A method and system sense the logic state of an unknown initial data bit stored in a selected resistive memory cell. According to one method, a first count representing the logic state of the unknown initial data bit stored in the selected memory cell is generated. A second count is then generated, and represents a data bit having a first known logic state stored in the selected memory cell. A third count is then generated, and represents a data bit having a second known logic state stored in the selected memory cell. The logic state of the initial unknown data bit stored in the selected memory cell is then determined from the first, second, and third counts.
|
34. A method of sensing data stored in a selected resistive memory cell, the method comprising:
generating an interim count representing the logic state of an unknown initial data bit stored in the selected memory cell over a time t; generating a first count by doubling the interim count; generating a second count representing a data bit having a first known logic state stored in the selected memory cell; generating a third count representing a data bit having a second known logic state stored in the selected memory cell; and determining the logic state of the unknown initial data bit stored in the selected memory cell from the first, second, and third counts.
27. A method of sensing data stored in a selected resistive memory cell, the method comprising:
generating a first count representing the logic state of an unknown initial data bit stored in the selected memory cell, the first count generated over a time period 2t; generating a second count representing a data bit having a first known logic state stored in the selected memory cell; generating a third count representing a data bit having a second known logic state stored in the selected memory cell, the second and third counts each generated over a time period t; and determining the logic state of the unknown initial data bit stored in the selected memory cell from the first, second, and third counts.
1. A method of sensing data stored in a selected resistive memory cell, the method comprising:
generating a first count representing the logic state of an unknown initial data bit stored in the selected memory cell; generating a second count representing a data bit having a first known logic state stored in the selected memory cell; generating a third count representing a data bit having a second known logic state stored in the selected memory cell, generating the first, second, and third counts comprising applying a current through the selected resistive memory cell and sensing the voltage developed responsive to the applied current, generating a plurality of up count signals and down count signals responsive to the sensed voltage, and adjusting the count responsive to the up count and down count signals; and determining the logic state of the unknown initial data bit stored in the selected memory cell from the first, second, and third counts.
9. A read circuit for sensing the logic state of a data bit stored in a resistive memory cell, the read circuit adapted to receive a sense voltage from a selected resistive memory cell, and the read circuit operable in a first mode to detect a first sense voltage corresponding to an unknown logic state and to generate an N-bit count responsive to the detected first sense voltage, operable in a second mode to detect a second sense voltage corresponding to a first known logic state and to adjust the count responsive to the detected second sense voltage, and operable in a third mode to detect a third sense voltage corresponding to a second known logic state and to adjust the count responsive to the detected third sense voltage, with a single bit of the N-bit count after the third mode representing the unknown logic state to the first sense voltage, the read circuit operable in the first mode for a time 2t and operable in each of the second and third times for a time t.
41. A read circuit for sensing the logic state of a data bit stored in a resistive memory cell, the read circuit adapted to receive a sense voltage from a selected resistive memory cell, and the read circuit operable in a first mode to detect a first sense voltage corresponding to an unknown logic state and to generate an N-bit count responsive to the detected first sense voltage, operable in a second mode to detect a second sense voltage corresponding to a first known logic state and to adjust the count responsive to the detected second sense voltage, and operable in a third mode to detect a third sense voltage corresponding to a second known logic state and to adjust the count responsive to the detected third sense voltage, with a single bit of the N-bit count after the third mode representing the unknown logic state to the first sense voltage, the data circuit generating a plurality of up count signals and down count signals during each mode responsive to the respective sense voltages.
50. A read circuit for sensing the logic state of a data bit stored in a resistive memory cell, the read circuit adapted to receive a sense voltage from a selected resistive memory cell, and the read circuit operable in a first mode to detect a first sense voltage corresponding to an unknown logic state and to generate an N-bit count responsive to the detected first sense voltage, operable in a second mode to detect a second sense voltage corresponding to a first known logic state and to adjust the count responsive to the detected second sense voltage, and operable in a third mode to detect a third sense voltage corresponding to a second known logic state and to adjust the count responsive to the detected third sense voltage, with a single bit of the N-bit count after the third mode representing the unknown logic state to the first sense voltage, the read circuit setting the N-bit count to an initial value of the most significant bit being a logic 1 and all other bits being a logic 0 prior to operation in the first mode.
18. A memory device, comprising:
an address bus; a control bus; a data bus; an address decoder coupled to the address bus; a read/write circuit coupled to the data bus; a control circuit coupled to the control bus; a memory-cell array including a plurality of resistive memory cells, the array being coupled to the address decoder, control circuit, and read/write circuit; and a read circuit coupled to the memory-cell array and read/write circuit for sensing the logic state of a data bit stored in a selected resistive memory cell in the array, the read circuit adapted to receive a sense voltage from the selected resistive memory cell and operable in a first mode to detect a first sense voltage for a first time and to generate an N-bit count responsive to the detected first sense voltage, operable in a second mode to detect a second sense voltage for a second time and to adjust the count responsive to the detected second sense voltage, and operable in a third mode to detect a third sense voltage for a third time and to adjust the count responsive to the detected third sense voltage, with the read circuit applying a single bit of the N-bit count to the read/write circuit after the third mode and the single bit representing the logic state of an initial data bit corresponding to the first sense voltage, the first time equal to 2t and the second and third times each equal to t.
59. A memory device, comprising:
an address bus; a control bus; a data bus; an address decoder coupled to the address bus; a read/write circuit coupled to the data bus; a control circuit coupled to the control bus; a memory-cell array including a plurality of resistive memory cells, the array being coupled to the address decoder, control circuit, and read/write circuit; and a read circuit coupled to the memory-cell array and read/write circuit for sensing the logic state of a data bit stored in a selected resistive memory cell in the array, the read circuit adapted to receive a sense voltage from the selected resistive memory cell and operable in a first mode to detect a first sense voltage for a first time and to generate an N-bit count responsive to the detected first sense voltage, operable in a second mode to detect a second sense voltage for a second time and to adjust the count responsive to the detected second sense voltage, and operable in a third mode to detect a third sense voltage for a third time and to adjust the count responsive to the detected third sense voltage, with the read circuit applying a single bit of the N-bit count to the read/write circuit after the third mode and the single bit representing the logic state of an initial data bit corresponding to the first sense voltage, the read circuit setting the N-bit count to an initial value of the most significant bit being a logic 1 and all other bits being a logic 0 prior to operation in the first mode.
24. A computer system, comprising:
a data input device; a data output device; a processor coupled to the data input and output devices; and a memory device coupled to the processor, the memory device comprising, an address bus; a control bus; a data bus; an address decoder coupled to the address bus; a read/write circuit coupled to the data bus; a control circuit coupled to the control bus; a memory-cell array including a plurality of resistive memory cells, the array being coupled to the address decoder, control circuit, and read/write circuit; and a read circuit coupled to the memory-cell array and read/write circuit for sensing the logic state of a data bit stored in a selected resistive memory cell in the array, the read circuit adapted to receive a sense voltage from the selected resistive memory cell and operable in a first mode to detect a first sense voltage for a first time and to generate an N-bit count responsive to the detected first sense voltage, operable in a second mode to detect a second sense voltage for a second time and to adjust the count responsive to the detected second sense voltage, and operable in a third mode to detect a third sense voltage for a third time and to adjust the count responsive to the detected third sense voltage, with the read circuit applying a single bit of the N-bit count to the read/write circuit after the third mode and the single bit representing the logic state of an initial data bit corresponding to the first sense voltage, the first time equal to 2t and the second and third times each equal to t. 2. The method of
3. The method of
5. The method of
6. The method of
7. The method of
8. The method of
10. The read circuit of
11. The read circuit of
12. The read circuit of
13. The read circuit of
14. The read circuit of
16. The read circuit of
17. The read circuit of
20. The memory device of
21. The memory device of
22. The memory device of
23. The memory device of
26. The computer system of
28. The method of
applying a current through the selected resistive memory cell and sensing the voltage developed responsive to the applied current; generating a plurality of up count signals and down count signals responsive to the sensed voltage; and adjusting the count responsive to the up count and down count signals.
29. The method of
30. The method of
32. The method of
33. The method of
35. The method of
applying a current through the selected resistive memory cell and sensing the voltage developed responsive to the applied current; generating a plurality of up count signals and down count signals responsive to the sensed voltage; and adjusting the count responsive to the up count and down count signals.
36. The method of
37. The method of
39. The method of
40. The method of
42. The read circuit of
43. The read circuit of
44. The read circuit of
45. The read circuit of
46. The read circuit of
48. The read circuit of
49. The read circuit of
51. The read circuit of
52. The read circuit of
53. The read circuit of
54. The read circuit of
55. The read circuit of
56. The read circuit of
58. The read circuit of
61. The memory device of
62. The memory device of
63. The memory device of
64. The memory device of
|
The present invention relates generally to integrated circuits, and more specifically to sensing data stored in an integrated circuit memory device.
Computer systems, video games, electronic appliances, digital cameras, and myriad other electronic devices include memory for storing data related to the use and operation of the device. A variety of different memory types are utilized in these devices, such as read only memory (ROM), dynamic random access memory (DRAM), static random access memory (SRAM), flash memory (FLASH), and mass storage such as hard disks and CD-ROM or CD-RW drives. Each memory type has characteristics that better suit that type to particular applications. For example, DRAM is slower than SRAM but is nonetheless utilized as system memory in most computer systems because DRAM is inexpensive and provides high density storage, thus allowing large amounts of data to be stored relatively cheaply. A memory characteristic that often times determines whether a given type of memory is suitable for a given application is the volatile nature of the storage. Both DRAM and SRAM are volatile forms of data storage, which means the memories require power to retain the stored data. In contrast, mass storage devices such as hard disks and CD drives are nonvolatile storage devices, meaning the devices retain data even when power is removed.
Current mass storage devices are relatively inexpensive and high density, providing reliable long term data storage relatively cheap. Such mass storage devices are, however, physically large and contain numerous moving parts, which reduces the reliability of the devices. Moreover, existing mass storage devices are relatively slow, which slows the operation of the computer system or other electronic device containing the mass storage device. As a result, other technologies are being developed to provide long term nonvolatile data storage, and, ideally, such technologies would also be fast and cheap enough for use in system memory as well. The use of FLASH, which provides nonvolatile storage, is increasing popular in many electronic devices such as digital cameras. While FLASH provides nonvolatile storage, FLASH is too slow for use as system memory and the use of FLASH for mass storage is impractical, due in part to the duration for which the FLASH can reliably store data as well as limits on the number of times data can be written to and read from FLASH.
Due to the nature of existing memory technologies, new technologies are being developed to provide high density, high speed, long term nonvolatile data storage. One such technology that offers promise for both long term mass storage and system memory applications is Magneto-Resistive or Magnetic Random Access Memory (MRAM).
To write data to a selected memory cell 102, a row current IROW is applied to the word line WL coupled to the cell and a column current ICOL is applied to the bit line BL coupled to the cell. The row current IROW and column current ICOL generated respective magnetic fields, with only the selected memory cell 102 being subjected to both the magnetic field generated by the row current and the magnetic field generated by the column current. The combination of these magnetic fields applied to the selected memory cell 102 sets the orientation of the magnetic dipole and thereby the resistance of the cell, which writes a data bit corresponding to either a logic 1 or 0 into the cell.
To read data from the MRAM array 100, the resistance of a selected memory cell 102 must be sensed. In one method of sensing the resistance of a selected memory cell 102, a reference voltage VA is applied to the word line WL coupled to the cell, and all other word lines and unselected bit lines BL are coupled to ground.
In response to the applied reference voltage VA, a read current IR flows through the resistance RSC presented by the selected memory cell 102 and through the sneak resistance RSN to ground. The current IR generates a sense voltage SV on the selected bit line BL3, with the magnitude of this voltage being a function of the magnitude of the resistance RSC of the selected memory cell 102. When the resistance RSC has a larger value, the sense voltage SV on the bit line BL3 will be less than when the resistance RSC has a smaller value. Accordingly, the sense voltage SV has a value indicating the magnitude of the resistance RSC and thus indicating the logic state of the data stored in the selected memory cell 102.
In theory, sensing the resistance value of a selected memory cell 102 to read the logic state of data stored in the cell is simple as just described. In practice, however, reliable sensing is difficult due, in part, to the relatively small change in the resistance of the memory cell 102 between logic states. For example, in a typical MRAM array, each memory cell 102 has a resistance of about 1 Megaohm when the cell stores a logic "1" and a resistance of about 1.1 Megaohms when the cell stores a logic "0." The differential resistance of the selected memory cell 102 between a logic "1" and a logic "0" is thus only about 100 KΩ or approximately 10%. As a result, the sense voltage SV developed on the bit line BL3 varies by this same amount, making it difficult to reliably detect the sense voltage and determine whether a selected memory cell 102 stores a logic 1 or 0, as will be appreciated by those skilled in the art.
In operation, the resistance RSC corresponding to the selected memory cell 102 and the sneak resistance RSN form a voltage divider, and develop the sense voltage SV on the selected bit line BL3 in response to the voltage VA applied to the selected word line WL2. The sense amplifier 202 generates the PCLK signal having a frequency determined by the value of the sense voltage SV. When the sense voltage SV has a first value corresponding to a first logic state, the PCLK signal has a first number of pulses over a given time period, and when the sense voltage has a second value corresponding to the complementary logic state, the PCLK signal has a second number of pulses over the time period. Initially, the SCNT count generated by the counter 204 the internal count of the reference counter 208 are set to 0 and the LC signal generated by the reference counter is inactive. In response to each pulse of the PCLK signal, the counter 204 increments the SCNT count, and at the same time the reference counter 208 increments the internal count in response to each rising-edge of the CLK signal.
The counter 204 continues incrementing the SCNT count in response to pulses of the PCLK signal. Because the PCLK signal has a frequency determined by the value of the sense voltage SV which, in turn, is determined by the resistance of the selected memory cell 102, the SCNT count is incremented at a rate determined by the resistance of the selected memory cell. At the same time, the reference counter 208 increments the internal count responsive to the CLK signal. The counters 204, 208 continue incrementing their respective counts in response to the PCLK and CLK signals until the internal count generated by the reference counter equals a predetermined value. The reference counter 208 increments the internal count once each cycle of the CLK signal, and thus the internal count equals a predetermined value after a predetermined number of cycles of the CLK signal, which occurs after a predetermined time T. Once the internal count of the reference counter 208 equals the predetermined value, the counter activates the LC signal causing the latch 206 to store the SCNT count at this point. The rate at which the SCNT count is incremented and thus the value of the latched SCNT count depends on the frequency of the PCLK signal which, in turn, depends on the value of the sense voltage SV. In this way, the counter 204 increments the SCNT count responsive to the PCLK signal for the time T, and at this point the value of the SCNT count is stored by the latch 206 and provided to the comparator 210.
The comparator 210 compares the latched SCNT count to the reference count RCNT and drives the signal D either high or low depending on this comparison. When the latched SCNT count has a value that is less than the RCNT count, the sense voltage SV and thus the resistance RSC of the selected memory cell 102 corresponds to a first logic state and the comparator 210 drives the data signal D low, indicating the selected memory cell stores the first logic state. In contrast, when the latched SCNT count is greater than the RCNT count, the sense voltage and resistance RSC of the selected memory cell 102 correspond to the complementary logic state, and the comparator 210 drives the data signal D high, indicating the selected memory cell stores the complementary logic state.
In the read circuit 200, the digital counts SCNT and RCNT are compared to ultimately determine the logic state of data stored in a selected memory cell 102. As a result, the SCNT count must include enough bits and must be incremented at a sufficient rate responsive to the PCLK signal to ensure the generated RCNT has the desired resolution to enable the logic state of the selected memory cell 102 to be reliably sensed, as will be understood by those skilled in the art. Moreover, the circuitry required to form the counter 204 and comparator 210 will be relatively more complicated due to the need to generate and compare all bits in the RCNT and RCNT counts. In addition, with the read circuit 200 the SCNT count corresponding to a give logic state may vary among cells 102 in the array 100 (
There is a need for a simplified method and system for sensing the resistance value of resistive memory cells such as MRAM cells to reliably read data from the cells.
According to one aspect of the present invention, a method of sensing data stored in a selected resistive memory cell includes generating a first count representing the logic state of an unknown initial data bit stored in the selected memory cell. A second count is generated and represents a data bit having a first known logic state stored in the selected memory cell. A third count is generated and represents a data bit having a second known logic state stored in the selected memory cell. The logic state of the initial unknown data bit stored in the selected memory cell is then determined from the first, second, and third counts.
In the read circuit 300, the same memory cell 102 discussed with reference to
The value of the sense voltage SV varies around the threshold voltage due to inherent noise on the bit line BL3 and the small magnitude of the sense voltage, as will be appreciated by those skilled in the art. Thus, the sense amplifier 302 generates a series of UCLK, DCLK signal pulses, with the number of pulses of the UCLK signal and the number of pulses of the DCLK signal over a sensing time T being determined by the value of the sense voltage SV. When the sense voltage SV is greater than the threshold voltage, the sense amplifier 302 generates UCLK signal pulses and when the sense voltage is less than the threshold voltage the sense amplifier generates DCLK signal pulses. In the embodiment of
The UCLK, DCLK signal pulses are applied through a switching circuit 304 to clock and up/down counter 306 which generates an N-bit sense count SCNT in response to the applied signal pulses. The SCNT count of the counter 306 is initially set to an initial value IV, which is thereafter incremented in response to UCLK signal pulses applied to an up input UP of the counter, and is decremented in response to DCLK signal pulses applied to a down input DN of the counter, as will be described in more detail below. The switching circuit 304 includes a plurality of transmission gates 308-314 coupled as shown between the sense amplifier 302 and the up/down counter 306. The transmission gates 308-314 operate in response to a reverse signal REV* from a control circuit 316 to either apply the UCLK and DCLK signals to the UP and DN inputs, respectively, of the counter 306, or to reverse the UCLK and DCLK signals and apply the UCLK signal to the DN input and the DCLK signal to the UP input. When the REV* signal is inactive high, the transmission gates 312, 314 turn OFF and the transmission gates 308, 310 turn ON, applying the UCLK signal to the UP input and the DCLK signal to the DN input, respectively, of the counter 306. In contrast, when the REV*signal is active low, the transmission gates 308,310 turn OFF and the transmission gates 312, 314 turn ON, applying the UCLK signal to the DN input and the DCLK signal to the UP input, respectively, of the counter 306.
In addition to the REV* signal, the control circuit 316 also generates a plurality of control signals 318 to control the logic state of data stored in the selected memory cell 102 represented by the resistance RSC, as will be explained in more detail below. The control circuit 316 also generates a reset signal RST that is applied to the counter 306 to set the SCNT count to the initial value IV and an enable signal EN is applied to the sense amplifier 302 to enable operation of the sense amplifier. One skilled in the art will understand circuitry for forming the sense amplifier 302, transmission gates 308-314, counter 306, and control circuit 316, and thus, for the sake of brevity, these components will not be described in more detail.
In operation, the read circuit 300 operates under control of the control circuit 316 to sense the logic state of data stored in the selected memory cell 102 represented by the resistance RSC, as will now be explained in more detail with reference to FIG. 3 and the flowchart of
From step 402, the process proceeds to step 404 and the control circuit 316 accesses the selected memory cell 102 corresponding to the resistance RSC. In accessing the selected memory cell 102, the control circuit 316 controls the MRAM array 100 (
The read circuit 300 continues operating in step 404 for the time 2T, at which time the SCNT count generated by the counter 306 has a value that differs from the initial value IV by the net of the number of UCLK signal pulses received and the number of DCLK signal pulses receive. For example, when a logic 1 is stored in the selected memory cell 102, the sense amplifier 302 may generate 251 UCLK signal pulses and 249 DCLK signal pulses during each time T. Thus, after each time T, the net of the UCLK and DCLK signal pulses causes the counter 306 to increment the SCNT count by 2 (251 up pulses minus 249 down pulses equals a net of 2 up pluses). In this situation, after the time 2T the counter 306 as incremented the initial value IV of the SCNT count by 4 to IV+4. To illustrate another example, assume that when a logic 0 is stored in the selected memory cell 102, the sense amplifier 302 generates 245 UCLK signal pulses and 255 DCLK signal pulses each time T. In this situation, after each time T the counter 306 decrements the SCNT count by 10 (245 up pulses minus 255 down pulses equals a net of 10 down pulses), and thus after the time 2T the counter as decremented the SCNT count from the initial value IV to the value IV-20. Note that in this example, the number of UCLK signal pulses is greater when the selected memory cell 102 stores a logic 1 than when the cell stores a logic 0 because the sense voltage SV is greater in the former situation, as previously discussed.
After the time 2T, the process proceeds to step 406 and the control circuit 316 drives the EN signal inactive, disabling the sense amplifier 302 so that the counter 306 maintains the SCNT count at the value generated after the time 2T, which was IV+4 in the case of a logic 1 being sensed in the example set forth above. At this point, the control circuit 316 also drives the REV* signal active low, turning OFF transmission gates 308, 310 and turning ON transmission gates 312, 314. As a result, the UCLK signal pulses are now applied to the DN input of the counter 306 and the DCLK signal pulses applied to the IN input. From step 406 the process proceeds to step 408 and the control circuit 316 generates the control signals 318 to write a logic 1 into the selected memory cell 102 represented by the resistance RSC. As previously mentioned, the resistance RSC has a value of approximately 1 Megahom when storing a logic 1.
After storing a logic 1 in the selected memory cell 102, the process goes to step 410 and the control circuit 316 activates the EN signal to enable the sense amplifier 302. The sense amplifier 302 thereafter operates as previously described to generate the UCLK and DCLK signal pulses in response to the sense voltage SV corresponding to the logic 1 now stored in the selected memory cell 102. Note that the active REV* signal causes the switching circuit 304 to apply the UCLK and DCLK signal pulses to the DN and UP inputs, respectively, of the counter 306, which is the reverse of the prior situation during the initial sensing time 2T. The control circuit 316 maintains the EN signal active for the time T, and thus the sense amplifier 302 detects the sense voltage SV corresponding to the known logic 1 in the selected memory cell 102 and generates the corresponding UCLK and DCLK signal pulses for the time T.
Because the UCLK and DCLK signal pulses are applied to opposite inputs DN, UP of the counter 306, the counter decrements the value of the SCNT count in response to each UCLK signal pulse and increments the value of the SCNT count in response to each DCLK pulse. As a result, the counter 306 adjusts the value of the SCNT count after the time T to remove a portion of the net count that would have been included in the SCNT count if a logic 1 was being sensed during the initial time 2T. In the example described above, after each time T the SCNT count is incremented by 2 if a logic 1 was stored in the selected memory cell 102 to a value IV+4 after the time 2T. Thus, after the time T with the counter 306 operating in the reverse direction, the counter 306 will have decremented the SCNT count by 2. The counter 306 thus decrements the SCNT count by 2 after each time T instead of incrementing the count by 2 due to the UCLK and DCLK signal pulses being applied to opposite inputs DN, UP of the counter. Note that if the unknown data bit stored in the selected memory cell 102 during the initial time 2T was a logic 0, the counter 306 nonetheless decrements the SCNT count by 2 after the time T with the counter operating in the reverse direction.
After the sense amplifier 302 has sensed the known logic 1 for the time T, the process goes to step 412 and the control circuit 316 drives the EN signal inactive, disabling the sense amplifier 302 so that the counter 306 maintains the SCNT count at the value generated at the end of the last time T. At this point, the control circuit 316 maintains the REV* signal active low. From step 412 the process proceeds to step 414 and the control circuit 316 generates the control signals 318 to write a logic 0 into the selected memory cell 102 represented by the resistance RSC. As previously mentioned, the resistance RSC has a value of approximately 1.1 Megahoms when storing a logic 0. After storing a logic 0 in the selected memory cell 102, the process goes to step 416 and the control circuit 316 once again activates the EN signal to enable the sense amplifier 302. The sense amplifier 302 thereafter operates as previously described to generate the UCLK and DCLK signal pulses in response to the sense voltage SV corresponding to the logic 0 now stored in the selected memory cell 102. Note that the active REV* signal once again causes the switching circuit 304 to apply the UCLK and DCLK signal pulses to the DN and UP inputs, respectively, of the counter 306, which once again cause the counter 306 to operate the reverse of the operation during the initial sensing time 2T. The control circuit 316 once maintains the EN signal active for the time T, and thus the sense amplifier 302 detects the sense voltage SV corresponding to the known logic 0 in the selected memory cell 102 and generates the corresponding UCLK and DCLK signal pulses for the time T.
Because the UCLK and DCLK signal pulses are once again applied to opposite inputs DN, UP of the counter 306, the counter adjusts the value of the SCNT count to remove a portion of the net count that would have been included in the SCNT count if a logic 0 was being sensed during the initial time 2T. In the example described above, after each time T the SCNT count is decremented by 10 if a logic 0 was stored in the selected memory cell 102. Thus, after the time T with the counter 306 operating in the reverse direction, the counter 306 will have incremented the SCNT count by 10. The counter 306 thus increments the SCNT count by 10 after each time T instead of decrementing the count by 10 due to the UCLK and DCLK signal pulses being applied to opposite inputs DN, UP of the counter.
After the sense amplifier 302 has sensed the known logic 0 for the time T, the process goes to step 418 and the control circuit 316 drives the EN signal inactive, disabling the sense amplifier 302 so that the counter 306 maintains the SCNT count at the value generated at the end of the last time T. At this point, the most significant bit MSB of the SCNT count corresponds to a logic state of the data initially stored in the selected memory cell 102. Thus, if the most significant bit MSB is a logic 1, the selected memory cell 102 initially stored in a logic 1. Conversely, if the most significant bit MSB is a logic 0, the selected memory cell 102 initially stored a logic 0. The counter 306 provides the most significant bit MSB as the output of the read circuit 300. From step 418, the process goes to step 420 and the control circuit 316 determines whether the most significant bit MSB of the SCNT count equals a logic 0, which indicates the selected memory cell 102 initially stored a logic 0. Note that at this point the selected memory cell 102 stores a logic 0 because the control circuit 316 wrote a logic 0 to the selected memory cell in step 414. As a result, if the selected memory cell 102 initially stored a logic 0, the process proceeds immediately to step 422 and terminates since the selected memory cell properly stores a logic 0. In contrast, if the control circuit 316 determines the most significant bit MSB of the SCNT count equals a logic 1, meaning the selected memory cell initially stored a logic 1, the process goes to step 424 and the control circuit rights a logic 1 to the selected memory cell to restore the cell to its proper initial logic state. From step 424, the process than goes to step 422 and terminates.
The read circuit 300 senses an unknown bit stored in a selected memory cell 102 for a time 2T and generates a corresponding SCNT count. The SCNT count generated after the time 2T will have a unique value depending on whether the selected memory cell 102 stores a logic 1 or a logic 0. After the time 2T, the value of the SCNT count is twice what the value would have been after the time T, with the precise value of the SCNT count being determined by whether the selected memory cell 102 stores a logic 1 or 0. After having generated this value of the SCNT count corresponding to the unknown bit stored in the selected memory cell 102, the read circuit 300 subtracts count values corresponding to a known logic 1 and a known logic 0 stored in the selected memory cell. By subtracting the count values for a known logic 1 and 0, and knowing that a logic 1 stored in a selected memory cell 102 generates more UCLK signal pulses than a logic 0, the read data circuit generates the SCNT count having the MSB bit indicating the logic state of data stored in the selected memory cell 102. To provide a better understanding of the operation of the read circuit 300, an example will now be discussed with reference to Table 1 set forth below.
TABLE 1 | |||
(Logic 1 = 251 UCLK, 249 DCLK; Logic 0 = 245 UCLK, 255 DCLK) | |||
Time | Sensed Bit | SCNT Count | Decimal Value |
Start | 1000000000 | 512 | |
T | Unknown "1" | 1000000010 | 514 |
T | Unknown "1" | 1000000100 | 516 |
Switch UP and DN | |||
T | Known "1" | 1000000010 | 514 |
T | Known "0" | 1000001100 | 524 |
Table 1 illustrates the SCNT counts generated by counter 306 in the read circuit 300 after respective times T whether a logic 1 and 0 stored in the selected memory cell 102 have the specified characteristics. More specifically, in the example illustrated in Table 1, when the selected memory cell 102 stores a logic 1 the sense amplifier 302 generates 251 UCLK signal pulses and 249 DCLK signal pulses each time T, and when the cell stores a logic 0 the sense amplifier generates 245 UCLK signal pulses and 255 DCLK signal pulses each time T. In Table 1, the far left column represents time intervals and the next column to the right represents the logic state of the bit stored in the selected memory cell 102 that is being sensed. The next column to the right represents the binary values of the SCNT count, and the far right column represents the decimal value of the corresponding binary SCNT count.
As illustrated in Table 1, the SCNT count is initially set to a binary value of 1000000000, which corresponds to a decimal value 512. After sensing the unknown bit stored in the selected memory cell 102 for the time T, which is a logic 1 in the example of Table 1, the SCNT count has a binary value of 1000000010 or decimal value 514. After sensing the unknown bit for a second time T, the SCNT count has a binary value of 1000000100 and a decimal value of 516. At this point, the operation of the counter 306 is reversed as indicated in Table 1, which corresponds to the point at which the control circuit 316 activates the REV* signal, as previously described. A known logic 1 is stored in the selected memory cell 102 at this point and then sensed for the time T. After the time T, the SCNT count has the binary value of 1000000010 corresponding to 514 decimal. Thus, during the third sensing time T, the count of 2 added to the SCNT count during the second sensing time T is subtracted due to the reverse operation of the counter 306. At this point, a known logic 0 is stored in the selected memory cell 102 and is sensed for the time T. After this time T, the SCNT count has the binary value 1000001100 which equals 524 decimal. At this point, the MSB bit of the SCNT count indicates the logic state of the unknown bit stored in the selected memory cell 102, which equals a logic 1 in this example.
Another example of the operation of the read circuit 300 will now be described with reference to Table 2 set forth below.
TABLE 2 | |||
(Logic 1 = 251 UCLK, 249 DCLK; Logic 0 = 245 UCLK, 255 DCLK) | |||
Time | Sensed Bit | SCNT Count | Decimal Value |
Start | 1000000000 | 512 | |
T | Unknown "0" | 0111110110 | 502 |
T | Unknown "0" | 0111101100 | 492 |
Switch UP and DN | |||
T | Known "1" | 0111101010 | 490 |
T | Known "0" | 0111110100 | 500 |
Table 2 illustrates the SCNT counts generated by counter 306 in the read circuit 300 after respective times T whether a logic 1 and 0 stored in the selected memory cell 102 have the specified characteristics. More specifically, in the example illustrated in Table 2, when the selected memory cell 102 stores a logic 1 the sense amplifier 302 generates 251 UCLK signal pulses and 249 DCLK signal pulses each time T, and when the cell stores a logic 0 the sense amplifier generates 245 UCLK signal pulses and 255 DCLK signal pulses each time T. In Table 2, the far left column represents time intervals and the next column to the right represents the logic state of the bit stored in the selected memory cell 102 that is being sensed. The next column to the right represents the binary values of the SCNT count, and the far right column represents the decimal value of the corresponding binary SCNT count.
As illustrated in Table 2, the SCNT count is initially set to a binary value of 1000000000, which corresponds to a decimal value 512. After sensing the unknown bit stored in the selected memory cell 102 for the time T, which is a logic 0 in the example of Table 2, the SCNT count has a binary value of 0111110110 or decimal value 502. After sensing the unknown bit for a second time T, the SCNT count has a binary value of 0111101100 and a decimal value of 492. At this point, the operation of the counter 306 is reversed as indicated in Table 2, which corresponds to the point at which the control circuit 316 activates the REV* signal, as previously described. A known logic 1 is stored in the selected memory cell 102 at this point and then sensed for the time T. After the time T, the SCNT count has the binary value of 0111101010 corresponding to 490 decimal. At this point, a known logic 0 is stored in the selected memory cell 102 and is sensed for the time T. After this time T, the SCNT count has the binary value 0111110100 which equals 500 decimal. At this point, the MSB bit of the SCNT count indicates the logic state of the unknown bit stored in the selected memory cell 102, which equals a logic 0 in this example.
As illustrated by the examples of Tables 1 and 2, the MSB bit of the SCNT count equals a logic state of the unknown bit stored in the selected memory cell 102. This can be understood by realizing that when the SCNT count is set to the initial value IV of 1000000000, the net of the UCLK and DCLK signal pulses applied to the counter 306 in both the normal and reverse modes of operation results in this initial value being incremented when the selected memory cell 102 stores a logic 1. As a result, the MSB bit of the SCNT count will remain a logic 1 in this situation. In contrast, when the SCNT count is set to the initial value IV of 1000000000, the net of the UCLK and DCLK signal pulses applied to the counter 306 in both the normal and reverse modes of operation results in this initial value being decremented when the selected memory cell 102 stores a logic 0. Accordingly, when the initial value IV is decremented, the MSB bit changes to a logic 0 and thus correctly indicates the data bit stored in the selected memory cell 102.
The operation of the read circuit 300 may alternately be understood in the following terms. Assume that a logic 1 results in a net increase of the SCNT count by a value of X when sensed over a time T, and that a logic 0 results in a net change Y when sensed over the time T, where Y may be a net increase or decrease but where Y is less than X. In this situation, if the SCNT count has the initial value IV, then after 2T the SCNT count will have a value of either IV+2X or IV+2Y, depending on whether the sensed bit is a logic 1 or 0. If the values X and Y are then subtracted from the either IV+2X or IV+2Y, then a final value of the SCNT count will equal either a first final value FV1=IV+2X-X-Y or a second final value FV2=IV+2Y-X-Y. The first final value FV1=IV+X-Y, and since X>Y then FV1>IV. Thus, when the sensed bit is a logic 1, the SCNT count will have the value FV1, which is greater than IV. This means that if the initial value IV is selected with the MSB bit being a 1, then the MSB bit will equal a 1 when the SCNT count has the value FV1. Conversely, the second final value FV2=IV+Y-X, and since X>Y then. FV2<IV. Thus, when the sensed bit is a logic 0, the SCNT count will have the value FV2, which is less than IV, meaning that if the initial value IV is selected with the MSB bit being a 1 then the MSB bit will be a 0 when the SCNT count has the value FV2.
Using these concepts to explain the specific operation of the read circuit 300 in the embodiment of
The read circuit 300 generates the single MSB bit of the SCNT count to indicate the logic state of data stored in a selected memory cell 102. With the read circuit 300, there is no need to compare multiple N-bit count values to read data stored in a selected memory cell 102. Moreover, with the read circuit 300, there is no need to use a reference count RCNT, which will vary among selected memory cells 102. Instead, the read circuit 300 utilizes actual count values for a known a logic 1 and logic 0 stored in the selected memory cell 102 in detecting a logic state of an unknown bit stored in the selected memory cell. This eliminates the need for a reference count that must be used with multiple selected memory cells 102 even though the precise counts corresponding to a logic 1 and a logic 0 vary among the memory cells, which introduces uncertainty in determining whether a given memory cell stores a logic 1 or a logic 0, as will be appreciated by those skilled in the art.
The MRAM 500 further includes an address decoder 504 that receives addresses from external circuitry (not shown), such as a processor or memory controller, on an address bus ADDR. In response to the received addresses, the address decoder 504 decodes the addresses and applies decoded address signals to access corresponding MRAM memory cells in the MRAM array 100. A control circuit 506 applies a plurality of control signals 508 to control the MRAM array 100, address decoder 504 and read/write circuit 502 during operation of the MRAM 500. The control circuit 316 (
In operation, the external circuitry provides address, control, and data signals to the MRAM 500 over the respective ADDR, CONT, and DATA busses. During a write cycle, the external circuitry provides memory addresses on the ADDR bus, control signals on the CONT bus, and data on the DATA bus. In response to the control signals, the control circuit 506 generates controls signals 508, including the REV signal, to control the MRAM array 100, address decoder 504, and read/write circuitry 504. The address decoder 504 decodes the memory address on the ADDR bus and provides decoded address signals to select the corresponding memory cells in the MRAM array 100. The read/write circuitry 504 receives write data on the DATA bus, and applies the write data to the MRAM array 100 to store the data in the selected memory cells.
During a read cycle, the external circuitry provides a memory address on the ADDR bus and control signals on the CONT bus. Once again, in response to the control signals, the control circuit 506 generates controls signals 508 to control the MRAM array 100, address decoder 504, and read/write circuitry 504. In response to the memory address, the address decoder 504 provides decoded address signals to access the corresponding memory cells in the array 100. The read/write circuitry 504 provides data stored in the addressed memory cells onto the DATA bus to be read by the external circuit. One skilled in the art will understand circuitry for forming the address decoder 504, read/write circuitry 504, and control circuit 506, and thus, for the sake of brevity, these components are not described in more detail.
Although only the single array 100 is shown in the MRAM 500, the MRAM may include a plurality of arrays, and may also include additional components not illustrated in
Even though various embodiments and advantages of the present invention have been set forth in the foregoing description, the above disclosure is illustrative only, and changes may be made in detail and yet remain within the broad principles of the invention. Therefore, the present invention is to be limited only by the appended claims.
Patent | Priority | Assignee | Title |
10127954, | Jun 15 2007 | Micron Technology, Inc. | Quantizing circuits having improved sensing |
10366744, | Jun 15 2007 | Micron Technology, Inc. | Digital filters with memory |
10403339, | Jun 15 2007 | Micron Technology, Inc. | Quantizing circuits having improved sensing |
10658018, | Jun 15 2007 | Micron Technology, Inc. | Quantizing circuits having improved sensing |
6954373, | Jun 27 2003 | DATA QUILL LIMITED | Apparatus and method for determining the logic state of a magnetic tunnel junction memory device |
6954390, | May 16 2002 | OVONYX MEMORY TECHNOLOGY, LLC | Noise resistant small signal sensing circuit for a memory device |
6954391, | May 16 2002 | OVONYX MEMORY TECHNOLOGY, LLC | Noise resistant small signal sensing circuit for a memory device |
7079436, | Sep 30 2003 | SAMSUNG ELECTRONICS CO , LTD | Resistive cross point memory |
7164595, | Aug 25 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Device and method for using dynamic cell plate sensing in a DRAM memory cell |
7330390, | May 16 2002 | OVONYX MEMORY TECHNOLOGY, LLC | Noise resistant small signal sensing circuit for a memory device |
7489575, | May 16 2002 | OVONYX MEMORY TECHNOLOGY, LLC | Noise resistant small signal sensing circuit for a memory device |
7538702, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Quantizing circuits with variable parameters |
7667632, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Quantizing circuits for semiconductor devices |
7684228, | Aug 25 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Device and method for using dynamic cell plate sensing in a DRAM memory cell |
7733262, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Quantizing circuits with variable reference signals |
7768868, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Digital filters for semiconductor devices |
7817073, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Integrators for delta-sigma modulators |
7818638, | Jun 15 2007 | Micron Technology, Inc. | Systems and devices including memory with built-in self test and methods of making and using the same |
7830729, | Jun 15 2007 | OVONYX MEMORY TECHNOLOGY, LLC | Digital filters with memory |
7839703, | Jun 15 2007 | OVONYX MEMORY TECHNOLOGY, LLC | Subtraction circuits and digital-to-analog converters for semiconductor devices |
7864609, | Jun 30 2008 | OVONYX MEMORY TECHNOLOGY, LLC | Methods for determining resistance of phase change memory elements |
7961538, | Jun 30 2008 | OVONYX MEMORY TECHNOLOGY, LLC | Methods for determining resistance of phase change memory elements |
7969783, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Memory with correlated resistance |
8009460, | Aug 25 2005 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Device and method for using dynamic cell plate sensing in a DRAM memory cell |
8042012, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Systems and devices including memory with built-in self test and methods of making and using the same |
8068046, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of quantizing signals using variable reference signals |
8068367, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Reference current sources |
8089387, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Quantizing circuits with variable parameters |
8098180, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Devices including analog-to-digital converters for internal data storage locations |
8102295, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Integrators for delta-sigma modulators |
8117520, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Error detection for multi-bit memory |
8194477, | Jun 15 2007 | OVONYX MEMORY TECHNOLOGY, LLC | Subtraction circuits and digital-to-analog converters for semiconductor devices |
8264895, | Nov 30 2009 | Qualcomm Incorporated | Resistance based memory circuit with digital sensing |
8289772, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Memory with correlated resistance |
8582375, | Jun 15 2007 | OVONYX MEMORY TECHNOLOGY, LLC | Methods for sensing memory elements in semiconductor devices |
8675413, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Reference current sources |
8681557, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Memory with correlated resistance |
8717220, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Methods of quantizing signals using variable reference signals |
8743640, | Jun 30 2008 | OVONYX MEMORY TECHNOLOGY, LLC | Methods and systems for operating memory elements |
8754795, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Integrators for delta-sigma modulators |
8830105, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Quantizing circuits with variable parameters |
8854899, | Jun 15 2007 | OVONYX MEMORY TECHNOLOGY, LLC | Methods for sensing memory elements in semiconductor devices |
8879327, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Reference current sources |
9070469, | Jun 15 2007 | OVONYX MEMORY TECHNOLOGY, LLC | Digital filters with memory |
9135962, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Comparators for delta-sigma modulators |
9299405, | Jun 15 2007 | OVONYX MEMORY TECHNOLOGY, LLC | Methods for sensing memory elements in semiconductor devices |
9336084, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Error detection for multi-bit memory |
9449664, | Jun 15 2007 | Micron Technology, Inc. | Quantizing circuits having improved sensing |
9641193, | Jun 15 2007 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Comparators for delta-sigma modulators |
9734894, | Jun 15 2007 | OVONYX MEMORY TECHNOLOGY, LLC | Digital filters with memory |
Patent | Priority | Assignee | Title |
3818501, | |||
4197515, | Oct 05 1977 | Synchronous filter | |
4281291, | Dec 12 1977 | Compagnie Internationale pour l'Informatique-CII Honeywell Bull | Arrangement for detecting the binary values of bit cells having center transitions subject to phase distortion |
4369501, | Jun 25 1981 | International Business Machines Corporation | Dual cycle data detection system and method for bubble memories |
4536851, | Oct 22 1982 | Measurement Specialties, Inc | Electronic thermometer and associated apparatus |
5243544, | Jan 02 1991 | Honeywell Inc.; HONEYWELL INC , A DE CORP | Microgravity accelerometer data acquisition system |
5329480, | Nov 15 1990 | California Institute of Technology | Nonvolatile random access memory |
5801652, | Jul 08 1994 | Cirrus Logic, Inc. | Pattern dependent noise reduction in a digital processing circuit utilizing image circuitry |
5907299, | Oct 23 1996 | SONIC INNOVATIONS, INC | Analog-to digital converter with delta-sigma modulator |
5986598, | Dec 19 1997 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Sigma delta data converter with feed-forward path to stabilize integrator signal swing |
6038166, | Apr 01 1998 | SanDisk Technologies Inc | High resolution multi-bit-per-cell memory |
6128239, | Oct 29 1999 | SAMSUNG ELECTRONICS CO , LTD | MRAM device including analog sense amplifiers |
6188615, | Oct 29 1999 | SAMSUNG ELECTRONICS CO , LTD | MRAM device including digital sense amplifiers |
6243034, | Oct 29 1998 | National Instruments Corporation | Integrating analog to digital converter with improved resolution |
6317375, | Aug 31 2000 | SAMSUNG ELECTRONICS CO , LTD | Method and apparatus for reading memory cells of a resistive cross point array |
6317376, | Jun 20 2000 | SAMSUNG ELECTRONICS CO , LTD | Reference signal generation for magnetic random access memory devices |
6385111, | Jun 20 2000 | SAMSUNG ELECTRONICS CO , LTD | Reference signal generation for magnetic random access memory devices |
6396329, | Oct 19 1999 | Rambus, Inc; Rambus Inc | Method and apparatus for receiving high speed signals with low latency |
6414882, | Aug 30 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Low voltage charge pump apparatus and method |
6504750, | Aug 27 2001 | OVONYX MEMORY TECHNOLOGY, LLC | Resistive memory element sensing using averaging |
6697444, | Mar 01 1999 | Sharp Kabushiki Kaisha; SYNCHRO DESIGN INC | Recycling integrator correlator |
20020101251, | |||
20020117895, | |||
20020126524, | |||
20030083584, | |||
20030151532, | |||
20030198075, | |||
20040091035, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 19 2002 | BAKER, R JACOB | Micron Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013095 | /0426 | |
Jul 09 2002 | Micron Technology, Inc. | (assignment on the face of the patent) | / | |||
Aug 29 2016 | Micron Technology, Inc | OVONYX MEMORY TECHNOLOGY, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039974 | /0496 |
Date | Maintenance Fee Events |
May 21 2004 | ASPN: Payor Number Assigned. |
Apr 18 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 11 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Apr 20 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 02 2007 | 4 years fee payment window open |
May 02 2008 | 6 months grace period start (w surcharge) |
Nov 02 2008 | patent expiry (for year 4) |
Nov 02 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 02 2011 | 8 years fee payment window open |
May 02 2012 | 6 months grace period start (w surcharge) |
Nov 02 2012 | patent expiry (for year 8) |
Nov 02 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 02 2015 | 12 years fee payment window open |
May 02 2016 | 6 months grace period start (w surcharge) |
Nov 02 2016 | patent expiry (for year 12) |
Nov 02 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |