element. 2. The apparatus for damping at least one of shock and vibration, of
3. The apparatus for damping at least one of shock and vibration, of
4. The apparatus for damping at least one of shock and vibration, of
5. The apparatus for damping at least one of shock and vibration, of
|
This is a Continuation-in-Part Application of co-pending U.S. patent application Ser. No. 09/770,474, filed Jan. 29, 2001 now abandoned in the name of Trevor J. McCollough and Wesley E. Revely.
This invention relates to unique elastomeric damping sheet geometry and design. Elastomeric materials are employed extensively in applications where shock and vibration must be minimized. Such applications include sports equipment, tools, automobiles, airplanes, and many other types of apparatus. It is also becoming increasingly important to minimize failures due to impact forces applied to electronic equipment, such as digital computers, especially when such equipment is employed in harsh, rugged environments.
Previously, various elastomeric materials have been used, or suggested for use, to provide shock and/or vibration damping, as stated in U.S. Pat. No. 5,766,720 issued in Jun. 16, 1998 to Yamagishi, et. al. These materials include natural rubbers and synthetic resins, such as polyvinylchlorides, polyurethane, polyamides, polystyrenes, copolymerized polyvinyl chlorides, and polyolefine synthetic rubbers, as well as synthetic materials such as urethane, EPDM, styrene-butadiene rubbers, nitrites, isoprene, chloroprenes, propylene, and silicones. The particular type of elastomeric material employed is not critical, but urethane material sold under the trademark Sorbothane© is currently employed. Suitable material is also sold by Aero E.A.R. Specialty Composites, as Isoloss VL. The registrant of the mark Sorbothane© for urethane material is the Hamilton Kent Manufacturing Company (Registration No. 1208333), Kent, Ohio 44240.
The elastomeric elements employed in the prior art were commonly formed into typical geometric 3D shapes, such as spheres, ;squares, right circular cylinders, cones, rectangles, and the like as illustrated in U.S. Pat. No. 5,776,720. These typical geometric shapes, however, did not satisfactorily eliminate the transfer of compressive forces through the damping device, and thus, did not minimize or eliminate shock and vibration to the degree accomplished by the devices of the invention.
In pending U.S. patent application Ser. No. 09/495,693 filed Feb. 1, 2001, now abandoned titled Elastomeric Damping Elements and Applications for Reducing Shock and Vibration, elastomeric damping elements of block shapes were disclosed. These elastomeric damping elements were formed with an elongated parallelogram cross-sectional shape, with a first flat mounting surface that extends parallel to the first flat mounting surface at a second end of the parallelogram cross-section, and is located so that a line drawn normal to one of the flat mounting surfaces will not intercept the other of the flat mounting surfaces. As an option, a space in the interior of the element could be provided, which is filled with particulate or fluid material that may be contained in a deformable package. Other materials that have different damping characteristics than the elastomeric sheet, may be poured into the interior of the element where they solidify.
The elastomeric sheet material of the present invention is formed of a continuous, flat elastomeric sheet or layer that has a plurality of channels that run through it, or, at least partially through it, such that the remaining material is formed with a plurality of structures that when viewed along, at least one, in cross-sectional continuing line of a general parallelogram shape. A method of correlating dimensions of elastomeric damping elements with applied forces to provide effective damping for given applications is also provided.
The present invention is described by reference to the drawings in which
The elastomeric material employed in the present invention is preferably a bulk modulus elastomeric element which is formed as a sheet 10, as shown in FIG. 1. The elastomeric sheet 10 is provided with a plurality of channels 12 that run through it, or partially through it. The channels 12 in the sheet 10 are angled such that the remaining solid material between the channels is subdivided into an array of solid portions, such as the portion 14 of
A downward applied force on the end surface 20 in the vertical direction of
The elastomeric sheet material of this invention is easily manufactured at a low cost. This passive shock vibration element has virtually instantaneous recovery from shock. Therefore, it provides protection under dynamic, as well as static conditions. Although the elastomeric damping sheets of the present invention are illustrated and described in connection with a preferred embodiment, these damping sheets are very versatile, may be utilized for many different purposes, and may be constructed in very large and quite small sizes, in accordance with the intended application. It is not necessary, however, for the sheet to be populated with channels to the extent shown in FIG. 1. Depending on the desired application, numerous variations may be implemented within the shape of the present invention, as claimed herein, by those skilled in the art, including, but not limited to, the following, either singly or in combination:
1. A limited number of rows or columns of channels;
2. Patterns of channels aligned to form outlines of various geometrical arrangements, such as circles, squares, X's and other shapes, on the upper and lower surfaces of the elastomeric sheets;
3. Channels of different sizes;
4. Channel-filling material of different composition than the elastomeric sheet material that fill all, or only part of a channel or channels;
5. A plurality of channel-filling materials different than the sheet material;
6. Slanted channels with different orientations and angles;
7. Channels that proceed only partially through the elastomeric sheet.
The amount of area overlap that exists can be correlated with the minimum excess dynamic force impulse value over the static force value at which it is desired to initiate appreciable damping by a damping element of the type described herein.
The dimensions of this sample are deprived from a generally parallelogram-shaped elastomer element 40 that is shaped as shown in FIG. 64. When a static load is applied for a given application and the upper end area 34 and bottom end area 36 overlap to the extent defined between the lines 42,44. The overlap area portion 46 on the upper end area 34 and the overlap area 30 portion 48 of the lower end area are the result of a static force being applied normal to the surfaces 34,36.
To determine the damping characteristics of an elastomer damping element, a sample of material with the end surface areas 46,48 and the sides 42,44 is first obtained. Line 42 defines a peripheral side of the sample and extends normal to the end area 34 from the apex 50. Line 44 defines a second peripheral side of the sample that extends normal to the end area 36 from the apex 52. The sides 42,44 are substantially parallel when the normal applied force is below an initial value. In this state, a reference line 54 that is normal to the surface areas 46,48 and runs through the control 50 of the sample 30 is provided. Excess dynamic force is now applied normal to the end areas 46,48 of the sample and the buckling of the sides 42,44 of the sample in the horizontal direction of
McCollough, Trevor J., Revely, Wesley E.
Patent | Priority | Assignee | Title |
10065541, | Aug 10 2015 | Grammer AG | Horizontal vibration device for a vehicle seat |
10854184, | Dec 04 2018 | Ford Global Technologies, LLC | Friction damped insert for highly stressed engineering components |
7415397, | Feb 04 2005 | Lockheed Martin Corporation | Frequency shifting isolator system |
7770693, | Sep 15 2004 | Mat for acoustic apparatus | |
9376042, | Aug 04 2010 | Grammer AG | Horizontal springing device for vehicle seats with elastomer spring element with progressive spring characteristic curve |
Patent | Priority | Assignee | Title |
4776573, | Dec 14 1984 | Woco Franz-Josef Wolf & Co. | Spring element |
4925163, | Feb 09 1988 | Woco Franz-Josef Wolf & Co | Spring element |
5766720, | Oct 05 1993 | Toray Industries, Inc. | Impact vibration absorbers and devices that incorporated them |
6274219, | Aug 02 1997 | Sommer Allibert-Lignotock GmbH | Multilayer formed part and method of manufacturing same |
EP637699, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 16 2002 | Lockheed Martin Corporation | (assignment on the face of the patent) | / | |||
Apr 30 2002 | REVELY, WESLEY E | Lockheed Martin Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015406 | /0081 |
Date | Maintenance Fee Events |
Feb 28 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Mar 10 2008 | REM: Maintenance Fee Reminder Mailed. |
Apr 16 2012 | REM: Maintenance Fee Reminder Mailed. |
Aug 31 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 31 2007 | 4 years fee payment window open |
Mar 02 2008 | 6 months grace period start (w surcharge) |
Aug 31 2008 | patent expiry (for year 4) |
Aug 31 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 31 2011 | 8 years fee payment window open |
Mar 02 2012 | 6 months grace period start (w surcharge) |
Aug 31 2012 | patent expiry (for year 8) |
Aug 31 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 31 2015 | 12 years fee payment window open |
Mar 02 2016 | 6 months grace period start (w surcharge) |
Aug 31 2016 | patent expiry (for year 12) |
Aug 31 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |