This invention relates to a method of driving a liquid crystal display that is adaptive for displaying pixel color with high brightness in a liquid crystal cell. The method of driving a liquid crystal display having a color filter and a back light, includes arranging in turn two color filters which have spectrums different from each other, and arranging two back lights which have spectrums different from each other. In the method, by lengthening the time during which a back light can be turned on when driving a liquid crystal display, transmissivity of light is increased so that the color of a liquid crystal cell can be displayed in high brightness.
|
7. A liquid crystal display comprising:
two color filters having spectrums different from each other, wherein said color filters are each capable of transmitting two colors; and
two back lights having spectrums different from each other,
wherein a full color picture is realized using only said two back lights.
1. A method of driving a liquid crystal display comprising:
arranging two color filters which have spectrums different from each other;
arranging two back lights which have spectrums different from each other; and
irradiating light to the two color filters by sequentially turning the two back lights on and off, wherein a full color picture is realized with only two frames.
2. The method according to
realizing color by mixing spatially for two colors; and
realizing color through mixing by time for a third color.
3. The method according to
4. The method according to
5. The method according to
6. The method according to
8. The liquid crystal display according to
9. The liquid crystal display according to
10. The liquid crystal display according to
11. The liquid crystal display according to
12. The liquid crystal display according to
13. The liquid crystal display according to
14. The liquid crystal display according to
|
This application claims the benefit of Korean Patent Application No. P20007-6845, filed Dec. 15, 2000, which is hereby incorporated by reference in its entirety as if fully set forth herein.
1. Field of the Invention
This invention relates to a method of driving a liquid crystal display, and more particularly to a method of driving a liquid crystal display that is adaptive for displaying pixel color with increased brightness in a liquid crystal cell.
2. Description of the Related Art
Generally, an active matrix liquid crystal display (LCD) uses a thin film transistor (TFT) as a switching device to display a moving picture. Since the LCD is able to provide a product having a smaller dimension than a Brown tube or cathode Ray Tube, it has been widely used in various applications of personal computers, notebook computers, office automation equipment such copy machines, etc., and portable equipment such as a cellular phones, pagers, etc.
A liquid crystal display device includes a liquid crystal layer capable of rotating the polarizing direction of light by applying an electric field. Such LCD device includes a common electrode, which is a transparent conduction film formed on an entire glass substrate for applying a voltage to the liquid crystal layer; a thin film transistor (TFT), substrate electrodes composed of a plurality of pixel electrodes; and a plurality of TFTs connected to one another. The liquid crystal display device further includes each TFT device in which each transistor resides between a gate line and a signal line of a TFT substrate and is connected to a gate pad and a data pad to control a voltage for controlling the polarizing characteristics of light passing the liquid crystal layer; a light source; and an optical system making the light incident to the TFT substrate uniform in direction; a straight polarizer which resides between the light source and the TFT substrate; an analyzer attached to the common electrode substrate; and various color filters which are combined with each pixel electrode between a polarizer and a pixel electrode to display one basic color.
In such a liquid crystal display, a color filter composed of pixels of the three primary colors (red, green, and blue) is used between a polarizer and a pixel electrode for displaying the hue. R, G, and B color filters are placed closely together, and a signal of a corresponding color is applied to each color filter to control a luminosity of the expressed color.
Also, a color field sequential method is a known method by which to obtain a good picture quality without using a color filter, as shown in FIG. 2.
Referring to
To describe in detail, when dividing a single frame on the panel into three frames (a red frame, green frame, and a blue frame) and irradiating a back light for each frame for a duration of time during which the back light can be turned on, the time is calculated by subtracting a total data writing time Td and a liquid crystal response time Tlc. In this way, the back light has an increased brightness over a back light composed of one frame because each color is emitted during a time calculated by subtracting the total data writing time and a liquid crystal response time. Generally, when assuming that an entire frame time is the same, it is expressed as in the following formula 1.
Tt=3Td+3Tlc+Tbl=3Tw+Tbl Formula 1:
Herein, Tt represents an entire frame time, Td represents a time for writing data on an entire screen, Tlc represents the response time of a liquid crystal, Tbl represents a time during which a back light can be turned on, and Tw represents picture formation time, which is the sum of the response time of the liquid crystal and the time for writing data on the entire screen.
Generally, a liquid crystal display has 60 HZ frame ratio such that Tt=16.7 msec. Referring to the formula 1, the time during which the back light can be turned on is expressed as Tbl=Tt−3Tw. Due to this, the time during which the back light can be turned on is the time calculated by subtracting a value, which is the sum of the time, Td, for writing data and the liquid crystal response time, Tlc, multiplied by ‘3’ (the number of frames in the color field sequential method), from the entire frame time 16.7 msec.
The time, Td, for writing data, the sum, Tw, of the liquid crystal response time Tlc, and the number of frames are factors that affect the time during which the back light can be turned on. No significant increase in brightness is gained over what can be achieved conventionally because a limit is reached in trying to decrease the time, Td, for writing data when driving a liquid crystal display. Furthermore, the time, Tbl, during which the back light can be turned on, is reduced if the liquid crystal response time is increased so that the response time of the liquid crystal or the brightness of the liquid crystal display become inadequate.
Accordingly, the present invention is directed to a method of driving a liquid crystal display that substantially obviates one or more of the problems due to the limitations and disadvantages of the related art.
Accordingly, it is an advantage of the present invention to provide a method of driving a liquid crystal display for increasing brightness thereof.
In order to achieve these and other advantages of the invention, a method of driving a liquid crystal display device according to the present invention includes the steps of arranging two color filters having spectrums different from each other; arranging two back lights having spectrums different from each other; and turning on and off, in turn, said two back lights to realize full color of a picture with only two frames.
In another aspect of the present invention, said step of turning on and off, in turn, said two back lights to realize full color of a picture with only two frames includes realizing color by mixing spatially for two colors; and realizing color through mixing by time for a remained color.
In another aspect of the present invention, of said two color filters, a first color filter is a color filter of 2 colors which has a light of red and blue (R+B), and a second color filter is a color filter of 2 colors which has a light of green and blue (G+B).
In another aspect of the present invention, of said two frames, a first frame has a back light of two colors with a light of red and green (R+G), and a second frame has a back light of blue.
In another aspect of the present invention, an area of said frame having said back light of blue has less driving time than an area of said frame having said back light of two colors with a light of red and green (R+G).
In the method, a data writing time is reduced by using two blue pixels as a unit in said frame having said back light of blue.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and are explanatory and are intended to provide further explanation of the invention as claimed.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
In the drawings:
Reference will now be made in detail to the principles of the present invention, an example of which is illustrated in the accompanying drawings.
The principles of the present invention are explained with reference to
Referring to
Referring to
Referring to
Referring to
As described above, a method of driving a liquid crystal display according to the present invention reduces the time required to write data within the same frame to increase the amount of time during which the back light is turned on. Accordingly, by increasing the time during which the back light is turned on in the liquid crystal display, the transmissivity of light is increased so that the light can be displayed with high brightness when expressing the color of a liquid crystal cell.
It will be apparent to those skilled in the art that various modifications and variation can be made in the present invention without departing from the spirit or scope of the invention. Thus, it is intended that the present invention cover the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Patent | Priority | Assignee | Title |
11678548, | Dec 26 2018 | LG Display Co., Ltd. | Display device with reduced power consumption |
7336325, | Jun 02 2003 | LG DISPLAY CO , LTD | Liquid crystal display and method and apparatus for driving the same comprising of color filters and colored backlights |
7750887, | Dec 21 2006 | Nokia Technologies Oy | Displays with large dynamic range |
9129570, | Mar 12 2013 | Samsung Display Co., Ltd. | Display apparatus |
Patent | Priority | Assignee | Title |
5122791, | Sep 20 1986 | Central Research Laboratories Limited | Display device incorporating brightness control and a method of operating such a display |
5128782, | Aug 22 1989 | Acacia Research Group LLC | Liquid crystal display unit which is back-lit with colored lights |
5580142, | May 06 1992 | Canon Kabushiki Kaisha | Image forming apparatus and projector using the same |
6115016, | Jul 30 1997 | Fujitsu Limited | Liquid crystal displaying apparatus and displaying control method therefor |
6147720, | Dec 27 1995 | Philips Electronics North America Corporation | Two lamp, single light valve projection system |
6323963, | Nov 28 1994 | Ricoh Company, Ltd. | Book page document image reading apparatus |
6573882, | May 20 1999 | Canon Kabushiki Kaisha | Picture display method using liquid crystal device |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 11 2001 | SON, HYEON HO | LG PHILIPS LCD CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 012384 | /0585 | |
Dec 13 2001 | LG.Philips LCD Co., Ltd. | (assignment on the face of the patent) | / | |||
Mar 04 2008 | LG PHILIPS LCD CO , LTD | LG DISPLAY CO , LTD | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 021773 | /0029 |
Date | Maintenance Fee Events |
Oct 26 2005 | ASPN: Payor Number Assigned. |
Oct 26 2005 | RMPN: Payer Number De-assigned. |
Nov 06 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 27 2010 | RMPN: Payer Number De-assigned. |
Jul 28 2010 | ASPN: Payor Number Assigned. |
Oct 02 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 22 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 07 2008 | 4 years fee payment window open |
Dec 07 2008 | 6 months grace period start (w surcharge) |
Jun 07 2009 | patent expiry (for year 4) |
Jun 07 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 07 2012 | 8 years fee payment window open |
Dec 07 2012 | 6 months grace period start (w surcharge) |
Jun 07 2013 | patent expiry (for year 8) |
Jun 07 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 07 2016 | 12 years fee payment window open |
Dec 07 2016 | 6 months grace period start (w surcharge) |
Jun 07 2017 | patent expiry (for year 12) |
Jun 07 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |