A system and method for planarizing a patterned semiconductor substrate includes receiving a patterned semiconductor substrate. The patterned semiconductor substrate having a conductive interconnect material filling multiple of features in the pattern. The conductive interconnect material having an overburden portion. The overburden portion includes a localized non-uniformity. An additional layer is formed on the overburden portion. The additional layer and the overburden portion are planarized. The planarizing process substantially entirely removes the additional layer.
|
19. A semiconductor device formed by a method comprising:
receiving a patterned semiconductor substrate, having a conductive interconnect material filling a plurality of features in the pattern, the conductive interconnect material having an overburden portion having a localized non-uniformity; forming an additional layer on the overburden portion; and planarizing the additional layer and the overburden portion without imparting mechanical stress to the plurality of features, the additional layer being substantially entirely removed in the planarizing process.
1. A method for planarizing a patterned semiconductor substrate comprising:
receiving a patterned semiconductor substrate, having a conductive interconnect material filling a plurality of features in the pattern, the conductive interconnect material having an overburden portion having a localized non-uniformity; forming an additional layer on the overburden portion; and planarizing the additional layer and the overburden portion without imparting mechanical stress to the plurality of features, the additional layer being substantially entirely removed in the planarizing process.
20. A method of forming a dual damascene interconnect structure comprising:
receiving a dual damascene patterned semiconductor substrate, having a conductive interconnect material filling a plurality of features in the dual damascene pattern, the conductive interconnect material having an overburden portion having a localized non-uniformity; forming an additional layer on the overburden portion, the additional layer being formed substantially planar; and etching the additional layer and at least part of the overburden portion to substantially planarize the overburden portion, the additional layer being substantially entirely removed.
25. A method for planarizing a patterned semiconductor substrate comprising:
receiving a patterned semiconductor substrate, having a conductive interconnect material filling a plurality of features in the pattern, the conductive interconnect material having an overburden portion having a localized non-uniformity; planarizing the overburden portion to substantially remove a bulk of the overburden portion including etching the overburden portion to remove at least a portion of the bulk of the overburden portion, a remaining portion of the overburden portion being substantially planarized; and etching the planarized overburden portion to substantially remove the overburden portion.
21. A method of forming a dual damascene interconnect structure comprising:
receiving a dual damascene patterned semiconductor substrate, having a conductive interconnect material filling a plurality of features in the dual damascene pattern, the conductive interconnect material having an overburden portion having a localized non-uniformity; chemically converting a top surface and a top portion of the overburden portion to form an additional layer on the overburden portion; and planarizing the additional layer and the overburden portion, the additional layer being substantially entirely removed in the planarizing process, the planarizing process includes a reiterative process including: etching the additional layer; forming a second additional layer; and etching the second additional layer. 2. The method of
3. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
13. The method of
etching the additional layer; forming a second additional layer; and etching the second additional layer.
18. The method of
22. The method of
23. The method of
24. The method of
26. The method of
27. The method of
|
This application is related to co-pending U.S. patent application Ser. No. 10/390,117 filed on Mar. 14, 2003 and entitled "System, Method and Apparatus For Improved Global Dual-Damascene Planarization," which is incorporated herein by reference in its entirety.
1. Field of the Invention
The present invention relates generally to dual damascene semiconductor manufacturing processes, and more particularly, to methods and systems for planarizing features and layers in a semiconductor manufacturing process.
2. Description of the Related Art
Dual damascene manufacturing processes are becoming more common in semiconductor manufacturing. In a typical dual damascene manufacturing process, one or more conductive materials are deposited in previously patterned trenches and vias formed in a semiconductor substrate or films formed on the semiconductor substrate to form the desired electrical circuit interconnects. An excess or overburden portion of the conductive material is often formed. The overburden portion of the conductive material is unnecessary and undesirable and must be removed both to produce a damascene feature and to provide a planar surface for subsequent processing.
The overburden portion of the conductive material is typically removed from the semiconductor substrate through chemical mechanical polishing (CMP) and electro-chemical polishing (ECP) (e.g., etching) processes and combinations of CMP and ECP processes. Each of these processes has significant shortfalls. By way of example, ECP typically has a relatively low throughput, poor uniformity and inability to effectively remove non-conductive material.
CMP requires physical contact processes which typically leave conductive residues, or cause corrosion of the various materials, or result in non-uniform removal, and the inability to suitably planarize interconnect and interlevel dielectric (ILD) top surface. CMP can also cause stress related damage (e.g., interlayer delamination, peeling) to remaining interconnect and ILD structures. The CMP-caused stress damage is further exacerbated by the very poor inter-layer adhesion characteristics of the more-recently used materials. Reducing the physical force of the CMP process to reduce the physical stress can often result in unacceptably low throughput rates and other poor process performance parameters.
In view of the foregoing, there is a need for an improved planarizing system and method to uniformly and substantially remove overburden material while minimizing physical stress to the remaining features. The improved planarizing system and method should be suitable for use in semiconductor manufacturing and should be applicable to processes such as a dual damascene process or other semiconductor manufacturing processes.
Broadly speaking, the present invention fills these needs by providing a system and method for planarizing a semiconductor substrate. It should be appreciated that the present invention can be implemented in numerous ways, including as a process, an apparatus, a system, computer readable media, or a device. Several inventive embodiments of the present invention are described below.
One embodiment includes a method for planarizing a patterned semiconductor substrate includes receiving a patterned semiconductor substrate. The patterned semiconductor substrate having a conductive interconnect material filling multiple of features in the pattern. The conductive interconnect material having an overburden portion. The overburden portion includes a localized non-uniformity. An additional layer is formed on the overburden portion. The additional layer and the overburden portion are planarized. The planarizing process substantially entirely removes the additional layer. The conductive interconnect material can include copper, copper containing conductive materials and elemental copper and other conductive material. The pattern can be formed on the patterned semiconductor substrate in a dual damascene process.
Planarizing the additional layer and the overburden portion can include substantially eliminating a local, pattern dependant non-uniformity. Planarizing the additional layer and the overburden portion can also include substantially eliminating a local, pattern dependant non-uniformity without imparting mechanical stress to the plurality of features.
The additional layer and the overburden portion can have a substantially 1:1 etch selectivity. The additional layer is formed substantially planar. The additional layer is a substantially planar fill material. Planarizing the additional layer and the overburden portion can also include etching the additional layer and at least part of the overburden portion. A second etch process to expose a barrier layer formed on the patterned features can also be included.
Forming the additional layer on the overburden portion can include chemically converting a top surface and a top portion of the overburden portion. Chemically converting a top surface and a top portion of the overburden portion can include exposing the top surface of the overburden portion to a reactant gas such as a halogen. The additional layer is a halide reactant product of the overburden portion.
Planarizing the additional layer and the overburden portion can include etching the additional layer and at least part of the overburden portion. Planarizing the additional layer and the overburden portion can also include a reiterative process that includes etching the additional layer, forming a second additional layer, and etching the second additional layer. The reiterative process can be an in situ reiterative process.
In another embodiment, a semiconductor device is formed by a method including receiving a patterned semiconductor substrate. The patterned semiconductor substrate having a conductive interconnect material filling multiple features in the pattern. The conductive interconnect material having an overburden portion that includes a localized non-uniformity. An additional layer is formed on the overburden portion and the additional layer and the overburden portion are planarized. The additional layer being substantially entirely removed in the planarizing process.
Yet another embodiment includes a method of forming a dual damascene interconnect structure that includes receiving a dual damascene patterned semiconductor substrate. The dual damascene patterned semiconductor substrate having a conductive interconnect material filling multiple features in the dual damascene pattern. The conductive interconnect material having an overburden portion that includes a localized non-uniformity. An additional layer is formed on the overburden portion. The additional layer being formed substantially planar. The additional layer and at least part of the overburden portion are etched to substantially planarize the overburden portion, the additional layer being substantially entirely removed.
Still another embodiment includes a method of forming a dual damascene interconnect structure that includes receiving a dual damascene patterned semiconductor substrate. The dual damascene patterned semiconductor substrate having a conductive interconnect material filling multiple features in the dual damascene pattern. The conductive interconnect material having an overburden portion that includes a localized non-uniformity. A top surface and a top portion of the overburden portion are chemically converted to form an additional layer on the overburden portion. The additional layer and the overburden portion are planarized, the additional layer being substantially entirely removed in the planarizing process. The planarizing process including a reiterative process that includes etching the additional layer, forming a second additional layer, and etching the second additional layer. The reiterative process can be continued until the remaining overburden portion is substantially planarized.
The present invention provides the advantage of minimizing mechanical stress while substantially eliminating localized non-uniformities.
Other aspects and advantages of the invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The present invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, and like reference numerals designate like structural elements.
Several exemplary embodiments for an improved planarizing system and method will now be described. It will be apparent to those skilled in the art that the present invention may be practiced without some or all of the specific details set forth herein.
One embodiment of an improved planarizing system and method provides improved local planarization uniformity across a local portion of a semiconductor substrate. The improved local planarization uniformity substantially eliminates local nonuniformities caused by features in underlying layers and variations in deposition processes. Another embodiment provides improved global planarization uniformity across the entire substrate (e.g., edge uniformity as compared to center uniformity).
An overburden portion 112 of the conductive interconnect material 120 extends above the features 102, 104, 106 and includes corresponding localized variations 114, 116, 118 in thickness of the overburden portion 112. As shown, the larger feature 102 has a corresponding larger decrease in the thickness of the overburden portion 112 as compared to the smaller feature 104, which has a slightly smaller variation in thickness of the overburden portion 112. The densely packed features 106 have a somewhat increased thickness of the overburden portion 112.
Typical etch processes etch the overburden portion 112 of the conductive interconnect material 120 at a fairly uniform rate over the entire wafer area and therefore the typical etching process will expose the barrier layer 110 near the large feature 102 before the barrier layer 110 near the densely packed features 106 will be exposed. In sum, the typical etching process cannot planarize the overburden portion 112 of the conductive interconnect material.
The additional layer 202 and the overburden portion 112 have a substantially 1:1 etch selectivity so that a subsequent etching process (e.g., plasma or gaseous etch process) can etch both the additional layer 202 and the overburden portion 112 at substantially the same rate.
A typical recipe would involve conditions that provide a 1:1 etch selectivity between the additional layer 202 and the overburden portion 112. By way of example, if the additional layer 202 is SOG, and the overburden portion 112 is copper, then a halogen (e.g., Cl, F, Br, I) based chemistry provides etch rate control for both the SOG as well as copper to allow for tuning for the desired 1:1 selectivity. Although any plasma feed gas producing reactive halogen radicals can be used, CF4, Cl2, and HCl are typical examples. Various process parameters can be adjusted to control etch rates, selectivity, uniformity and reduce corrosion include variation of process variables such as substrate temperature and inclusion of one or more additives (e.g., Ar, H2, Cl, O2, CH3X (X=F, Cl, Br, I), CH2F2, and CH4).
Another approach involves a sputter dominant etch with Ar or other inert gas such as He, Xe, Ne, Kr, as the primary etchant of the copper overburden portion 112 with other additives to provide etch rate control of the additional layer 202 and passivation of the top surface of the remaining copper 112. The other additives can include, for example H2 and/or CF4. Either of these processes is can operate over a wide temperature range of between about 75 degrees C. and about 400 degrees C.
The first etching process is an etch process designed to leave the remaining overburden portion 112' substantially locally planar in that the local variations 114, 116, 118 are substantially eliminated. One or more subsequent etching processes will remove the bulk or the majority of the overburden portion 112'. A finish etching process can be applied to continue the etching process to an endpoint at which the overburden portion 112' is removed from the barrier 110. The finish etching process can also be included in the bulk etch process. Subsequent processes after the finish etch can include selective barrier removal and passivating the remaining conductive material 120 to prevent corrosion and provide stability for further processing. An additional operation after the finish etch can be designed not to significantly remove any material but only passivate the remaining conductive material 120 to prevent corrosion and provide stability for further processing.
The first etching process and the second etching process can be substantially similar or significantly different. By way of example, the first etching process can be an etching process for improving the local planarity of the overburden portion 112 due to local non-uniformities 114, 116, 118 (e.g., caused by feature 102, 104, 106 locations, sizes and concentrations in underlying layers). The entire additional layer 202 and a portion of the overburden portion 112 can be removed in the first etching process. By comparison, the second etching process can be a much more selective etching process that removes the bulk of the remaining, planar overburden 112' to the endpoint (i.e., when the barrier layer 110 is exposed).
In an alternative embodiment, operation 515 can also include a finish etch process as described above. Subsequent processes after the finish etch can include selective barrier removal and passivating the remaining conductive material 120 to prevent corrosion and provide stability for further processing. An additional operation after the finish etch process can be designed not to significantly remove any material but only passivate the remaining conductive material 120 to prevent corrosion and provide stability for further processing.
Referring now to
In another example, the additional layer 604 can be deposited on the overburden portion 602. The deposited layer 604 can include a polymer layer or an oxide layer being deposited on the overburden portion 602.
Referring now to operation 710 and
Chemical conversion of copper overburden portion 602 utilizing shape dependence of compound formation can be typically achieved by oxidizing the copper at the Cu-reactive species interface. Copper oxidization in this instance can include a chemical conversion of elemental copper to a copper compound with copper in a positive oxidation state. By way of example, oxidation of the copper to cuprous- or cupric chloride (CuCl or CuCl2) at the surface can occur in a chlorine plasma at lower temperatures (e.g., <200 degrees C.).
The etch-back process involves reduction of this copper compound to another chemical compound capable of being volatile and thus leaving the surface of the remaining overburden 602' at the fixed substrate temperature. By way of example, there can be a reduction of the CuCl2 to volatile Cu3Cl3 in the presence of reactive hydrogen species (e.g., H2 plasma). Alternating the shape-dependent conversion followed by etch-back of the converted portion can lead to bulk removal of the copper overburden portion 602, while simultaneously planarizing the topography (e.g., profile) of the copper overburden 602.
In operation 715, if the overburden portion 602 is substantially planarized, then the method operations end. Alternatively, if in operation 715, the overburden portion 602 is not substantially planarized, then the method operations continue at operation 705 above. In one embodiment, operations 705-715 can occur in situ within a single etch chamber. In an alternative embodiment, operation 710 can occur ex situ and can include ECD or low-down force CMP processes to achieve the substantially planar overburden portion 602' as shown in FIG. 6D.
The method operations described in
The local planarization of the substrates 100, 600 can be determined through any one or more of several known layer thickness mapping technologies that are known in the art. By way of example, an eddy current sensor can map the thickness of the overburden portion 112, 112' as described in commonly owned U.S. Pat. application Ser. No. 10/328,912 entitled System, Method And Apparatus For Thin-Film Substrate Signal Separation Using Eddy Current by Gotkis et al., filed on Dec. 23, 2002 and U.S. Pat. application Ser. No. 10/251,033 entitled System And Method For Metal Residue Detection And Mapping Within A Multi-Step Sequence by Gotkis et al., filed on Sep. 19, 2002, which are incorporated by reference herein, in their entirety.
The methods and systems described in
In operation 815, the substrate with the planarized overburden portion is mapped to identify and quantify any global non-uniformities in the planarized overburden portion. The planarized overburden portion can be mapped with any one or more of several known layer thickness mapping technologies that are known in the art as described above. The mapping can be in situ (within the current process chamber) or ex situ (external to the current process chamber). An in situ mapping process can also be dynamic and allow for the subsequent processes to be dynamically adjusted as the subsequent processes progress.
In operation 820, the location and quantity of the global non-uniformities, as determined in operation 815 above, are removed in a substantially mechanical stress-free process by adjusting an etching process to address the specific requirements of the detected global non-uniformities in a finish etch process. By way of example, if the remaining overburden portion 902 were approximately 500 angstroms thick in the center and 300 angstroms thick on the edge, then the recipe can be adjusted such that the center to edge non-uniformity can be compensated for so that the entire barrier layer 110 will be exposed simultaneously. The stress-free process avoids the CMP problems described above because no mechanical force is applied to the substrate during the etch-back process.
The recipe (e.g., selected values of process variables) that is selected is selective to barrier layer 110 (i.e., will etch the barrier at a much slower rate than the recipe will etch the copper, e.g., a typical selectivity range of copper etch over barrier etch in these processes is greater than about 1 but less than about 3) and that will minimize any recesses (e.g., excess removal of the conductive material 120 in the features 102, 104, 106).
The finish etch can have relatively slow etch rates for both copper of the remaining overburden portion 902 and the barrier layer 110 to minimize any recess into the features 102, 104, 106 with respect to the remaining height barrier of the barrier layer 110. As a result, the finish etch cannot have a very high selectivity to etch the copper.
A final etch-back process can also be included. The final etch-back process includes etch-back of the mask material and/or the ILD material with appropriate selectivity and uniformity control such that the final outcome provides substantially globally uniform and substantially planar features with minimal copper and ILD loss (e.g., any copper recess is globally uniform across the substrate 100 at the end of the final etch and barrier removal processes). In this instance, the final etch would include a uniform process to etch-back the mask material with high selectivity to minimize copper loss and minimize the copper recess. By way of example, a halogen-based process where the halogen concentration is low and the substrate temperature is low (e.g., less than about 200 degrees C.) will maintain a low copper etch rate while still sufficiently chemically etching the mask material. Any plasma feed gas including halogen reactive species (e.g., CF4, C2F6, C4F6) can be used. Etch rate control additives can include Ar, O2, CH2F2 and others can also be included.
If the global copper recess and/or mask/ILD loss are non-uniform across the substrate at the end of the finish etch and final etch-back process, then additional variations in the recipe must be taken to correct for the global non-uniformities. By way of example, typical instances are a result of etch non-uniformity are described as center fast or edge fast etch rates. In either of these instances, can result in a variation in copper recess and/or mask/ILD loss across the substrate. Compensation can be achieved to counter this variation to obtain globally planar features with minimal copper and mask loss utilizing appropriate uniformity and selectivity controls during the final etch-back of the mask/ILD material. In the instance of a center-fast finish etch process resulting in larger copper recess in the center of the substrate can be compensated for by an edge-fast final etch back process which selectively etches the mask material to bring to the same level as the copper level in the features 102, 104, 106. Typical selectivity obtained in this process is greater than about 2. Variations of the recipe to provide for uniformity control include pressure, temperature variation across substrate, ion flux uniformity controls, gas concentrations and chamber wall temperature. Variations to control selectivity include reactive halogen species concentration, substrate temperature, and bias power.
As used herein in connection with the description of the invention, the term "about" means +/- 10%. By way of example, the phrase "about 250 degrees C." indicates a range of between 225 degrees C. and 275 degrees C. It will be further appreciated that the instructions represented by the operations in
Although the foregoing invention has been described in some detail for purposes of clarity of understanding, it will be apparent that certain changes and modifications may be practiced within the scope of the appended claims. Accordingly, the present embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalents of the appended claims.
Bailey, III, Andrew D., Lohokare, Shrikant P., Hemker, David, Cook, Joel M.
Patent | Priority | Assignee | Title |
7303462, | Feb 17 2000 | Applied Materials, Inc. | Edge bead removal by an electro polishing process |
7540935, | Mar 14 2003 | Lam Research Corporation | Plasma oxidation and removal of oxidized material |
8191237, | May 21 2009 | Western Digital Technologies, INC | Method for providing a structure in a magnetic transducer |
8262919, | Jun 25 2010 | Western Digital Technologies, INC | Method and system for providing a perpendicular magnetic recording pole using multiple chemical mechanical planarizations |
Patent | Priority | Assignee | Title |
5098516, | Dec 31 1990 | VERSUM MATERIALS US, LLC | Processes for the chemical vapor deposition of copper and etching of copper |
5256565, | May 08 1989 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE DEPARTMENT OF ENERGY | Electrochemical planarization |
5387315, | Oct 27 1992 | Micron Technology, Inc.; Micron Technology, Inc | Process for deposition and etching of copper in multi-layer structures |
5968847, | Mar 13 1998 | Applied Materials, Inc. | Process for copper etch back |
6051496, | Sep 17 1998 | Taiwan Semiconductor Manufacturing Company | Use of stop layer for chemical mechanical polishing of CU damascene |
6056864, | Oct 13 1998 | Advanced Micro Devices, Inc. | Electropolishing copper film to enhance CMP throughput |
6096230, | Dec 29 1997 | Intel Corporation | Method of planarizing by polishing a structure which is formed to promote planarization |
6234870, | Aug 24 1999 | GLOBALFOUNDRIES Inc | Serial intelligent electro-chemical-mechanical wafer processor |
6350364, | Feb 18 2000 | Taiwan Semiconductor Manufacturing Company | Method for improvement of planarity of electroplated copper |
6383935, | Oct 16 2000 | Taiwan Semiconductor Manufacturing Company | Method of reducing dishing and erosion using a sacrificial layer |
6417093, | Oct 31 2000 | Bell Semiconductor, LLC | Process for planarization of metal-filled trenches of integrated circuit structures by forming a layer of planarizable material over the metal layer prior to planarizing |
6600229, | Jan 23 2001 | Honeywell International Inc | Planarizers for spin etch planarization of electronic components |
6739953, | Apr 09 2003 | Bell Semiconductor, LLC | Mechanical stress free processing method |
WO3426, | |||
WO188229, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 07 2003 | LOHOKARE, SHRIKANT P | Lam Research Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013884 | /0558 | |
Mar 11 2003 | BAILEY, ANDREW D III | Lam Research Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013884 | /0558 | |
Mar 11 2003 | HEMKER, DAVID | Lam Research Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013884 | /0558 | |
Mar 11 2003 | COOK, JOEL M | Lam Research Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013884 | /0558 | |
Mar 14 2003 | Lam Research Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
May 23 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 23 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jul 01 2016 | REM: Maintenance Fee Reminder Mailed. |
Nov 23 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 23 2007 | 4 years fee payment window open |
May 23 2008 | 6 months grace period start (w surcharge) |
Nov 23 2008 | patent expiry (for year 4) |
Nov 23 2010 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 23 2011 | 8 years fee payment window open |
May 23 2012 | 6 months grace period start (w surcharge) |
Nov 23 2012 | patent expiry (for year 8) |
Nov 23 2014 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 23 2015 | 12 years fee payment window open |
May 23 2016 | 6 months grace period start (w surcharge) |
Nov 23 2016 | patent expiry (for year 12) |
Nov 23 2018 | 2 years to revive unintentionally abandoned end. (for year 12) |