A power amplifier circuit disclosed herein comprises an amplifying part transistor including a bipolar transistor to which a first supply voltage is supplied as a driving voltage and which amplifies an input signal inputted to a base of the amplifying part transistor so as to output the input signal; a bias current generating circuit which generates a bias current for biasing the base of the amplifying part transistor and supplies the bias current to the base of the amplifying part transistor when the amplifying part transistor performs an amplification operation; and an additional bias current generating circuit which supplies an additional bias current to the base of the amplifying part transistor in addition to the bias current according to the first supply voltage.
|
2. A power amplifier circuit comprising:
an amplifying part transistor including a bipolar transistor to which a first supply voltage is supplied as a driving voltage and which amplifies an input signal inputted to a base of the amplifying part transistor so as to output the input signal; a bias current generating circuit which generates a bias current for biasing the base of the amplifying part transistor and supplies the bias current to the base of the amplifying part transistor when the amplifying part transistor performs an amplification operation; an additional bias current generating circuit which supplies an additional bias current to the base of the amplifying part transistor in addition to the bias current according to the first supply voltage; and a switching control circuit which supplies a control current to the bias current generating circuit and selects whether or not the bias current generating circuit supplies the bias current to the base of the amplifying part transistor, wherein the first supply voltage is supplied to a collector of the amplifying part transistor, and a second supply voltage whose value is equivalent to that of the first supply voltage is supplied to the additional bias current generating circuit.
1. A power amplifier circuit comprising:
an amplifying part transistor including a bipolar transistor to which a first supply voltage is supplied as a driving voltage and which amplifies an input signal inputted to a base of the amplifying part transistor so as to output the input signal; a bias current generating circuit which generates a bias current for biasing the base of the amplifying part transistor and supplies the bias current to the base of the amplifying part transistor when the amplifying part transistor performs an amplification operation; and an additional bias current generating circuit which supplies an additional bias current to the base of the amplifying part transistor in addition to the bias current according to the first supply voltage, wherein the first supply voltage is supplied to a collector of the amplifying part transistor, and a second supply voltage whose value is equivalent to that of the first supply voltage is supplied to the additional bias current generating circuit, and wherein the additional bias current generating circuit supplies the additional bias current when the second supply voltage is higher than a predetermined value but the additional bias current generating circuit does not supply the additional bias current when the second supply voltage is lower than the predetermined value.
3. The power amplifier circuit according to
4. The power amplifier circuit according to
5. The power amplifier circuit according to
6. The power amplifier circuit according to
a third bipolar transistor including a collector connected to the base of the amplifying part transistor and a base connected to the collector of the third bipolar transistor; and a fourth bipolar transistor including an emitter connected to the collector of the third bipolar transistor, a base to which the control current is supplied from the switching control circuit, and a collector to which a third supply voltage is supplied.
7. The power amplifier circuit according to
8. The power amplifier circuit according to
9. The power amplifier circuit according to
10. The power amplifier circuit according to
|
This application claims benefit of priority under 35 U.S.C.§119 to Japanese Patent Application No. 2003-24579, filed on Jan. 31, 2003, the entire contents of which are incorporated by reference herein.
1. Field of the Invention
The present invention relates to a power amplifier circuit which amplifies an inputted input signal and outputs it as an output signal.
2. Description of the Related Art
As shown in
A high-frequency signal current Isg is supplied to a base of the amplifying part transistor Q from a signal generating circuit 30 via a capacitive element C1, and a bias current Ibias from a bias circuit 40 is also supplied thereto. Namely, a base current Ib=Ibias+Isg is supplied to the base. An emitter of the amplifying part transistor Q is grounded.
The bias circuit 40 includes NPN bipolar transistors Q1 to Q4 and a resistance R1. The bipolar transistors Q1 and Q2 and the resistance R1 constitute a switching control circuit 50, and the bipolar transistors Q3 and Q4 constitute a bias current generating circuit 60.
As concerns a control voltage Vcon to be supplied to the switching control circuit 50, a voltage (3.6 V, for example) is supplied when the power amplifier circuit 5 is on, and no voltage (namely, 0 V) is supplied when it is off. In the bias current generating circuit 60, the bipolar transistor Q3 is turned on/off according to the on/off of the control voltage Vcon, and when it is on, the bias current Ibias is supplied from a reference voltage Vref to the base of the amplifying part transistor Q, and when it is off, the bias current Ibias is not supplied.
The switching control circuit 50 changes the amount of the bias current Ibias flowing through the bipolar transistor Q3 by changing the amount of a control current Icon to be supplied to a base of the bipolar transistor Q3 according to its ambient temperature (ambient temperature of the bipolar transistors Q1 and Q2). Hence, the switching control circuit 50 prevents thermal runaway of the power amplifier circuit. In addition, the bipolar transistors Q1 and Q2 also monitor the ambient temperature of the amplifying part transistor Q.
An output node N0 of this power amplifier circuit is provided on the collector side of amplifying part transistor Q and outputs a voltage output OUT. A load impedance ZL is connected to the output node N0.
As shown in
Incidentally, as shown in
However, as can be seen from FIG. 11 and
When the voltage Vc is at low output levels, however, it does not matter if the amplitude of the voltage output OUT is small, and hence if it is possible to decrease the amount of the current Ic and thereby reduce power consumption, it is more desirable.
In order to accomplish the aforementioned and other objects, according to one aspect of the present invention, a power amplifier circuit, comprises:
an amplifying part transistor including a bipolar transistor to which a first supply voltage is supplied as a driving voltage and which amplifies an input signal inputted to a base of the amplifying part transistor so as to output the input signal;
a bias current generating circuit which generates a bias current for biasing the base of the amplifying part transistor and supplies the bias current to the base of the amplifying part transistor when the amplifying part transistor performs an amplification operation; and
an additional bias current generating circuit which supplies an additional bias current to the base of the amplifying part transistor in addition to the bias current according to the first supply voltage.
First Embodiment
In the first embodiment, a reduction in power consumption at low output levels is realized by making the amount of a base current to be supplied to an amplifying part transistor in a power amplifier circuit at low output levels smaller than that at high output levels to thereby reduce a current flowing from a collector to an emitter of the amplifying part transistor. Further details will be given below.
More specifically, the bipolar transistor Q5 and the bipolar transistor Q6 are connected in series to constitute an additional bias current generating circuit 100 in this embodiment.
A voltage Vc1 is supplied to a collector of the bipolar transistor Q6 from a DC/DC converter 20. In this embodiment, this voltage Vc1 is equivalent to a voltage Vc2 which is supplied to a collector of an amplifying part transistor Q. However, a node which supplies the voltage Vc1 and a node which supplies the voltage Vc2 are short-circuited in a high frequency manner so as not to be affected by each other in the DC/DC converter 20.
Moreover, to the collector of the bipolar transistor Q6, its own base is connected. In other words, the bipolar transistor Q6 functions as a diode. An emitter of this bipolar transistor Q6 is connected to a collector of the bipolar transistor Q5.
A base of the bipolar transistor Q5 is connected to a collector of a bipolar transistor Q1. An emitter of the bipolar transistor Q5 is connected to a base of the amplifying part transistor Q. Accordingly, an additional bias current Iad which flows into the base of the amplifying part transistor Q through the bipolar transistor Q5 is controlled by the amount of a control current Icon which flows into the base of the bipolar transistor Q5 from the collector of the bipolar transistor Q1.
Similarly to
To the collector of the bipolar transistor Q2, its own base is also connected. Namely, the bipolar transistor Q2 functions as a diode. An emitter of the bipolar transistor Q2 is connected to a ground. As can be seen from the above, the switching control circuit 50 has a configuration in which two diodes (Q1, Q2) are connected in series to one end of the resistance R1.
Similarly to
To the collector of the bipolar transistor Q4, its own base is also connected. In other words, the bipolar transistor Q4 functions as a diode. An emitter of this bipolar transistor Q4 is connected to a ground.
The bias current which flows into the base of the amplifying part transistor Q from a point between the bipolar transistor Q3 and the bipolar transistor Q4 is Ibias, the additional bias current which flows into the base of the amplifying part transistor Q from the bipolar transistor Q5 is Iad, and a signal current which flows into the base of the amplifying part transistor Q from a signal generating circuit 30 is Isg, whereby the whole base current Ib flowing into the base of the amplifying part transistor Q is expressed as follows.
Ib=Ibias+Iad+Isg
It is noted that the high-frequency signal current Isg is inputted to the base of the amplifying part transistor Q but the signal current Isg is not inputted to the additional bias current generating circuit 110 or the bias current generating circuit 60. Moreover, the signal generating circuit 30 and the power amplifier circuit 100 are isolated from each other in a direct current manner but they are short-circuited in a high frequency manner.
The configuration of the power amplifier circuit 100 has been described above, and next the operation of this power amplifier circuit 100 will be explained.
The control voltage Vcon to be supplied to the switching control circuit 50 is a predetermined voltage (for example, 3.6 V) when the power amplifier circuit 100 is operated, while it is 0 V when the power amplifier circuit 100 is not operated, that is, it is off. Since the bipolar transistors Q3 and Q5 are turned off when the control voltage Vcon is 0 V, the amplifying part transistor Q is also turned off, and thereby the power amplifier circuit 100 does not operate. Consequently, power consumption of the power amplifier circuit 100 on standby can be reduced. The standby means a state that a predetermined voltage (for example, 3.6 V) is applied to the control voltage Vcon and the signal current Isg is not supplied from the signal generating circuit 30.
On the other hand, when the control voltage Vcon is the predetermined voltage (for example, 3.6 V), the bipolar transistors Q3 and Q5 are turned on, and the bias current Ibias and the additional bias current Iad are supplied to the base of the amplifying part transistor Q.
The amount of the current flowing through the bipolar transistors Q1 and Q2 constituting the diodes of the switching control circuit 50 changes depending on the ambient temperature of the bipolar transistors Q1 and Q2. In addition, the bipolar transistors Q1 and Q2 also monitor the ambient temperature of the amplifying part transistor Q. Namely, the flowing current increases if the ambient temperature rises, while the flowing current reduces when the ambient temperature falls. Hence, the voltage of a node N1 changes according to the temperature. In other words, if the temperature rises, the current flowing through the resistance R1 increases, whereby voltage drop in the resistance R1 increases, resulting in a fall in the voltage of the node N1. Consequently, the control current Icon which flows into the bases of the bipolar transistors Q3 and Q5 reduces. Hence, if the ambient temperature rises, the bias current Ibias and the additional bias current Iad reduce, and thereby the base current Ib which flows into the base of the amplifying part transistor Q also reduces.
On the other hand, if the temperature falls, the current flowing through the resistance R1 reduces, whereby the voltage drop in the resistance R1 reduces. Thereby the voltage of the node N1 rises, and the control current Icon which flows into the bases of the bipolar transistors Q3 and Q5 increases. Hence, if the ambient temperature falls, the bias current Ibias and the additional bias current Iad increase, and the base current Ib which flows into the base of the amplifying part transistor Q also increases. In other words, the switching control circuit 50 has a temperature compensation function. However, this temperature compensation function is not always necessary, and it is also possible to omit it. In this case, the bipolar transistors Q1 and Q2 become unnecessary.
The bias current generating circuit 60 supplies the bias current Ibias to the base of the amplifying part transistor Q according to the control current Icon which flows into the base of the bipolar transistor Q3.
The additional bias current generating circuit 110 supplies the additional bias current Iad to the base of the amplifying part transistor Q according to the control current Icon which flows into the base of the bipolar transistor Q5. In this embodiment, in particular, the additional bias current generating circuit 110 is configured in such a manner to supply the additional bias current Iad when the voltage Vc1 supplied from the DC/DC converter 20 is high (3.6 V, for example) and not to supply the additional bias current Iad when the voltage Vc1 is low (1.5 V, for example). To realize this, the additional bias current generating circuit 110 according to this embodiment satisfies the following conditions.
If in each bipolar transistor, the base-emitter on-voltage which is an on-voltage between the base and the emitter is taken as Vbeon, and the collector-emitter on-voltage which is an on-voltage between the collector and the emitter is taken an Vceon, it is recommended to set the voltage Vc1 as follows.
At High Output Levels (When the Voltage Vc1 is High)
The base(B)-emitter(E) on-voltage of the amplifying part transistor Q is taken as Vbeon(Q), the collector(C)-emitter(E) on-voltage of the bipolar transistor Q5 is taken as Vceon(Q5), and the base(B)-emitter(E) on-voltage of the bipolar transistor Q6 is taken as Vbeon(Q6). In this case, the additional bias current Iad can be supplied by satisfying the following condition.
Consequently, the additional bias current Iad can be supplied to the base of the amplifying part transistor Q, and thus the bias point of the amplifying part transistor Q can be set high.
At Low Output Levels (When the Voltage Vc1 is Low)
At low output levels, contrary to the aforementioned high output levels, it becomes possible not to supply the additional bias current Iad by satisfying the following condition.
Consequently, it becomes possible not to supply the additional bias current Iad to the base of the amplifying part transistor Q, and thus the bias point of the amplifying part transistor Q can be set low.
As shown in
Second Embodiment
In the second embodiment, by inserting a resistance on the collector side of the bipolar transistor Q6, the current Ic shows a linear slope with respect to the voltage Vc1 in the region of Vc1>Vbeon(Q)+Vceon(Q5)+Vbeon(Q6) in the aforementioned first embodiment. Further details will be given below.
The voltage Vc1 in this embodiment can be expressed as follows.
Moreover, it is defined that if the base(B)-emitter(E) on-voltage of the bipolar transistor Q5 is taken as Vbeon(Q5), this Vbeon(Q5) is determined by the switching control circuit 50 and it is constant. A graph showing the relation between the additional bias current Iad and Vceon(Q5) in this case and a graph showing the relation between the additional bias current Iad and Vbeon(Q6)+Iad×R2 are shown in FIG. 5B.
Referring to this
In the region A, the additional bias current Iad is almost 0, whereby the bias current of the amplifying part transistor Q is determined by the bias current generating circuit 60. Hence, the bias point of the amplifying part transistor Q is low.
In the region B, Vceon(Q5) is determined according to the amount of the flowing additional bias current Iad, and thereby Vbeon(Q6)+Iad×R2 is determined. The current flowing through the bipolar transistor Q5 is herein the additional bias current Iad, and the current flowing through the bipolar transistor Q6 and the resistance R2 is also the additional bias current Iad, whereby both are equal to each other. Therefore, from two graphs in
In the region C, since Vbeon(Q5) is constant, the current flowing through the bipolar transistor Q5 from its collector to its emitter is constant, and in other words, the additional bias current Iad is constant. Since the additional bias current Iad is constant, Vbeon(Q6)+Iad×R2 is also constant. Vceon(Q5) at this time is expressed as follows.
Moreover, owing to the existence of the resistance R2, in the region of Vc1>Vbeon(Q)+Vceon(Q5)+Vbeon(Q6), the current Ic which flows from the collector to the emitter of the amplifying part transistor Q comes to show linearity. Hence, the voltage Vc at which the power amplifier circuit 200 operates can be set between high output levels at which the voltage Vc (=Vc1=Vc2) is high and low output levels at which the voltage Vc is low. Namely, a plurality of, for example, three, four, five, voltages Vc can be set as bias points, and thus the plurality of voltages Vc can be set as the operation voltages of the power amplifier circuit 200.
It should be noted that the present invention is not limited to the aforementioned embodiments, and various changes may be made therein. For example, the configuration of the aforementioned switching control circuit 50 with the temperature compensation function is not limited to that in the aforementioned embodiments. For example, as shown in
The above also applies to the aforementioned second embodiment. If the configuration of the switching control circuit 54 is applied to the power amplifier circuit 200 according to the second embodiment, such a circuit configuration as shown in
Moreover, the number of the bipolar transistors Q6 in the aforementioned embodiments is arbitrarily selected depending on the set value of the voltage Vc1 which switches between high output and low output. Namely, the diode-connected bipolar transistor Q6 may be omitted or plural ones may be provided. In other words, the number N of the bipolar transistors Q6 may be 0, one, two, three, ***. When the bipolar transistor Q6 is omitted, the power amplifier circuit 100 according to the first embodiment has such a configuration as shown in
In other words, the number N of the bipolar transistors Q6 has only to be 0 or a positive integer. In this case, the operating condition at high output levels (when the voltage Vc1 is high) and the operating condition at low output levels (when the voltage Vc1 is low) can be expressed as follows, for example, in the first embodiment.
At High Output Levels (When the Voltage Vc1 is High)
At Low Output Levels (When the Voltage Vc1 is Low)
Patent | Priority | Assignee | Title |
5986509, | Jul 28 1997 | Infineon Technologies AG | Transistor amplifier stage |
6052032, | Mar 13 1998 | WSOU Investments, LLC | Radio frequency amplifiers |
6373329, | Dec 14 1999 | Kabushiki Kaisha Toshiba | Bias circuit of a bipolar transistor for high frequency power amplification |
6492875, | Dec 06 2000 | Koninklijke Philips Electronics N V | Self-boosting circuit for a power amplifier |
6690237, | Mar 13 2000 | Fujitsu Quantum Devices Limited | High frequency power amplifier, and communication apparatus |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 07 2003 | ABE, HIROYUKI | Kabushiki Kaisha Toshiba | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014021 | /0263 | |
Apr 30 2003 | Kabushiki Kaisha Toshiba | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Apr 04 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jun 04 2012 | REM: Maintenance Fee Reminder Mailed. |
Oct 19 2012 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 19 2007 | 4 years fee payment window open |
Apr 19 2008 | 6 months grace period start (w surcharge) |
Oct 19 2008 | patent expiry (for year 4) |
Oct 19 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 19 2011 | 8 years fee payment window open |
Apr 19 2012 | 6 months grace period start (w surcharge) |
Oct 19 2012 | patent expiry (for year 8) |
Oct 19 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 19 2015 | 12 years fee payment window open |
Apr 19 2016 | 6 months grace period start (w surcharge) |
Oct 19 2016 | patent expiry (for year 12) |
Oct 19 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |