An improved hydraulically assisted braking and steering system of a vehicle having a hydraulic pump communicating with a hydraulic steering assist device and including a hydraulic brake assist device coupled in series between the pump and the steering assist device includes the provision of a flow splitter which operates to reduce the interdependence of the hydraulic brake and steering assist devices on the flow of fluid from the pump. The flow splitter communicates with the outlet of the pump and the inlet of the brake assist device and is operative when the back pressure from the brake assist device exceeds a predetermined control value to divert a fraction of the flow of fluid around the brake assist device directly to the steering assist device, thereby providing sufficient flow to operate both the brake and steering assist devices within their normal design limits, rather than having the brake assist device starve the steering assist device when under heavy load.
|
1. In a hydraulically assisted braking and steering system of a vehicle having a hydraulic pump communicating with a hydraulic steering assist device and including a hydraulic brake assist device coupled in series between the pump and the hydraulic steering assist device such that a primary supply of hydraulic fluid fed to the hydraulic steering assist device for its operation passes first through the hydraulic brake assist device, and wherein the improvement comprises:
a flow splitter disposed in series between the pump and the hydraulic brake assist device and communicating directly with the steering assist device, said flow splitter being operative to sense brake assist pressure of fluid fed by the pump to the hydraulic brake assist device and in response to sensing that the brake assist pressure has reached a predetermined brake assist control pressure which would result in a sudden, temporary drop of the primary supply of fluid to the hydraulic steering assist device, being further operative to direct a supplemental supply of bypass fluid around the hydraulic assist device directly to the hydraulic steering assist device to counteract the drop in the primary supply and thereby minimize any change in steering effort felt by an operator of the vehicle during sudden hard braking conditions.
2. The system of
3. The system of
4. The system of
5. The system of
6. The system of
7. The system of
8. The system of
9. The system of
10. The system of
11. The system of
|
The disclosure incorporates the hydraulic brake and steering assist system disclosed in provisional application No. 60/294,893, filed May 31, 2001, whose priority is claimed for this application.
1. Technical Field
This invention relates to hydraulic braking and steering systems, particularly those that incorporate a hydraulically boosted assist mechanism for the braking system in line with the hydraulic steering assist system.
2. Related Art
Many trucks with hydraulic braking systems incorporate hydraulic braking assist systems, rather than vacuum assist systems, particularly larger gasoline powered and diesel powered trucks. Such hydraulic braking assist systems are well known and sold commercially (e.g. the Hydro-Boost™ system sold by Robert Bosch Corporation). Details concerning the construction and operation of such brake assist systems are shown, for example, in U.S. Pat. Nos. 4,620,750 and 4,967,643. Generally, these hydraulic braking assist systems are connected in series between the steering gear and hydraulic pump and use flow from the pump to generate the necessary backpressure to provide brake assist as needed. The flow from the pump is constant. Because of the series arrangement, the application of the brakes and engagement of the hydraulic braking assist system can affect the flow of hydraulic fluid to the steering gear, thereby affecting the amount of assist applied to the steering gear by the hydraulic steering gear assist system. Specifically, when a heavy braking load is applied, it causes an increase in backpressure to the pump which can exceed a threshold relief pressure (e.g., 1,500 psi) of the pump. Above this level, a bypass valve of the pump opens to divert a fraction of the outflow back to the intake of the pump, where the cycle continues until the backpressure from the brake assist device drops below the threshold valve. During this relief condition, a diminished flow of fluid is sent to the steering gear which may result in a detectable increase in steering effort by the operator of the vehicle to turn the steering wheel under extreme relief conditions.
It is an object of the present invention to modify the flow characteristics of such hydraulic brake and steering assist systems to avoid depleting the flow of fluid to the steering assist device under heavy braking conditions in order to maintain a generally constant steering effort of the steering wheel, irrespective of the backpressure to the pump exerted by the brake assist device. The invention thus aims to eliminate or greatly minimize any noticeable change in steering effort on the part of the operator under heavy braking conditions.
This invention comprises an improved hydraulic system for a vehicle comprising a hydraulic pump, a hydraulic braking assist system and a hydraulic steering gear assist system, whereby the discharge flow from the hydraulic pump is split between the steering gear assist system and the hydraulic braking assist system by a flow splitting means that is connected to both the hydraulic braking assist system and the hydraulic steering gear assist system and that is adapted to provide and control the flow of hydraulic fluid to both of these systems, thereby controlling the interdependence of these systems. This flow splitting means has a sensing means to sense the brake assist pressure of the fluid fed to the hydraulic braking assist system. As the hydraulic braking assist system is activated, the brake assist pressure at the sensing means increases. At a control pressure, preferably a pressure just below the relief pressure of the hydraulic pump, the flow splitter will shunt or bypass a portion of the flow around the hydraulic braking assist system directly to the steering gear assist system, thereby providing sufficient flow to operate both systems within normal design limits. The control pressure in the flow splitter may be fixed or variable. Systems which sense pressure and vary the flow of fluid, for example electronic pressure control valves, are well known, and could be adapted to vary the flow in the present invention.
The flow splitter means can be located in line at any convenient location between the pump and the hydraulic braking assist system, and is operative to divert a fraction of the flow of hydraulic fluid issued from the pump to the hydraulic steering gear assist system, as needed, depending upon the line pressure to the hydraulic braking assist system.
The invention further contemplates such an improved hydraulic system in which the sensing means further senses the steering assist pressure of the fluid fed to the hydraulic steering assist mechanism. At a second control pressure, preferably about the same as that associated with the brake assist system, the flow splitter operates to supply the required flow to operate the brake and steering assist mechanisms while shunting or bypassing an excess fraction of the available incoming flow from the pump around the steering and brake assist systems to another location in the system, preferably a fluid reservoir. The invention thus provides a sensing means with a double relief feature that operates to relieve both the braking and steering assist systems at preferably about the same control pressure, enabling a single flow control device to be used to control the relief of both the braking and steering assist systems. Such simplifies the overall design of the hydraulic system, requires fewer components and less space, and is less expensive to implement than a separate flow control device for each of the braking and steering assist systems.
The invention further contemplates such an improved hydraulic system in which the flow rate of fluid fed to the flow splitting means by the pump exceeds the flow rate required to operate the hydraulic brake assist system, and whereby the flow splitting means is operative to constantly bleed a portion of the incoming flow directly to the steering assist mechanism.
Preferably, the diversion of fluid is achieved by choking the flow port to the brake assist system in a manner that still provides the required flow rate of fluid to both the brake and steering assist systems. Under normal operating conditions, the brake assist system requires a lesser flow rate of hydraulic than that of the steering assist system, and thus the flow to the brake assist system can be choked to provide non-uniform flow matching the different flow requirements of each system. Supplying the steering assist system with a relatively greater flow under normal operating conditions has the advantage of minimizing any noticeable increase in steering effort under a condition of hard, sudden braking where a momentary spike in the flow requirement of the braking assist system occurs. With a constant bleed of fluid to the steering assist system, the needed fluid to operate the steering assist mechanism under such sudden braking condition is already present. The choke control to provide a constant bleed of fluid to the steering assist system has the further advantage of prepositioning the sensing means closer to the relief condition, whereby the flow splitting means can react more quickly to divert a fraction of flow to the steering assist mechanism when the brake assist pressure reaches the control pressure. Such provides for a smoother transition between the various operating conditions and further minimizes any change in steering effort detected by an operator of a vehicle during such transitions.
These and other features and advantages of the present invention will become more readily appreciated when considered in connection with the following detailed description and appended drawings, wherein:
The pump 14 delivers high pressure hydraulic fluid through discharge line 18 to a flow control splitter means or device or flow splitter 20. The flow splitter 20, in turn, selectively communicates with a hydraulic braking assist system or booster device 22, a hydraulic steering gear assist system or device 24, and the reservoir 16, depending on predetermined operating conditions of the system 10, as will be explained below. The hydraulic brake assist 22 communicates with a master cylinder 26 and brakes 28 of the braking system and further with the steering assist device 24 through line 25.
The hydraulic booster device 22 is of the type well known to the art which is disposed in line between the hydraulic pump and the hydraulic master cylinder of a vehicles hydraulic brake system which acts to boost or amplify the fluid pressure of the hydraulic fluid supplied by the pump to the brake circuit in order to reduce brake pedal effort and pedal travel required to apply the brakes as compared with a manual braking system. Such systems are disclosed, for example, in U.S. Pat. Nos. 4,620,750 and 4,967,643 as examples of a suitable booster device 22, the disclosure of which are incorporated herein by reference. Briefly, hydraulic fluid from the supply pump 14 is communicated to the booster device 22 through a booster inlet port and is directed through an open center spool valve slideable in a booster cavity (not shown). A power piston slides within an adjacent cylinder and is exposed to a fluid pressure on an input side of the piston and coupled to an output rod on the opposite side. An input reaction rod connected to the brake pedal extends into the housing and is linked to the spool valve via input levers or links. Movement of the input rod moves the spool valve, creating a restriction to the fluid flow and corresponding boost in pressure applied to the power piston. Steering pressure created by the steering gear assist system 24 is isolated from the boost cavity by the spool valve and does not affect braking but does create a steering assist backpressure to the pump 14. The flow splitter 20 according to the invention operates to manage the flow of hydraulic fluid from the pump 14 to each of the brake assist 22 and steering assist 24 systems in a manner that reduces the interdependence of the steering and braking systems on one another for operation.
With reference to
In the condition illustrated in
Turning now to
Turning now to
Turning now to
The restriction 56 can be engineered to supply the brake assist device 22 with just the right amount of flow needed to operate the device under all conditions, with the excess being fed to the steering assist device 24 which typically requires a greater flow rate of fluid than that needed by the brake assist device 22.
It will be appreciated that the arrangement of
The disclosed embodiments are representative of presently preferred forms of the invention, but are intended to be illustrative rather than definitive thereof. The invention is defined by the claims.
Davison, James Leroy, Bean, Henry George, Paris, Johnny M., Johnson, Michael Alan
Patent | Priority | Assignee | Title |
10723334, | Mar 28 2017 | POLARIS INDUSTRIES INC | Anti-lock brake system for all-terrain vehicle |
11254294, | May 02 2018 | POLARIS INDUSTRIES INC | Operating modes using a braking system for an all terrain vehicle |
11433863, | Mar 28 2017 | Polaris Industries Inc. | Anti-lock brake system for all-terrain vehicle |
11603082, | Sep 27 2019 | Polaris Industries Inc. | Master cylinder for a braking system |
11618422, | Nov 14 2018 | POLARIS INDUSTRIES INC | Operating modes using a braking system for an all terrain vehicle |
7730825, | Sep 20 2006 | Steering Solutions IP Holding Corporation | Vehicular hydraulic system with priority valve and relief valve |
7739942, | Sep 20 2006 | PACIFIC CENTURY MOTORS, INC ; GM Global Technology Operations, Inc | Vehicular hydraulic system with pressure dump valve |
7739943, | Sep 20 2006 | Steering Solutions IP Holding Corporation | Vehicular hydraulic system with pressure dump and relief valve arrangement |
7753455, | May 31 2005 | Linde Material Handling GmbH | Working machine |
7765915, | Sep 20 2006 | Steering Solutions IP Holding Corporation | Vehicular hydraulic system with dual relief valve |
7779744, | Sep 20 2006 | Steering Solutions IP Holding Corporation | Vehicular hydraulic system with priority valve |
9662991, | Jan 03 2008 | RICHARDSON JUMPSTARTERS LLC | Method and apparatus for providing supplemental power to an engine |
Patent | Priority | Assignee | Title |
4106818, | May 27 1977 | CASE EQUIPMENT CORPORATION | Braking system for vehicle |
4620750, | Nov 04 1982 | Robert Bosch GmbH | Main brake cylinder |
4967643, | Dec 15 1988 | Robert Bosch GmbH | Brake booster |
6343469, | Sep 25 2000 | Robert Bosch Corporation | Hydraulic system regulator for a brake and steering system |
6422661, | Mar 12 2001 | BWI COMPANY LIMITED S A | Hydraulic brake master cylinder with integral pressure transducer |
6434931, | May 11 2001 | BWI COMPANY LIMITED S A | Hydraulic brake master cylinder with controlled center port valve gap and method of assembly |
6533369, | Oct 19 2000 | BWI COMPANY LIMITED S A | Brake system and method having secondary hydraulic braking in a de-energized operational mode |
DE2504712, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 24 2002 | DAVISON, JAMES LEROY | Delphi Technologies, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012952 | /0841 | |
May 24 2002 | JOHNSON, MICHAEL ALAN | Delphi Technologies, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012952 | /0841 | |
May 24 2002 | PARIS, JOHNNY M | Delphi Technologies, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012952 | /0841 | |
May 24 2002 | BEAN, HENRY GEORGE | Delphi Technologies, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012952 | /0841 | |
May 28 2002 | Delphi Technologies, Inc. | (assignment on the face of the patent) | / | |||
Jun 14 2005 | Delphi Technologies, Inc | JPMORGAN CHASE BANK, N A | SECURITY AGREEMENT | 016237 | /0402 | |
Feb 25 2008 | JPMORGAN CHASE BANK, N A | Delphi Technologies, Inc | RELEASE OF SECURITY AGREEMENT | 020808 | /0583 | |
Jul 10 2009 | GM Global Technology Operations, Inc | UAW RETIREE MEDICAL BENEFITS TRUST | SECURITY AGREEMENT | 023990 | /0831 | |
Jul 10 2009 | GM Global Technology Operations, Inc | UNITED STATES DEPARTMENT OF THE TREASURY | SECURITY AGREEMENT | 023990 | /0349 | |
Oct 02 2009 | Delphi Technologies, Inc | GM Global Technology Operations, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023449 | /0065 | |
Apr 20 2010 | UNITED STATES DEPARTMENT OF THE TREASURY | GM Global Technology Operations, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 025386 | /0591 | |
Oct 14 2010 | Delphi Technologies, Inc | GM Global Technology Operations, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 025204 | /0846 | |
Oct 26 2010 | UAW RETIREE MEDICAL BENEFITS TRUST | GM Global Technology Operations, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 025386 | /0503 | |
Nov 30 2010 | GM Global Technology Operations, Inc | PACIFIC CENTURY MOTORS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027842 | /0918 | |
Nov 30 2010 | GM Global Technology Operations, Inc | GM Global Technology Operations, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027842 | /0918 | |
Jan 26 2012 | PACIFIC CENTURY MOTORS, INC | Steering Solutions IP Holding Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027870 | /0666 | |
Jan 26 2012 | NEXTEER BEIJING TECHNOLOGY CO , LTD | Steering Solutions IP Holding Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 027870 | /0666 |
Date | Maintenance Fee Events |
Apr 25 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 09 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jun 17 2016 | REM: Maintenance Fee Reminder Mailed. |
Nov 09 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 09 2007 | 4 years fee payment window open |
May 09 2008 | 6 months grace period start (w surcharge) |
Nov 09 2008 | patent expiry (for year 4) |
Nov 09 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 09 2011 | 8 years fee payment window open |
May 09 2012 | 6 months grace period start (w surcharge) |
Nov 09 2012 | patent expiry (for year 8) |
Nov 09 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 09 2015 | 12 years fee payment window open |
May 09 2016 | 6 months grace period start (w surcharge) |
Nov 09 2016 | patent expiry (for year 12) |
Nov 09 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |