An automated container production line or automatically removing, orienting, filling, sealing and providing a label and applying a straw to the outside of the labeled container is provided which utilizes a novel orienting conveyor for receiving unoriented containers from a supply bin and orienting the containers for a plurality or novel short production lines having a positioning screw conveyor which intermittently starts and stops the advancement of the containers as groups of containers in which various groups of containers are simultaneously filled, sealed, inspected and then subsequently transported to a sleeving device for adding labels, a heat shrink tunnel for fastening the sleeve to the container and then to a novel straw applicator for subsequently attaching a straw to the outside of the container. The novel automated container filling, sealing and inspecting production line includes a computer program for controlling the production line in conjunction with various sensor devices for determining whether the containers are properly aligned, properly filled, properly sealed and completed in accordance with the highest quality control standards to not only assure product quality but also assure that containers not meeting specifications are removed from the production line and not processed further.
|
1. A filling and sealing machine comprising:
(a) a screw conveyor shaft having a first end and a second end and a spiral thread disposed between said first end and said second end of said screw conveyor shaft for conveying a pair of containers disposed on laterally adjacent sides or said spiral thread disposed on said screw conveyor shaft;
(b) a pair of guides in axial alignment with said screw conveyor shaft and intermediate the ends of said screw conveyor shaft;
(c) means for intermittently rotating and stopping said screw conveyor shaft; and
(d) a filling area, a sealing area and an inspection area disposed along the length of said screw conveyor shaft, said filling area, said sealing area and said inspection area in perpendicular alignment between successive spiral threads of said screw conveyor shaft when said screw conveyor shaft is stopped.
25. A container filling and sealing machine comprising:
(a) a pair of aligned guides for receiving paired containers;
(b) a positioning shaft having a first end and a second end with a spiral thread disposed between said first end and said second end of said positioning shaft in axial alignment with said pair of aligned guides for advancing said paired containers;
(c) a pair of container filling ports disposed intermediate the ends of said pair of aligned guides and said positioning shaft to fill a first set of paired containers;
(d) a pair of heat-sealing pistons for heat-sealing a second set of paired containers;
(e) a shuttle plate for receiving and transferring a foil to said pair of heat-sealing pistons; and
(f) means for intermittently rotating said positioning shaft in a timed relationship to the completion of the filling of said first set of paired containers and said heat-sealing of said second set of paired containers.
51. A filling and sealing machine comprising:
(a) an auger with a spiral thread disposed between a first end and a second end of said auger for conveying a pair of containers on laterally adjacent sides of said spiral thread;
(b) a pair of guides disposed laterally adjacent to each other and in axial alignment with said auger;
(c) a pair of filler ports disposed laterally adjacent to each other and in perpendicular alignment between successive spiral threads on said auger when said auger is stopped for filling said pair of containers;
(d) a pair of sealing pistons disposed laterally adjacent to each other and in perpendicular alignment between successive spiral threads on said auger when said auger is stopped for sealing a foil to said pair of containers;
(e) a shuttle plate for transferring said foil to said pair of sealing pistons;
(f) means for intermittently rotating and stopping said spiral threads timed to the simultaneous filling and sealing of said pair of containers; and
(g) computer means for controlling said means for intermittently rotating and stopping said spiral threads.
2. The filling and sealing machine of
3. The filling and sealing machine of
4. The filling and sealing machine of
5. The filling and sealing machine of
6. The filling and sealing machine of
7. The filling and sealing machine of
8. The filling and sealing machine of
9. The filling and sealing machine of
10. The filling and sealing machine of
11. The filling and sealing machine of
12. The filling and sealing machine of
13. The filling and sealing machine of
14. The filling and sealing machine of
15. The filling and sealing machine of
16. The filling and sealing machine of
17. The filling and sealing machine of
18. The filling and sealing machine of
19. The filling and sealing machine of
20. The filling and sealing machine of
22. The filling and sealing machine of
23. The filling and sealing machine of
24. The filling and sealing machine of
26. The container filling and sealing machine of
27. The container filling and sealing machine of
28. The container filling and sealing machine of
29. The container filling and sealing machine of
30. The container filling and sealing machine of
31. The container filling and sealing machine of
32. The container filling and sealing machine of
33. The container filling and sealing machine of
34. The container filling and sealing machine of
35. The container filling and sealing machine of
36. The container filling and sealing machine of
37. The container filling and sealing machine of
38. The container filling and sealing machine of
39. The container filling and sealing machine of
40. The container filling and sealing machine of
41. The container filling and sealing machine of
42. The container filling and sealing machine of
43. The container filling and sealing machine of
44. The container filling and sealing machine of
45. The container filling and sealing machine of
46. The container filling and sealing machine of
47. The container filling and sealing machine of
48. The container filling and sealing machine of
49. The container filling and sealing machine of
50. The container filling and sealing machine of
52. The filling and sealing machine of
53. The filling and sealing machine of
54. The filling and sealing machine of
55. The filling and sealing machine of
56. The filling and sealing machine of
57. The filling and sealing machine of
58. The filling and sealing machine of
59. The filling and sealing machine of
|
This application is a division of U.S. patent application Ser. No. 09/659,618, filed Sep. 11, 2000, now U.S. Pat. No. 6,523,328, which application claims the benefit of U.S. Provisional Application No. 60/153,244, filed Sep. 13, 1999.
1. Field of the Invention
The invention pertains to a method and apparatus for an automated container filling production line, which at one end has a supply of unoriented containers and at the other end provides a filled, sealed and consumer packaged end product. In the preferred application of the invention the filled, sealed and consumer packaged end product includes a wrapped telescoping straw attached to the outside of the container packaged for final consumer use.
More specifically, the invention relates to an automated container filling production line having continuous and discontinuous operating systems integrated together to form a seamless production line controlled by a computer and related software to automatically take unfilled, unoriented containers, orient those containers, fill, seal, inspect and remove unsatisfactory containers from the novel filling and sealing machine and then automatically transport properly filled and sealed containers to a sleever to automatically label the container, heat-shrink the sleeve to the container and optionally apply a pre-packaged straw to the outside of the container in the novel automated integrated container filling production line.
The novel method and system for the integrated automated container filling production line includes, in the preferred application, an infeed conveyor which includes a novel orientation conveyor to transport randomly oriented containers from a supply hopper and orient and provide a rough sequencing of those containers into a plurality of individual production lines that are introduced into a novel filling and sealing machine having a plurality of production lines. The novel orientation conveyor removes the randomly oriented containers from the supply bin and then orients and roughly sequences the containers into the plurality of production lines by utilizing the pliant orientation plates that imitate the action of the human hand in sequencing and orienting the containers in a ‘bottom up’ ‘top down’ orientation and then transports the ‘bottom up’ ‘top down’ containers to a turning plate and drop-chute which turns the ‘bottom up’ ‘top down’ container to a ‘top up’ ‘bottom down’ configuration in a plurality of production lines before transporting the oriented and roughly sequenced containers to the novel filling and sealing machine in the novel production line of the invention.
In an alternative application of the invention the integrated automated container filling production line includes an embodiment of the novel orientation conveyor which orients randomly oriented containers in a ‘top up’ ‘bottom down’ orientation and then roughly sequences the containers in a plurality of production lines by utilizing pliant orientation plates and pivotable rods that simulate the action of the human hand to orient and roughly sequence the containers in a plurality of production lines. The ‘bottom down’ ‘top up’ containers are transported in the orientation conveyor to a plurality of drop guide plates disposed in each of the plurality of production lines to assist in dropping the containers in a ‘top up’ ‘bottom down’ orientation in a plurality of drop chutes. The ‘top up’ ‘bottom down’ oriented and roughly sequenced containers are then deposited on an infeed conveyor that introduces the oriented and rough sequenced containers to a positive positioning screw conveyor having a plurality of production lines in a novel filling and sealing machine.
The novel filling and sealing machine of the novel production line of the invention receives a plurality of ‘top up’ ‘bottom down’ flat-bottomed containers from a conveyor that provides a rough sequencing of containers and introduces those containers to a positive positioning screw control conveyor system in a plurality of production lines in which positive conveyor control forces are maintained on the bottom and sides of the container in a screw conveyor that provides a discontinuous travel of the container to a plurality of filling and sealing stations in the novel filling machine. In one operational mode of the invention a plurality of screw conveyors receive a first plurality of oriented and roughly sequenced containers which are then positively engaged around the sides and bottom and then conveyed to the filling portion of the machine. At this point both the screw conveyor is stopped and the advancement of the containers is stopped by the positive controlled conveyor means at which time the first plurality of containers are filled with a filler mechanism providing for the positive control and metering of food, beverage or other fluid materials into the containers.
Once the containers are filled the positive controlled discontinuous conveyor apparatus moves those filled first plurality of containers to a sealing station while a second plurality of oriented, roughly sequenced containers are transported to the fill position previously occupied by the first plurality of containers. At this point the screw conveyor again stops and the first plurality of containers are purged of ambient air and sealed while the second plurality of containers are being simultaneously filled. Once the filling of the first plurality of containers and the sealing of the second plurality of containers has been completed the screw conveyor advances the first plurality of containers to an inspection station for fill and seal inspection and defective containers are optionally marked while the second plurality of containers are sealed in the sealing station and a third plurality of roughly oriented containers that had been transported to the fill station are simultaneously being filled while the screw conveyor remains stopped. At this point the first plurality of containers, inspected for fill and seal requirements, could also optionally be removed at the completion of inspection by opening discard doors at the bottom of the novel filling and sealing machine while the second plurality of containers are sealed and the third plurality of containers are filled.
Once the filling of the third plurality of containers, the sealing of the second plurality of containers and the optional inspecting and tagging of defective containers of the first plurality of containers are completed the screw conveyor again turns to transport the first plurality of containers from the screw conveyor to be removed at a defective container removal station in the novel filling and sealing machine or be discharged from the screw conveyor to be removed further down the production line while the second plurality of containers are transported to the inspection station, the third plurality of containers are moved to the seal station, and a fourth plurality of oriented and roughly sequenced containers are moved to the fill station and the screw conveyor again stops. While the screw conveyor remains stopped all the preceding steps are repeated on each new subsequent plurality of containers. In the preferred application of the invention the filling and sealing operations are provided for simultaneously on both sides along the axial length of a single screw conveyor while the screw conveyor is stopped. In the best mode inspection stations, reject stations and other processing stations may be added along the axial length of the screw conveyor.
The novel filling and sealing apparatus is able to achieve its multiple filling and sealing processes on both sides of a single screw conveyor as a result of the positive conveyor control forces maintained at all times to provide precise positioning of the plurality of containers resulting from the positive conveyor control of forces exerted by the threads of the screw conveyor on the walls of the container as well as the positive conveyor control of forces exerted on the flat bottom of the container and the sides of the container through the use of guide rails and rods or bottom support plates in combination with the threads of the screw conveyor to at all times maintain positive conveyor control forces on the containers along the axial length of the screw conveyor.
The positive conveyor control forces in the preferred embodiment are maintained throughout the transport of the container by the screw conveyor in the novel filling and sealing apparatus which allows additional inspection, rejection and processing steps to be implemented while the containers are being filled and sealed in the novel filling and sealing machine. These positive conveyor control forces in the preferred embodiment are maintained at all times during the discontinuous transport of the containers along the discontinuous operation of the novel positive control conveying means of the novel filling and sealing device of the novel production line.
The filled and sealed containers from the novel filling and sealing machine are thereafter transported to an accumulation conveyor and then to a sleever which sleeves the filled beverage containers which are thereafter transported to a heat tunnel for the final shrinking of the sleeves to provide labeled beverage containers. The sleeve labeled containers are then transported to a novel straw applicator which automatically attaches covered straws to the outside of the beverage containers as the labeled beverage container passes by the novel straw applicator apparatus. The straw applicator apparatus receives a continuous band of straws, advances those straws, cuts the straws from the band into individual sealed straws and, through a combination of vacuum and sequencing applies the individually wrapped straws to the outside of the container as it passes by the novel straw applicator device.
The novel production line is controlled by a computer and software which provides for the positive control of all phases of the novel production line including the monitoring and control of the production line to reject improperly filled or sealed containers by coordinating the sequencing of the containers in the novel automated container filling production line. As will be appreciated by those skilled in the art, the novel automated container filling production line and method of the invention integrates and controls continuous and discontinuous conveyor operations in a plurality of production lines in which the infeed conveyor, feed and orientation conveyors and accumulation conveyor are designed to operate continuously while the novel filler and sealer machine of the novel production line operates in a discontinuous ‘stop and go’ operation. The sleevers, and heat tunnels are also designed to operate in a continuous production process while the novel straw applicator apparatus includes a ‘stop and go’ operation in cutting and separating straws. These various operations are integrated into a continuous conveying operation which are controlled by a computer and related software in a downstream flow effect which by back pressure sensing and control increases or decreases the speed of the continuous and discontinous conveyor operations throughout the novel production line.
2. Description of Related Prior Art
The prior art includes numerous types of production lines, methods and apparatus for filling containers and provides these apparatus and methods for discreet operations. The invention, in contrast to the batch and discontinuous prior art processes, provides a full and complete integration of continuous and discontinuous conveyor and filling operations to take unfilled, unoriented containers at one end of the production line and provide filled, sealed and fully completed containers with a packaged straw applied to the outside of the filled sealed containers at the other end of the production line. Further, the individual novel components of the novel production line, including the orientation conveyor component, the novel filling, sealing and screw conveying apparatus, the novel straw applicator, the novel ambient air purging heat-sealing pistons, positive shut-off valves, straw applicator, conveyor belt and other subcomponents of the novel production line have not been shown or illustrated in the prior art.
More particularly, prior art relevant to the orientation conveyor component of the novel production line include Gosney U.S. Pat. No. 4,271,954 and Rheinstrom U.S. Pat. No. 2,183,433 which pertain to bottle orienting conveyor apparatus. In Gosney '954 unoriented bottles are obtained from a bin and oriented from an open end leading position to an open end trailing position for subsequent filling utilizing cams and mechanical devices for conveying the oriented bottles. Rheinstrom '433 provides for the division of oriented bottles in an ‘open end up’ configuration into a plurality of production lines. Neither Gosney '954 nor Rheinstrom '433 provide a conveying apparatus which receives unoriented containers or bottles from a supply bin and utilizes pliant plates simulating the action of the human hand to orient and provide a rough sequencing of the containers. Further neither Gosney '954 nor Rheinstrom '433 orients containers in a ‘bottom up’ ‘top down’ configuration and, once oriented and sequenced, subsequently turns the containers to a ‘bottom down’ ‘top up’ configuration for introduction into a filling and sealing apparatus.
Other prior art for conveying articles include Kontz U.S. Pat. No. 4,223,778 which pertains to a parison handling apparatus, Mezey U.S. Pat. No. 3,978,979 which pertains to a light bulb conveyor apparatus and Daleffe, et al. U.S. Pat. No. 3,517,797 which pertains to a thread bobbin tube alignment conveyor system. Kontz '778, Mezey '979 and Daleffe, et al. '797 do not provide for the utilization of pliant plates simulating the operation of the human hand for orienting and sequencing the articles in the conveyor, nor for the complete turning of the articles prior to their being introduced into a novel filling and sealing apparatus in the novel production line of the invention. Daleffe, et al. '797 does provide a conveying system which partially turns bobbins for subsequent stacking in an aligned position by Dalelfe, et al. does not utilize pliant fingers simulating the action of the human hand in orienting and providing a rough sequencing of articles in a production line utilizing continuous and discontinuous conveying systems.
Prior art relevant to the novel conveying, filling and sealing apparatus includes Heyne, et al. U.S. Pat. No. 2,571,036 and Martin et al. U.S. Pat. No. 4,947,979 which represent conveying devices utilizing spiral timing devices for advancing containers in a processing machine. In Heyne, et al. '036 the spiral timing device provides a continuous operation of the spiral timing device in which the spiral timing devices provides for the spacing of the article necessary for the synchronized feed of the article and in Martin, et al. '979 the spiral timing device provides a dwell for the containers at one or more work stations while the containers remain engaged between the rotating feed screws. Unlike Heyne, et al. '036 and Martin, et al. '979 the present invention provides a positioning device rather than a pure timing device. The invention utilizes both sides of a screw conveyor and exercises positive control over the containers on both sides of the screw conveyor to provide multiple work stations along the length of the conveyor. Further the screw conveyor of the invention operates in a start stop fashion and does not provide a dwell or a different sequencing for the containers for only one work station.
The novel filling and sealing machine of the invention provides a positive control conveyor means to capture the sides of containers between threads of the screw conveyor and guide rails (or support plates at the sealing area) both at the sides and bottom to provide a consistent spacing of containers in a discontinuous non-dwelling operation in which the containers are advanced and stopped in a plurality of production lines at precise locations disposed in substantially perpendicular alignment to the screw conveyor. The precise control and stopping of the screw conveyor at simultaneous filling and sealing stations above the screw conveyor for the filling and sealing of a plurality of containers is provided by the novel positioning screw conveyor apparatus of the invention.
Bausch, et al. U.S. Pat. No. 4,605,047 utilizes a conveying device that starts and stops the advancement of containers in a production line. Bausch et al. '047, however unlike the present invention, does not utilize a conveyor device having uniform pitch along the conveyor worm and does not provide multiple work stations or provide constant positive conveyor control forces over the container for both a fill and seal position disposed axially along the length of the worm conveyor. In Bausch, et al. '047 the worm threads are not of consistent pitch since the worm threads include a rest zone to provide positioning of the articles below a filling place or utilizes a reverse turn of the conveyor to remove forces from the container. The Bausch, et al. '047 worm threads may also utilize flat spaces or recesses in the worm which reduce the radius of the worm over part of the circumference of the worm to provide a rest zone in the conveying apparatus.
In addition Baush, et al. ‘04’ does not provide the constant positive control required for the simultaneous filling of one group of containers on the conveyor line along with the simultaneous purging and sealing of another group or containers along the conveyor line as is accomplished in accordance with the novel screw conveyor filling and sealing device of the invention. This difference is particularly important where the filling and sealing operations require different control tolerances. More particularly, the tolerance for the filling operation is far less critical than for the simultaneous sealing operation which in filling and foil sealing operations requires a tolerance of about one thirty thousandth of an inch.
Other spiral conveying mechanisms such as Carter U.S. Pat. No. 3,012,650 like Heyne, et al. U.S. Pat. No. 2,571,036 and Mihail U.S. Pat. No. 4,789,016 provide for the continuous movement of articles along the conveyor as opposed to the discontinuous advancement of articles to a plurality of independent work stations along the length of the screw conveyor. Further the invention, unlike the prior art, maintains positive control over the container during their entire residency at the fill and seal positions in the screw conveyor which makes the multiple work stations possible utilizing the novel filler and sealer apparatus of the novel production line of the invention.
Prior art relevant to the novel straw applicator apparatus of the invention includes Miller U.S. Pat. No. 3,189,171 which illustrates a telescoping straw (FIG. 2), without a poseable neck that is taped to the too of a container. Miller does not illustrate a mechanism for attaching the pre-packaged straw to the container. Other prior art which is more relevant to the machinery for the attachment the pre-packaged straw to a container includes Yokoyama U.S. Pat. No. 5,037,366, Hakansson U.S. Pat. No. 4,969,308, Wild U.S. Pat. No. 4,572,758 and Utsumi U.S. Pat. No. 4,384,915. Such prior art straw applicator apparatus typically rely upon drums (Yokoyama '366) and mechanical arms as illustrated by Yokoyama '366 and Hakansson '308 to attach straws to containers. Wild '758 employs a mechanical plate to press straws up against the side of the container in a batch process.
The invention unlike the prior art is designed to apply straws on a conveyor assembly line utilizing a combination of elastomeric belts, one of which belt includes openings for holding pre-packaged straws in a predetermined position and a vacuum to hold the straw in the belt prior to its being attached to the container. The straw containing an adhesive is then released around a roller disposed perpendicular to but parallel to the continuous travel of the conveyor on which the container is disposed to provide an on demand straw application apparatus.
Other straw applicator devices such as Hakansson U.S. Pat. No. 4,969,308 provides an intermittently pivotable mechanism to pick up individual straws from a drum and then transfer the individual straws to a conveyor mechanism having a vacuum holding mechanism. The vacuum holding mechanism however transfers the straws to a mechanical pivoting arm on a chain to pressure position the individual straws on continuously moving containers. The present invention unlike Hakansson '303 applies straws on demand to containers on a conveyor belt utilizing a plurality of conveyor belts which utilizes a vacuum chamber in combination with a specially designed elastomeric belt for holding the straws until the straws are applied to the outside of the container.
Utsumi U.S. Pat. No. 4,384,915 employs a drum together with a cam gripper with an electric heater to heatbond a straw to the outside package as the package is moved on a continuous conveyor. The invention unlike Utsumi '915 utilizes a combination of an elastomeric belt together with a vacuum to apply the straw to the outside of the container without the necessity of heat sealing the individual wrapped straw to the outside of the container.
Unlike the prior art the novel system and method of the invention provides for the complete automation of a production line controlled by computer software which integrates continuous and discontinuous operations and controls all aspects of the filling, handling, sealing and straw application to a container in combination with an on demand straw application process without requiring exact mechanical timing links and without requiring a batch handling process. The novel method and apparatus of the invention achieves its advantages through the application of a computer control system for increasing and decreasing various phases of the production conveyor systems by increasing or decreasing various continuous and discontinuous processes in the conveyor flow by coordinating individual production rates based upon design production flow rate and backlog at various stages of the production line.
As a result limitations exist in the prior art related to orientation and sequencing conveyors, filling sealing apparatus as well as the apparatus for applying on demand straws to the outside of a container to provide a finished article. Further the prior a failed to provide a fully automated, completely controlled production line facility for taking unoriented containers, orienting and sequencing those containers, filling and sealing those containers, as well as applying sleeves, labels and applying a straw to the outside of the container to provide a finished product in a fully automated and integrated system to reduce the number of handling steps and provide a hygienic food handling production line which reduces the possibility of contamination of the food product through handling as well as providing an easy to clean, continuous production line for producing a filled food container.
There also exists a need in the prior art for a feed and orientation conveyor for hygienically and automatically handling unoriented containers and orienting and providing a rough sequencing of those containers in a way that simulates the action of the human hand without the necessity of human intervention to provide a hygienic handling of the containers and a rough sequencing of those containers in a plurality of individual production lines which can be fed into a machine for filling and sealing a food or other flowable or fluid product.
The limitations of the prior art also make it desirable go provide a single filling and sealing machine which receives a plurality of oriented containers in a plurality of production lines and advances those containers in a precise discontinuous conveying process whereby a plurality of he production line containers are precisely advanced and precisely stopped at predetermined locations in he production line so that one batch of a plurality of containers can be simultaneously filled while a second batch of containers in the same plural production lines can be simultaneously purged and sealed as the precisely controlled conveying mechanism remains stopped for a predetermined period of rime. The positive control further allows for the simultaneous inspection and simultaneous rejection of containers in a single Production line that allows a number of processing steps to be accomplished simultaneously.
The limitations in the prior art also have created a need for a novel straw applicator which positively engages a pre-packaged straw and applies the prepackaged straw to passing containers on a production line in an on demand time basis to provide a final product. The novel straw applicator can be controlled by the computer but in the best mode of the invention is a stand alone unit that applies straws on demand to filled, sealed, inspected and sleeved containers. The novel straw applicator includes a novel straw applicator belt for applying straws to filled, sealed and labeled containers as they contact the novel straw applicator belt.
The limitations in the prior art also have established the need for an entire production line controlled by computer control to precisely control the entire production line from the hygienic collection of unoriented containers, the hygienic orientation and sequencing of those containers as well as the hygienic filling and sealing of those containers. The computer control of the production line also provides or the control of the sleever for adding sleeves to the container as well as the heat tunnels for firmly fixing the sleeve to the container in the production line to result in a final product that has been produced with minimum human contact in a hygienic production line for providing a final food product. The computer control of the production line and software for maintaining the operation of the novel production line and novel orientation and infeed conveyors, filler and sealer apparatus and sleever and heat tunnels is achieved by utilizing backflow pressure techniques which manage the entire production line in a real time or near real time mode by increasing or decreasing various phases of the conveyor production line as it is needed to produce a final packaged food product.
The invention provides a novel method and apparatus for a container filler production line which at one end takes unoriented containers and at the other end provides a final filled product that includes computer control of a conveyor line having continuous and discontinuous modes of operation as well as product flow rates. The novel production line and method of the invention include novel apparatus including a novel container unscrambler which hygienically handles unoriented containers, a novel further sealer machine which hygienically fills and seals those containers, novel heat sealing ambient air purging pistons, novel positive control shut-off valves, accumulation conveyors together with a computer which adjusts rates of low between continuous and discontinuous production line operations in the novel production line. A novel straw applicator and novel straw applicator conveyor belt is also provided for applying straws in an on demand time frame to the outside of the filled and sealed containers. The entire production line other than the novel straw applicator is controlled by computer and related software to integrate and vary the speeds of continuous and discontinuous conveying portions of the production line to maintain flow from the container unscrambling device to the packing of the filled, sealed, inspected and consumer packed product into shipping cartons. In addition the features and advantages of the novel production line include the hygienic handling of the containers from the time they are received from the container bin to the packaging of the final product by eliminating human intervention in the production process while providing for ease of cleaning of various components in the novel production line.
The container unscrambler is designed to take unoriented containers from a supply bin and orient and roughly sequence those containers utilizing pliant plates which simulate the action of a human hand in orienting those containers. In one embodiment of the invention the rough sequencing of the oriented containers are oriented in a ‘top up’ configuration where the containers have a top of a cross-sectional configuration that is larger than the cross-sectional configuration of the bottom half of the container. In the preferred embodiment of the invention containers having a larger bottom half cross-sectional configuration are first oriented in a ‘bottom up’ ‘top down’ configuration. The ‘bottom up’ ‘top down’ oriented containers are hen roughly sequenced and advanced to a turning plate for turning the containers from a ‘bottom up’ ‘too down’ configuration to a ‘bottom down’ ‘top up’ configuration before they are deposited through a drop chute on to an infeed conveyor and then to the novel filling sealing machine. In both embodiments of the invention the bottle unscrambler and orientation conveyor provides a plurality of production lines which are designed to hygienically handle, orient unoriented conveyors and provide a rough sequencing of the containers for the novel filler sealer machine. The novel container unscrambler is designed to provide a rough sequencing utilizing a plurality of resiliently mounted plates simulating the action of the palm of the hand and pivotable rods that simulate the action of the fingers in providing a rough sequencing of containers for the novel filler sealer machine.
The novel container unscrambler is, in the preferred application, designed to provide four separate production lines, each capable of operating independently and each having a clutch assembly to allow them to operate at a different rate of speed or to be individually stopped. This independent rate of operation is achieved through sensors, a computer and computer-controlled clutches which individually control the speed of each of the lines base upon downfeed sensors which increase or slow the rate depending upon the flow characteristics of the containers in that production line and the specific needs of the production line without the necessity of shutting down the entire production line.
The conveyor action in the bottle unscrambler is provided by elastomeric conveyor belts connected to pulleys that support either side of a container and preferably a container of a cylindrical configuration having a base larger than the top and advance the container along the conveyor by means of the elastomeric belts. The elastomeric belts advance and provide a rough sequence for the containers and in the preferred embodiment orient in a ‘bottom up’ ‘too down’ configuration until they are advanced to a turning plate which turns the containers from a ‘bottom up’ ‘top down’ position to a ‘top up’ ‘bottom down’ configuration just before they are deposited through a drop chute for placement on an infeed conveyor to the novel filler and sealer machine. The infeed conveyor in the preferred embodiment is also connected and utilized by the computer similar to the accumulator conveyor to increase and decrease the speed of the orientation conveyor and elevator conveyor to provide additional control over the speed of the novel production line.
The bottle unscrambler and orientation conveyor in both embodiments obtain unoriented containers from supply hopper by the utilization of an inclined elevator conveyor having container support plates which remove cylindrical containers from a supply hopper. The removed containers are randomly oriented on the support plates which may include an excess of containers on the container support plate. Excess containers on a particular support plate are removes from the inclined elevator conveyor by means or a scraper plate which prevents too many containers from being fed into an infeed hopper connected to the orientation conveyor.
The infeed hopper of the orientation conveyor receives the unoriented containers from the inclined elevator support plates and begins the process of orienting and providing a rough sequencing of the containers in the preferred embodiment in a ‘bottom up’ ‘top down’ configuration in a plurality of parallel production lines in the orientation conveyor. The containers deposited in the infeed hopper by the combination of gravity and conveyor action of the elastomeric belts of the orientation conveyor allows containers to either fit into the plurality of conveyor lines in a ‘top down’ ‘bottom up’ configuration or fall between the plurality of lines when too many containers are bunched up at one time in the elastomeric belts and in the infeed hopper. The conveying motion of the elastomeric belts allows the containers to orient themselves before flowing out of the infeed hopper along the plurality of production lines.
Containers that are properly oriented in the preferred embodiment in a ‘bottom up’ configuration or in the alternative embodiment in a ‘bottom down’ configuration may also be bunched up too close together in any one production line to be properly sequenced for the filling and sealing machine further down the production line. In such case a plurality of pliant plates which simulate the action or human hands push excess containers along the orientation conveyor line until they have the proper rough sequencing and spacing between the containers as they move along the orientation conveyor. Drop chutes are provided at the end of each of the production lines of each of the orientation conveyors. In one embodiment a plurality of drop guide plates assist in guiding containers in a ‘top up’ ‘bottom down’ orientation into the drop chutes. In the preferred embodiment ‘bottom up’ ‘top down’ oriented containers contact turning plates before being deposited into the drop chutes to provide containers in the ‘top up’ ‘bottom down’ orientation for the novel filler and sealer machine. The novel feed and orientation conveyors also include individually controllable means that can slow down or stop the conveying action of a particular lane depending upon the flow characteristics of the oriented containers through the novel filling and sealing apparatus and flow characteristics and requirements of he various production lanes down to the completed filled, sealed, labeled and straw containing product.
The novel filling and sealing apparatus includes an infeed conveyor for feeding the oriented and roughly sequenced containers to three pair of screw conveyors for positively engaging and then precisely moving a plurality of containers in the novel filler sealer apparatus. The screw conveyors are preferably made of Delrin® and have a uniform thread angle from end to end which together with guide tails and container biasing rods and flat plates in the seal position precisely position and move a plurality of containers through the novel filling sealing machine. The uniform thread angle of the screw conveyor provides a precise positioning means for a plurality of work stations disposed in substantial perpendicular alignment with spaces between the threads of the screw conveyors, when the screw conveyors are stopped, at a plurality of work stations disposed along the length of the novel screw conveyors of the filler sealer machine.
The novel filling sealing machine turns the screw conveyors in a discontinuous operation so that a plurality of containers move in a spaced relationship defined by the uniform spiral angle of the threads of the screw conveyor to precise positions and work stations within the novel filler sealer machine. Teflon® guide rails are provided on the sides opposite the screw conveyor and base support rods or plates at the seal area both reduce friction for plastic containers and aid in the precise positioning and movement of the containers through the machine and during the stopping and starting of the screw conveyor.
The screw conveyor provides a plurality of lanes in which containers along the length of the screw conveyor are in a precise positional relationship to one another and in relation to the spiral distance between each axial section of the screw conveyor. This spaced relationship allows the incremental advancement of the screw conveyor to precisely move a plurality of containers and stop the motion of the plurality of container in precise positions along the length of the screw conveyor. This also allows a plurality of containers along the length of the screw conveyor to be filled in one portion along the length of the screw conveyor while another group of containers further along the length of the screw conveyor are simultaneously purged and sealed at another area along the length along the screw conveyor. Associated with the filling area are a plurality of sensors that sense the presence of a container in the screw conveyor corresponding to the fill position of each container. In the event a container is not present at a particular fill area, the fill meter piston for that position is not activated to prevent spilling or wasting fill materials.
In one embodiment of the invention the screw conveyor is turned to advance containers to a fill station and advance containers at the filling station to be advanced to a fill inspection station while the sealed containers are moved to a seal inspection station and previously inspected containers are removed from the production line at a reject station that failed either seal inspection or fill inspection. At this point the new set of containers are filled, the previously filled containers are inspected for fill, the previously inspected containers for fill are being sealed, and the containers at the reject station are being removed for improper fill or seal. After the screw conveyor again starts, it advances a second set of new containers to the filling area, the filled containers to the inspection area, the inspected containers to the seal area and the sealed containers to the seal inspection area, and the container previously inspected for fill and seal are moved to a reject area to be rejected for improper fill or seal. When the screw conveyor again turns, the containers having a proper fill and seal are conveyed from the novel filling and sealing machine while the preceding containers are moved to the new stations in a continuation or the filling sealing production process.
The novel screw conveyors and their incremental advancement and positioning of the containers at various stages along the novel filling and sealing apparatus of the invention allows the novel apparatus to be divided into a plurality of precise work stations disposed in axial and substantially perpendicular alignment to the screw conveyor. The first work station is the filling station which provides for the precise metering of a beverage, food material such as baby food, yogurt or a yogurt beverage or other flowable product into the container at the filling portion of the screw conveyor.
In a further embodiment of the invention multiple inspection and rejection positions can be provided where containers are filled and a few turns of the screw conveyor advances a new set of containers to the fill station and the filled containers to an inspection area where the filled containers are inspected with sensors to determine whether they have been filled to a proper level. While the filled containers are being inspected for proper filling the new set of containers advanced to the filling area are being simultaneously filled.
The novel screw conveyor then turns again and then stops again to advance a new set of containers to the fill area, the filled containers to the inspection area and the inspected containers to a drop area where drop doors open to drop one or more of the containers into a discard bin, if any of the containers have not been filled to the proper level. Thereafter the novel screw conveyor turns again to advance a new set of containers to the fill area, filled containers to the inspection area and precisely move in position only the properly filled containers to a sealing station which surge the properly filled containers of ambient air and replaces the ambient air with nitrogen, moves a shuttle plate to move sealing foil to a position above only the properly filled containers present in the production line and heat-seals the foil to the container while the previously filled and inspected containers are placed over the reject door and rejected if they have not been properly filled, the previously filled containers are being inspected and the new set of containers are being filled.
Thereafter the screw conveyor is turned again to move the sealed containers to a seal inspection station to determine whether the filled and sealed containers have been properly sealed, the previously properly filled containers remaining over the discard doors of the conveyor are then moved to the sealing portion of the conveyor, the containers at the filling inspection position are advanced to the fill drop position, containers in the fill area are moved to the fill inspection area, and a new group of containers are moved into position under the filling area.
The screw conveyor stops and simultaneously the containers in the seal inspection position are inspected for proper seal, containers in the seal position are sealed, containers in the fill drop station that failed inspection are dropped through drop doors, containers in the L inspection position are inspected for proper fill and containers in the fill position are filled.
Thereafter the screw conveyor turns again and advances the containers over the seal inspection area to a seal reject door position, the containers in the seal position are advanced to the seal inspect position, the containers remaining over the fill drop station are advanced to the seal position, containers in the fill inspect position are moved to the fill drop position, the previously filled containers are moved to the fill inspection position, and a new set of containers are moved to the fill position. The screw conveyor again stops and any container above the seal reject door failing seal inspection is removed through the seal reject door, containers in the seal inspect position are inspected for proper seal, containers in the seal position are sealed, any container that failed fill inspection above the fill drop door is removed, containers in fill inspection position are inspected and containers in the fill position are filled.
The screw conveyor turns again and advances containers remaining over the seal reject door that have a proper seal out into an accumulation conveyor and the previously seal inspected containers are moved into the seal rejection area, the previously sealed containers are moved to the seal inspection area, the containers over the hill reject doors that have not been discarded over the reject area are advanced to the sealing area, and the previously fill inspected containers are moved over the fill reject area and the previously filled containers are moved to the inspection area, and a new group of containers are placed under the filling portion of the screw conveyor. This process continues as the screw conveyor incrementally advances oriented containers through the novel filling and sealing apparatus.
The novel filling and sealing apparatus includes at the filling station a clean in place apparatus for hygienically cleaning the filler portion of the novel filler and sealer apparatus. The filler portion of the novel filler and sealer apparatus includes a food product or fill reservoir connected to a piston cylinder combination that precisely meters the fill product into the containers by advancing a tapered piston to a mating tapered valve seat to provide a positive shut-off valve for depositing the food or fill product into the containers. Thereafter the positive shut-off valve is closed with the mating of the tapered piston to the tapered valve seat and the fill reservoir piston is retracted to its fill position and more product is placed into the product reservoir piston cylinder combination.
A further embodiment of the novel positive shut-off valve is provided for dispensing fluid food products that includes a variety of nozzles for precisely metering and controlling the dispensation of food products while minimizing dripping, splashing and sloshing of the fluid food product. The novel positive control shut-of valve includes a housing having a flowable product inlet intermediate the ends of the positive control valve. At one end of the positive control valve is an air line fitting communicating with a plenum on one side of a diaphragm and at the other side of the diaphragm an inlet for the product dispensing nozzle. Disposed at the other end of the positive control shut-off valve is a nozzle for dispensing food product having a channel communicating with the nozzle inlet and the diaphragm.
The novel positive shut-off valve operates by having a flowable food product pumped in the flowable product inlet which flows into the housing, past the diaphragm and into the nozzle inlet and out the nozzle outlet into the container. Once the metered amount of fluid has been dispensed air pressure is applied to the plenum on the other side of the diaphragm to close off the nozzle inlet and prevent further product from flowing through the nozzle. The novel positive control valve includes a variety of nozzles for metering a variety of flowable food products that accommodate a variety of viscosities.
A novel clean in place apparatus allows the pistons and cylinders to be cleaned by pumping cleaning solutions through the filler manifolds, filler valves and to the filler pumps and positive shut-off valves before the fluid is returned to the CIP-manifold. The closed loop clean in place system is also computer-controlled to provide for the periodic cleaning of the novel filler apparatus. Similarly the sealer portion of the machine is designed to allow t he periodic pivoting away of the heat-sealer and purge pistons for cleaning.
The sealing portion of the novel filling and sealing apparatus employs a multifunctional heater head which includes a nitrogen port for purging ambient air from the containers disposed below the heater head before a shuttle plate bearing a foil is placed directly above the container. Once the shuttle place is in place directly under the heater head and over the container the heads are extended downwardly pushing the foil through the shuttle plate and applying it to the container positioned directly below the foil opening in the shuttle plate. Thereafter, for an appropriate amount of time, the heater heads are activated to heat-seal the foil to the container to seal the container. The heater heads are designed to retract and cooperate with the retraction of the shuttle plate in such a manner as to turn a tab on the foil over the top of the container which later is surrounded by a plastic sleeve applied by the sleever and a straw is applied to the side of the sleeve by the novel straw applicator apparatus.
The novel screw conveyor precisely and discontinuously moves the containers in a start stop discontinuous operation that is sufficient in the preferred embodiment of the invention to position the container over the heat-sealing pistons that require a tolerance of about {fraction (1/30,000)} of an inch. This precise tolerance is necessary for heat-sealing foil closures to plastic containers in accordance with the preferred embodiment of the invention. The preferred application of the intention is for filling yogurt beverage containers. As will be recognized by those skilled in the art many types of sealing apparatus can be utilized such as the application of screw caps, crimped cans and other types or closure devices can be applied where the tolerances are not as close as in the utilization of a heat-seal roil in accordance with the preferred embodiment.
After the filled and sealed container exits fine novel filler sealer apparatus the container is preferably deposited upon an accumulation conveyor which functions as a controller conveyor. Depending upon the number of filled containers on the accumulation conveyor, the speed of the feed in the orientation and infeed conveyors and the delay period the discontinuous operation of the screw conveyor is stopped can be increased or decreased within limits. The entire production line can be integrated by a computer and time rates of the various production phases modified based on flow and backlog of the containers. Containers are transported from the accumulation conveyor to a sleever which applies a label or sleeve containing a label around the filled container. Once the sleever applies the label to the container, the container is transported to a heat tunnel which shrinks the seal onto the container. The sealed and labeled container is then transported to the novel straw applicator.
The novel straw applicator automatically applies straws on demand to the outside of the container as the container passes on a conveyor past the novel straw applicator. The novel straw applicator is disposed perpendicular to the conveyor production line and secures an individually wrapped straw to the outside of the filled and foil-sealed container. The novel straw applicator receives a band of individually wrapped straws in a cellophane band and first tensions the band before the band is introduced to the novel straw applicator conveyor belt of the novel straw applicator apparatus. At the introduction of the straws to a set of opposing conveyors, the straws are drawn in the band past a first set of laterally adjacent rollers which are connected to a second set of laterally adjacent rollers by two separate conveyor bands. At the first set of adjacently disposed conveyor rollers an adhesive tape is applied to one side of the band of straws to provide a sticky adhesive backing from a roll of tape which may be disposed in the housing of the tensioning element of the novel straw applicator device.
The straws are advanced in the first set of conveyors to a straw band cutter blade which severs the straws from the band and advances the individually wrapped straws to a novel straw applicator conveyor belt which has a plurality of straw applicator notches on one side and on the other side a series of timing notches together with vacuum ports for holding the individually cut straws in the plurality of straw openings while a vacuum box provides a vacuum for securely holding the individually cut straws with the adhesive as it travels along the straw applicator conveyor. The novel straw applicator conveyor belt is disposed between the second pair of opposing pulleys in the straw applicator conveyor to a straw applicator release pulley and the tensioning idler pulley. The novel straw applicator conveyor belt advances the cut straws to the application pulley at which point the vacuum is released and at the same time a filled and sealed container passes adjacent to the novel straw applicator conveyor belt which results in the adhesion and transfer of the adhesive tape backed straw to the side of the container to provide a final filled and sealed product with a straw applied to the outside surface of the filled and sealed container.
Associated with the straw applicator is a sensor to determine whether a filled and sealed container is properly sequenced with the operation of the straw applicator conveyor belt. The sensor determines when a container is in a proper sequenced position upstream and synchronously and on demand starts the straw applicator conveyor belt to time the release and attachment of the straw to the filled and sealed container. Once the sealed straw is applied to the outside of the container the container is ready for packaging and shipment.
The novel method and apparatus for the automated container filling and sealing production line produces a filled, sealed and packaged container from a group of unoriented containers at one end with the minimum intervention of human handling and processing. The novel software provides for the fully automated process by integrating continuous and discontinuous conveyor processes for assuring containers have been properly filled and sealed in the automated production process. In addition the novel container filling, sealing and handling equipment of the invention provides for easy cleaning and hygienic product handling in accordance with the highest food handling quality standards.
The automated production line integrates continuous and discontinuous processes together with the rejection of containers not meeting specification to assure that only containers meeting product standards are further processed in the novel production line to conserve materials and increase the quality control of the finished product. These advantages are provided in a computer controlled integrated production line to provide a continuous production process from continuous and discontinuous variable rate production processes utilizing continuous and discontinuous variable rate conveyor production lines that provide the highest standards of quality control at various stages of the filling and sealing operation.
The objects and advantages of the invention will become further apparent to those skilled in the art from the following detailed description of the invention when read in conjunction with the accompanying drawings in which:
Picture 1 is a photograph of a prior art packaged product with a folded straw;
Picture 2 is a photograph of the prior art product of Picture 1 without the straw and sleeve illustrating the prior art sealed and crimped foil seal;
Picture 3 is a close-up view of the prior art crimped foil seal;
Picture 4 is a photograph of the new packaged product with an attached telescoping straw produced in accordance with the best mode of the invention;
Picture 5 is a photograph of a new packaged product without the straw and sleeve illustrating the seal and crimped foil of the novel product produced in accordance with the invention; and
Picture 6 is a close-up photograph illustrating the crimped foil and seal of the novel product produced in accordance with the invention.
The invention pertains to a novel integrated automated production line having continuous and discontinuous conveyor operations integrated into a continuous production line which takes randomly oriented containers from a supply hopper, orients and roughly sequences those containers in a continuous conveyor operation and fills and seals those containers in a novel filler sealer machine utilizing a screw conveyor operating in a discontinuous conveying action which then deposits those filled and sealed containers on an accumulation conveyor which provides information to a computer for regulating the entire production line. The filled and sealed containers are transported from the accumulation conveyor to a sleeving device for applying sleeves, optional heat tunnels for shrinking the plastic sleeves and a novel straw applicator which applies a pre-packaged straw to the outside of the filled, sealed and labeled container. The novel automated production line having continuous and discontinuous conveyor operations is integrated into a continuous production operation utilizing computer software which obtains information at various points in the production line from various types of accumulation conveyors to increase and decrease various processes and control the operation of the production line at every stage of the container filling sealing operation.
The novel integrated production line includes novel devices for the filling and sealing operations together with the computer integration of those devices into a production line designed for continuous production. The novel devices incorporated into the novel production line include a novel orientation conveyor for orienting containers, a novel filler sealer screw conveyor device which is designed for simultaneously filling and sealing operations each time the screw conveyor is stopped and novel ambient air purging heat-sealing pistons, a novel positive control shut-off valve and a novel straw applicator apparatus and novel straw applicator belt. In the preferred embodiment of the invention the positioning screw conveyor also provides for the simultaneous inspection of the filled and sealed containers and in the best mode of the invention the rejection of any improperly filled and sealed containers before the improperly filled or sealed containers are further processed down the production line. In addition to the novel orientation conveyor and filling sealing apparatus, a novel straw applicator is provided in the production line to automatically attach an individually wrapped telescoping straw to the outside of the container to complete the production process of the invention. The novel straw applicator includes sensors and sequence timing devices to deliver a pre-packaged straw cut from a continuous band having an adhesive applied to one side for attachment to the filled and sealed and packaged container at the end of the novel integrated production process.
The invention is a product of an extensive research and development investigation into providing a fully automated production line integrating continuous and discontinuous conveyor operations to provide a fully automated hygienic production device meeting the highest requirements of the food processing industry. The invention provides for an ease of cleaning parts in direct contact with food materials as well as for the ease of cleaning all portions of the production line. As a result all of the parts which come in contact with food materials are composed of high quality stainless steel, plastic and other materials that can be easily cleaned in the production process. The novel integrated automated production line as a result simulates the mechanical equivalents of the human hand at various stages in the production process without introducing the disadvantages of contamination by human handling.
The novel automated integrated production line and the novel filler sealer apparatus were developed to provide a fully automated container filling production line which is compact and includes a number or processing stations or simultaneously filling, sealing, inspecting and, in the best mode, discarding containers that do not meet inspection requirements. The novel filler sealer machine is particularly adapted to food containers that are filled with liquid or semisolid food materials such as puddings, pie fillings, baby food, beverages and other types of fluid food material which can be metered into a container and sealed and then inspected on a fully automated container filling and sealing production line.
In the best mode of the invention the filler sealer machine and orientation conveyor are designed to handle containers having a base of a larger size than the rest of the container. In the best mode the container can have any type of cross-sectional configuration as long as the outside upper portion of the container is not larger than the size of the base. This application of the invention allows containers to not only be filled, sealed and inspected but also rejected in the novel container filler and sealer apparatus in accordance with the best mode of the invention. In accordance with other embodiments of the invention the novel container filler sealer machine of the invention is adaptable to fill and seal all types of containers and provide for he rejection of those containers by utilizing either a modified screw conveyor in the novel filler sealer machine or provide for the rejection of faulty containers outside of the novel filling, sealing and inspecting machine by providing a means for removing containers that did not meet inspection requirements somewhere further down the production line.
While the invention is applicable to all types of production lines for the handling of foods, beverages, pie fillings, baby food and other types of fluid materials the invention will be hereinafter described with respect to its best mode which pertains to a yogurt filling production line and, more particularly, to a yogurt drink filling production line in which randomly oriented containers are taken from one end of the production line and filled, sealed, labeled and provided with a pre-packaged straw attached to the outside of the labeled container at the other end of the production line.
Referring now to
Referring again to
Referring now to
Once the plurality of containers have entered the plurality of production lines 36-42 by the action of gravity, the plurality of lane divider plates 34 and the conveying action of laterally opposing elastomeric belts, the container 14 falls between a pair of laterally opposing elastomeric belts 48 and 50 to capture base 16 of container 14 to orient the container between elastomeric belts 49 and 50 as elastomeric belts 48 and 50 continuously travel along the length of the conveyor. In this embodiment of the orientation conveyor the containers are transported in a ‘bottom up’ ‘top down’ orientation to a plurality of turning plates 54 (
Orientation conveyor 32 provides a rough separation or sequencing in the preferred embodiment of ‘bottom up’ ‘top down’ oriented containers 52 where containers have a base 16 are filled and sealed in the novel filling and sealing screw conveyor apparatus which includes a rejection door for rejecting improperly filled and sealed containers. However, where an oriented and rough sequenced container 57 (
In either embodiment of the novel orientation conveyor, randomly oriented containers are deposited in infeed hopper 30 and transported by laterally disposed elastomeric belts 48 and 50. Each lane 36, 38, 40 and 42 includes a separate transposing elastomeric belt 48 and 50 for each of the plurality of production lines 36-42. Elastomeric belts 48 and 50 are disposed between a plurality of pulleys 62 for transporting oriented containers from the infeed hopper area 30 to the plurality of drop chutes 56. The orientated containers are continuously moved along the plurality of production lines 36-42 in a continuous operation to provide a rough sequencing of containers that are deposited on infeed conveyor 60.
The rough sequencing of the plurality of containers transported by elastomeric belts 48 and 50 by the plurality of pulleys 62 in each of the plurality of production lines 36-42 is provided by pliant plates and rods in combination with the travel of elastomeric belts 48 and 50 which are further controlled by a computer which controls each lane through an individual sensor 64 which is connected through a clutch assembly 68 for controlling the speed or stopping each or the plurality of production lines 30-42 in the event a particular lane needs to be slowed or stopped due to a problem further on down along the production line.
Clutch assembly 68 includes clutch plate 70 and 72 for controlling each of the plurality of production lines 36-42 through-orientation conveyor drive shafts 74 and 76 through bevel gears 78 and 80 (FIG. 6 and FIG. 8). Bevel gears 78 and 80 on drive shaft 74 provide a drive for lanes 36 and 40 through each clutch assembly 68 which may individually slow down or shutoff production line 36 or 40 in operation while drive shaft 76 is connected via beveled gear 82 and 84 to clutch assembly 68 which is connected to production lines 38 and 42 to individually control or shut down the speed of production line 38 and 42 through each of the clutch assemblies 68 similar to those connected to drive shaft 74. Clutch assemblies may also be connected to variable speed drive assemblies for further increasing or decreasing individual lane speeds in a manner known to those skilled in the art.
Referring now to
Excess containers are thereby maintained in hopper 30 or can fall through the area below hopper 30 in a collection box 94 (
Once the oriented containers 52 exit first pivoted plate 86 and second pivoted place 88 they are introduced to a pivoting finger assembly 94 disposed in each of the plurality of production lines 36-42 (
As will be recognized by those skilled in the art the rough sequencing provided by the novel orientation conveyor in the operation of pliant plates and fingers in combination with the computer control and motion of the elastomeric belts can be used for ‘bottom up’ ‘top down’ orientation and sequencing or ‘top up’ ‘bottom down’ orientation. The rough sequencing provided for containers with larger tops than bases can easily be provided for where such containers have opening 20 and flat bottom are reversed as illustrated in FIG. 8A. However, in the best mode of the invention the ‘bottom up’ ‘top down’ oriented containers are transported to the plurality of turning plates 54 (drop guides 65 in the alternative embodiment) and deposited through drop chutes 56 in a ‘top up’ ‘bottom down’ oriented configuration on continuous infeed conveyor 60. Infeed conveyor 60 is connected to the computer and in the preferred embodiment operates like an accumulation conveyor by providing information as to container flow which is used to increase and decrease the speed of elevator conveyor 22 and control the speeds of the plurality of lanes of the orientation conveyor 32. Infeed conveyor 60 then transports and introduces the ‘top up’ ‘bottom down’ oriented and roughly sequenced containers 58 to the novel filling and sealing apparatus 100 at one of the screw conveyors 102, 104, 106, 108, 110 and 112 (FIG. 11).
Referring now to
Referring now to
As the containers are introduced to the screw conveyors 102-112 which, for the purposes of illustration, will be discussed with respect to screw conveyors 102 and 104, the containers are optionally stabilized by a stabilization cover 97, which is preferably made of clear plastic material such as lexan is supported by a pair of adjustable brackets 99 which serve to stabilize containers 38 from wobbling or tipping as illustrated in
If the position sensors 153, 160, 162 and 164 have determined both containers 58 are in proper tandem positions on both sides of screw conveyors 102 and 104 are in fill position 166, then all four of the filler heads are activated to meter a fluid food product or other fillable material into the containers 58 in fill position 166 that have been advanced to the fill position. In the event the fill position sensors 158, 160, 162 and 164 do not detect all the containers 58 in the proper tandem or lateral position or that one or both or all of the containers are missing, the information supplied by fill position sensors 158-164 to the computer prevents the release of food materials or other fluid fillable materials into the one or more missing containers 58 in fill position 166. The novel filler and sealing apparatus fills only the containers present in direct perpendicular alignment with filler heads 146 to prevent spillage or unnecessary release of materials through a positive shut-off valve as will be described hereinafter in greater detail.
For the purposes of illustration certain containers have been omitted between the various work stations. Containers are present in operation in every space between each of the threads of the screw conveyors 102 and 104 and in accordance with the invention may be positioned intermediate one or more of the work stations until the spiral conveyor advances them into one of the work station positions. As illustrated in
In the preferred embodiment of the invention the novel filler sealer machine has sensors for sensing and providing information to the computer as to whether containers are present in their proper tandem and lateral positions. Additionally, the preferred embodiment of the invention, in addition to having position sensors 158, 160, 162 and 164, also has a fill position 166, a fill inspection position 168, a seal position 176, a seal inspection position 178 and a single reject position 182 that serves to reject all containers 58 that do not pass inspection at fill inspection position 168 or pass inspection at seal inspection position 178. These defective containers are all rejected through reject doors 180. In the preferred embodiment containers 58 that do not pass fill inspection are not sealed at seal position 176 and are rejected through reject doors 180 without a seal as well as containers that have been identified as having a defective seal. In operation the positioning screw conveyors 102 and 104 precisely position a plurality of containers simultaneously at each of the positions and the conveyor then stops while operations are performed substantially simultaneously at each of the various positions.
In operation in the preferred embodiment conveyors 102 and 104 are stopped and containers 58 are sensed bag sensors 158, 160, 162 and 164 as another group of containers in the fill position 166 are being filled and a second tandem set of containers on each side of conveyors 102 and 104 are being inspected in the fill inspection position 168. While in fill inspection position 168 containers being inspected for proper fill may also be inspected for the absence of fluids or materials on the foil seal ridge area 170 on each of the containers 58.
As fill inspection position 168 containers are being inspected the results of the inspection are sent to the computer. In seal position 176 containers that have been inspected for proper fill and have passed fill inspection are then purged of the ambient air with a purge gas and foil seals are moved in perpendicular alignment to the containers in seal position 176 and heat-seal pistons are advanced to seal the containers in seal position 176.
As containers in seal position 176 are being sealed previously sealed containers in seal inspection position 178 are being inspected for proper seal and the results of the inspection are sent to the computer. At the same time previously seal-inspected containers as well as unsettled containers that did not pass fill inspection are above reject doors 180 in reject position 182. Information from the results of the seal inspection and fill inspection are used to open the appropriate reject door 180 below the defective container.
Once the steps of sensing or the existence of a container in position, filling containers in place, inspecting containers filled, sealing property filled containers, inspecting previously sealed containers, rejecting containers for improper fill and a bad seal have been completed, the positioning screw conveyor again turns to move the containers from the idle stations between the work stations to the work stations where once again the containers in fill position 166 are filled while filled containers in fill inspection position 168 are being inspected for fill, properly filled containers in seal position 176 are being sealed, containers that were sealed are inspected in seal inspection position 176 and defective containers in the reject position 182 are being removed from the production line. This process again starts over with the turning of the positioning screw conveyor and the advancement of a new set of containers at the work stations. The properly filled, sealed and inspected containers are then discharged from output end 182 of the novel filling sealing apparatus and are transferred from the novel filling sealing apparatus 100 onto the accumulation conveyor 183. The novel filling sealing apparatus is designed to handle about 600 containers a minute along the multiple work areas along the novel screw conveyors 102-112.
Referring now to
The simultaneous filling, sealing, inspection for fill and seal compliance, optional rejection for improper filling and rejection for defective fill or seal takes place simultaneously along the length of conveyors 102 and 104 every time conveyors 102 and 104 are stopped to provide a full and complete filling, sealing, inspection and rejection of containers not properly filled or sealed in the novel filling and sealing apparatus of the invention. Once all of the steps of determining whether containers are in place, filling containers, inspecting filled containers, optionally removing improperly filled containers, sealing properly filled containers, inspecting seals of sealed containers and removing containers not meeting inspection standards are completed, the screw conveyors 102 and 104 turn to advance a new pair of tandem containers to sensing positions, filling positions, inspection positions, sealing positions and rejection positions to again begin the process of filling, sealing, inspection and rejecting containers that have not been properly filled or sealed in the novel filling and sealing apparatus.
As will be recognized the simultaneous filling, sealing, inspection and rejecting of containers in the novel filling and sealing apparatus requires precise positional control of the rotational positions of each of the screw conveyors 102-112 as the containers are moved from the continuous infeed conveyor 60 through the screw conveyors 102-112 to the output end 184. Not only is the rotational position of the screw conveyor 102-112 critical, but also is the substantially perpendicular alignment of the containers with each of the inspection, filling, sealing and reject station along the bed 156 of the novel filling and sealing apparatus. The most critical positional alignment position is the containers in seal position 176 which must be positioned in substantially perpendicular alignment to the heat sealing piston to within one thirty thousandth of an inch tolerance to provide a proper heat-seal to the container.
The critical importance of the rotational position of the critical importance of the rotational position of the screw conveyors 102 and 104 at the multiple filling, sealing, inspection and reject stations as well as the perpendicular alignment of the containers 58 at each one of the stations is assisted by the utilization of a plurality of guide rails disposed on each side of the screw conveyor 102-112 These guide rails 190 together with the action of the crew conveyor and bottom guide rods and seal position plates under seal position 176 along with a substantially flat bottom surface of the container provides the combination of positive control forces necessary to provide a positive position control over containers without crushing, bending or binding containers in the novel filling sealing machine of the invention.
Referring now to
The clockwise rotation of screw conveyors 102 and 104 exert downward forces on the container on the right side of conveyors 102 and 104 from the input end (
Referring now to
Referring now to
Referring now to
Modified filler head 141 functions as the positive shut-off valve of the preferred embodiment by receiving a fillable product from product supply 151 through product reservoir 142 by the operation of piston 218 to pump the fillable product through product reservoir 142 and hose 144 into inlet 161 of modified filler head 141 which fillable product flows into chamber 163 around nozzle 143 and past diaphragm 153 and through passage 165 into container 58 in fill position 166 (FIG. 10). Once the proper amount of fillable product is metered into container 58 in fill position 166 air pressure is introduced through inlet fitting 149 and into plenum space 155 to force diaphragm 153 down over rim 157 of nozzle 143 to close off passage 165 and prevent further product from flowing down passage 162.
Referring now to
Each of the filler heads 146 including modified filler heads 141 can be moved from is fill position 166 to a cleaning position as represented by filler heads 148 in clean position for cleaning (FIG. 17). Referring now to
Referring now to
Once 180 degree turnable transport mechanism 244 receives the precise number of foil seals 248 needed to seal, containers 58 in seal position 176, the 180 degree turnable transport mechanism 244 travels down a cam 252 (
Openings 260 containing the requisite foil seals 248 are moved by shuttle plate 258 (
Once the foil seals 248 have been pushed through openings 260 and crimped around neck 264 of containers 58, tapered lip 266 (
Referring now to
A modified purging and sealing piston 243 is illustrated in
After containers 58 in seal position 176 are sealed they are then moved to seal inspection position 178 for seal inspection (FIG. 10). The results of the seal inspection are stored in a computer along with he results of the fill inspection so that, when the containers are moved to reject position 182, a reject door under the defective container is activated by the computer to remove the defective container from the assembly line. As a result only containers meeting fill and seal inspection requirements are transported out of output end 184 onto the accumulation conveyor 188 of the novel production line of the invention.
As will be recognized by those skilled in the art, the precise positioning of the container at each of the filling, sealing and inspection stations is critical to provide the simultaneous filling and sealing of containers along the length of screw conveyors 102 and 104. It will also be recognized that the shape of the container in relation to the configuration of screw conveyor 102 is important in positioning and also removing containers through reject doors 180 and also through optional fill reject doors 174 where fill reject doors are used. The advantage of utilizing fill reject doors is to remove containers from the production and not waste resources on handling and possibly sealing containers that may not be properly filled or by allowing such containers to remain in the production line. The shape of the container is important to allow its removal through reject doors 180 since, if the too portion of the container is larger than the bottom nor ion of the container, the container will not be able to fall through reject doors 180.
As a result in the best mode of the invention a tapered cylindrical container having a base of a larger diameter and having a decreasing taper to the top is preferred. The preferred tapered container is preferred in the best mode because the container is held in positive position all along the length of the screw conveyor by not only threads 198 and 200 of each of the screw conveyors against the sides of the container but also the coaction between the guide rails 190 against the side of the container and rods 202 or bottom support plates on the bottom of the container. This positive engagement along the entire length of the screw conveyor provides the advantages of the invention in precisely positioning the container at all work stations along the length of the screw conveyor and allows the close sealing tolerances of about one thirty thousandth of an inch to be achieved where the containers are sealed with a foil heat-seal.
The advantages of positive control over the containers along the entire length of the screw conveyor can be a disadvantage in removing containers having a larger top from being removed from the screw conveyors since the screw conveyors are not reversed and the tension upon the sides of the containers is designed to be a positive force to hold the containers in a positive position throughout the length of the screw conveyors. This positive force on the screw conveyor is provided in the best mode of the invention by utilizing a screw conveyor having a uniform diameter from end to end and spiral threads of a uniform spiral angle to uniformly maintain pressure on the container at each of the work stations along the length of each screw conveyor.
In alternative embodiments of the invention containers having a top larger than the base of the container can be filled and sealed in the novel filler sealer machine. In such alternative embodiments of the invention containers having a uniform diameter or a larger top than base can be filled and sealed in the novel filler sealer apparatus by either utilizing a modified screw conveyor or by not removing defective containers from the screw conveyor.
Referring now to
Containers 300 having a top of a larger diameter than the base as represented by containers A, B, C, D, and E are transported along the length of modified screw conveyor 301 as in the manner as previously described except when the containers enter recessed areas 303. Containers first enter shaft recessed area 303 by the action of threads 198 and 200 and are advanced by container A pushing container B which pushes container C which pushes container D which pushes container E. The pushing of container C and D by container B is assisted by a motion vibrator 199 which vibrates the bottom of container C pushing container C over a reject door such as reject door 174 or reject door 130. Container C and D can be removed from screw conveyor 301 even though the tops are larger than the bottom due to the extra space provided in recess area 303 due to the reduced circumference of narrow shaft 307. Alternatively a scale 305 (
Referring now to
Container D (
Referring now to
Referring now to
At this point the filling and sealing is completed on the novel filling and sealing apparatus having a discontinuous operation of screw conveyors to provide a complete filling, sealing, inspection and optional container removal operation in a production line providing for the positioning of containers at multiple work stations along the length of the screw conveyors. Once the containers have been filled and sealed and optionally inspected, the filled and sealed container exits the novel filling and sealing apparatus 100 and is transported in the preferred embodiment of the invention to an accumulation conveyor 188.
Referring now to
The two outside lanes 328 and center lane 330 (
The operation of the reverse flowing conveyor lanes provided by outside lanes 338 and center lane 330 operates much in the way of a counterflow mechanism for fluids in which excess containers are moved off the three direct conveyor lanes 344, 346 and 348 and caught in a reverse flow or eddy current where the containers are constantly moving so as to not plug up the main production lines 344, 346 and 348 and remain in circulation without entering the production line until such time as the containers are able to be directly channeled onto the direct production lines 344, 346 or 348.
Drive for the accumulation conveyor is provided by drive motors 350 which are connected to an accumulation disconnect panel 352 disposed on wall 354. Also disposed on wall 354 is a control panel 356 and power panels 358 for the heat tunnel 324.
The information as to flow rate and backflow information is supplied to a computer 340. Computer 340 can adjust the flow rate to reduce the accumulation of containers on the accumulation conveyor by slowing down the elevated feed conveyor 22, the novel orientation conveyor 32 or the novel filling and sealing apparatus 100 to adjust the rate of production of the novel production line. The accumulation conveyor 188 in addition to providing information to computer 340 for increasing and decreasing the rate of production also regulates production flow for when any of the screw conveyors 102-112 need to be shut down or when one of the lanes of the plurality of lanes of the novel orientation conveyor have to be shut down or when one or more of the direct production lines 344, 346, and 348 need to be shut down in the event one of the sleevers 322, ovens 324 or straw applicators 326 is or line or requires maintenance. In the event one of the three direct production lines 344, 346 or 348 require a diversion of the filled and sealed containers to other production lines, the accumulation conveyor provides for the diversion a the filled and sealed containers to the other remaining production lines as will be described hereinafter in greater detail.
Referring now to
Accumulation conveyor 188 can shut down center production line 346 and divert filled and sealed containers to the remaining production line 344 and 348 by pivoting divider 368 across the center lanes to contact diverter 362 (FIG. 29). Once divider 368 is in contact with diverter 362 all remaining production flows down open production lines 344 and 348 or is channeled through the back flow outside lanes 338. Similarly the accumulation conveyor 188 can close off production fine 344 (
Once the filled and sealed containers exit accumulation conveyor 188 the containers in accordance with the preferred embodiment of the invention are then sleeved in sleevers 322 to apply labels or sleeves with labels to the outside of the filled and sealed containers. The sleevers which apply labels to the containers may be any type of prior art sleever or labeler currently on the market to apply labels or sleeves which are connected to the novel production line through computer control and related computer program to control the operation of the entire novel production line. In the preferred embodiment of the invention sleevers 322 are American Fuji Seal, Inc. sleevers and may be obtained from American Fuji Seal, Inc. of Fairfield, N.J. 07004 and as a result will not be described in further detail.
In addition to the attaching of a sleeve with a label in the novel production line a heat tunnel 324 which can be a steam or radiant heat tunnel and preferably is a steam tunnel which is provided to shrink-wrap the plastic sleeve containing the label to the packaged and sealed container. The heat tunnels for heat-sealing the sleeve containing the label to the container can also be obtained from American Fuji seal of Fairfield, N.J. 07004 and as a result will not be described in further detail. Once the sleeve containing the label is shrunk to the containers the containers transported down production lines 344, 346 and 348 to the novel straw applicators 326 for attaching an individually wrapped straw to the outside of the filled and sealed container.
Referring now to
As a filled and sealed and labeled container 58 moves down production line 346, the filled, sealed and labeled container 58 is sensed by sensor 380 which may be attached to the straw and tape supply housing 382. Straw and tape supply housing 382 houses a plurality of individually wrapped telescoping straws 384 which are interconnected by a plastic band 386. Straw and tape housing also houses a roll of adhesive tape 388. Straw plastic band 386 is advanced past straw web pivot bar 387 while adhesive tape 388 is advanced past adhesive tape web pivot bar 389. A bonding roller 391 bonds adhesive tape 338 to the straw plastic band 386. As soon as sensor 380 senses the presence of a filled, sealed and labeled container 58 on production line 346 the drive motor 390 is engaged to sequence the delivery of an individually wrapped telescoping straw to container 58 as contacts straw applicator cylinder 392 as will be described hereinafter in greater detail.
The timed relationship in the preferred embodiment is provided by a demand sensor 380 which activates and controls the operation of drive motor 390. Individually wrapped telescoping straws 384 on plastic band 386 and adhesive tape 388 are drawn out of housing 382 by drive-motor 390 which is connected to drive shaft 394 (FIG. 32:) through bearing 396 connected to frame 398. Drive shaft 394 is connected to pulleys 400 and 402 for driving divided straw conveyor belts 404 and 406. Divided straw conveyor belts 404 and 406 are divided into upper straw conveyor belt 404 and lower straw conveyor belt 406 that connects drive pulley 400 with notched pulley 408. Similarly drive pulley 402 connects lower straw belt 406 with notched pulley 408. Notched pulley 408 includes a plurality of notches 410 which accommodate the individually wrapped telescoping straws 384 and positively engage and control the positioning of the telescoping straws 384 into the notches 412 on upper straw conveyor belt 404 and lower straw conveyor belt 406. Notched pulley 408 is journalled to frame 398 through a bushing 414. The notches 410 in notched pulley 108 together with notches 412 in upper straw conveyor belt 404 and lower straw conveyor belt 406 provide a positive engagement and advancement of the plastic band 386 connecting the individually wrapped telescoping straws 384.
Laterally disposed to notched pulley 408 and drive pulleys 400 and 402 is conveyor belt 416 connected between two servant pulleys 418 and 420 (FIG. 31A). Servant pulleys 41 and 420 together with conveyor belt 416 provide an abutting surface to upper straw conveyor belt 404 and lower straw conveyor belt 406 to capture, engage and positively advance telescoping straws 384 between straw conveyor belts 404 and 406 and conveyor belt 416. Servant pulley 418 draws an adhesive tape 388 from housing 382 and applies the adhesive tape 388 to the flat side 422 along the back of the plastic band 326 of the individually telescoping straws 384. As soon as the adhesive is applied to the flat side 422 of individually wrapped telescoping straws 384, the protective layer 424 of the double-sided adhesive tape 388 is removed and the protective layer 424 is discarded as the straw bearing the adhesive backing on the individually wrapped telescoping straws 422 proceeds down between upper straw conveyor belt 404, lower straw conveyor belt 406 and conveyor belt 416.
To further assist in the positive alignment and engagement of the straws between notched pulley 408 and servant pulley 418, a straw tensioning mechanism is provided in straw and tape housing 382. The straw tensioning mechanism (
Referring now to
Mechanical sheath 448 includes a pair of laterally disposed support cylinders 450 and 452 as well as associated springs 454 to maintain mechanical sheath 448 in its protected covering position as illustrated in FIG. 34. The action of solenoid 444 in advancing piston 446 causes the knife supporting assembly 456 to bias springs 454 and advance the serrated edge 442 of knife blade 440 to cut the plastic band 386 of the individually wrapped telescoping strews 384. Thereafter the individually wrapped telescoping straws continue their advancement toward drive pulley 400 and 402. When the individually wrapped telescoping straws with an adhesive back, serrated by the knife assembly 438, reach drive pulleys 400 and 402 they are transferred onto a novel straw application belt 460.
Referring now to
Elastomeric straw application belt 460 is precisely controlled by drive pulley 464 on drive shaft 3194. Elastomeric belt extends from drive pulley 464 to straw applicator cylinder 392 and back to drive pulley 464 through idler adjustment pulley 466. The precise transportation of individually wrapped telescoping straws 384 in elastomeric belt 460 is controlled through the use of laterally adjacent timing notches 468 on the back side of elastomeric straw application belt 460 together with rubber bands 480, 482 extending from drive pulley 464 to servant shaft 484 journelled to housing 398 through bearing assembly 486. Servant shaft 484 includes grooves 488 for capturing rubber bands 480 and 482 in rotational alignment with drive pulley 464. The combination of rubber bands 430, 482 with notched receiving pockets 462 holds individually wrapped telescoping straws in notched receiving pockets until a vacuum is applied to notched receiving pockets 462 in elastomeric straw application belt 460.
The maintenance of the separated individually wrapped telescoping straws 384 are further maintained in notched straw receiving pockets 462 by the application of a vacuum through a plurality of ports 470 extending through elastomeric straw application belt which connect the notched straw receiving pockets to a vacuum supply box 472. The vacuum supply box 472 runs along the back side of elastomeric straw application belt 460 to apply a vacuum to maintain the separated individually wrapped telescoping straws 384 with an adhesive on the back until the straws reach the straw applicator cylinder 392 at which point the adhesive back flat surface of the adhesive coated straw contacts sleeved container 58 to apply the straw to the side of the container as it travels down production line 346.
As previously discussed the novel continuous production line of the invention integrates the continuously operating elevated conveyor 22 with the continuously operating novel orientation conveyor 32 with the continuously operating infeed conveyor 60 with the discontinuous operation or screw conveyors 102-112 in the novel filling and sealing apparatus 100. The discontinuous operation of screw conveyors 102-112 are integrated with the continuously operating accumulation conveyor 188, the continuously operating sleever 322 and the continuously operating heat tunnels 324 with the discontinuously operating straw applicators 326 which operates only on demand to advance straws and attach straws when one of the three production lines 344-348 provide a filled, sealed and sleeved container 58.
The integration of the continuous and discontinuous production lines to provide a final packaged product is achieved through the utilization of a computer control system for controlling the entire production operation for the filling, sealing and labeling and completion of the final filled, sealed, labeled end product with a straw applied to it. The operation and control of the integrated production line will be further described with respect to
Referring now to
Once the machine is ready for operation, various logic loops are performed as represented by logic blocks 512, 514, 516 and 518 before the position screw is activated and determination is made whether the pa red position sensors 158-164 have sensed the presence of a container at the screw conveyor apparatus as represented by block 517 and which then proceeds to the fill operation as represented by block 521. The computer program prepares for the filling of the containers after determining whether a container is present as represented by block 519 before proceeding to open the positive shut-off valve, as represented by block 520, resulting in the extending of pistons to transfer product (block 522), the closing of the positive shut-off valve when the limit switch is contacted (block 524), then opening the supply inlet valve (block 526), retracting the product piston (block 528) and closing the supply inlet valve (block 530), wren the retract limit switch is contacted as illustrated in FIG. 41C.
Meanwhile the pick and place logic loop, as represented by block 532, is initialized and the logic sequence of determining whether a container is present at the heat-seal staging area (block 540) is accomplished which includes activating vacuum to move foil to the shuttle plane and then releasing vacuum to transfer foil to the shuttle plate (block 542) and determining whether the shuttle plate is under the heating heads (block 544) before the heater heads are moved down to seal the container (block 546) as illustrated in FIG. 41D. Simultaneously with the filling, the reject circuit as represented by block 534 is activated for simultaneously determining whether to reject the container due to improper fill through a reject door as represented by block 536 (
Additional computer program and control is provided for the novel production line of the preferred embodiment including the operation of the elevator conveyor, operation of the rough sequencing orientation conveyor, operation of the accumulation conveyor, operation of the conveyors for the sleevers and heat tunnels as well as for the operation of the novel straw applicator apparatus to provide a continuous production line to maintain an integrated production over various continuous and discontinuous conveyor processes, number of production lines and speeds of production throughout the novel conveyor production of the invention as illustrated in
The logic loop for integrating the novel integrated automated production line includes control of the orientation conveyor 32 by first determining the amount of containers on infeed conveyor 60. If any lane of the infeed conveyor is about 75% or less full the clutch assembly 68 is engaged to run orientation conveyor 32 as represented by blocks 586, 538 and 590. In the event any lane of the infeed conveyor 60 is greater than about 75% full then clutch assembly 68 is disengaged as represented by blocks 588 and 592 to slow down input to one or more of the screw conveyors 102-112 of the novel filling and sealing machine 100 as illustrated in FIG. 43A.
The logic loop for regulating the operation of the novel filler sealer machine 100, the sleepier 322 and heat tunnels and production lines 344, 346 and 348 by accumulation conveyor 188 is illustrated in
Referring now to
The input elevated conveyor provides a single continuous production line which is divided into four separate production lines that are susceptible to individual control and which provides for the orientation and rough sequencing of containers that are then fed into the four production lines of the novel sealing and filling apparatus 100. The novel production line also includes provision for shutting down one or more of the production lines in the event there is a jam or fault in any of the lines, without stopping the entire production operation. The four production lines from each of multiple work stations of the novel filling and sealing apparatus of the invention. The novel tilling and sealing apparatus of the invention utilizing the positioning screw conveyor receives and indexes the containers from the orientation device and transports those containers to the plurality of work stations in a plurality of production lines along the novel filling and sealing apparatus of the invention.
The novel filling and sealing apparatus fills pairs of containers to a six ounce fluid capacity with an acceptable overflow of about ⅛ of an ounce without sloshing or spilling the containers during production. Further the novel filling and sealing apparatus handles a plurality of containers at various stations to inspect, seal, remove and purge ambient air from the containers and provide an aesthetically pleasing crimp on the foiled lid with a tab folded (and not creased) up and over to lie on the top of the container. All containers not meeting the acceptable product content level or all containers not properly sealed are rejected through doors at the bottom of the bed of the novel filler and sealer apparatus of the invention.
The frame assembly of the novel filler and sealer apparatus is made of stainless steel with sliding access doors made of ⅜ of an inch clear Lexan® plastic to provide for an ease of cleaning as well as maintaining a clean production environment. The sliding access doors include a safety interlock feature to prevent access to the machine during operation. The product filler assembly includes sensors that not only detect the presence of containers but also whether the containers containers have been properly filled as well as an electronic feed-back adjustment system by which the volume of dispensed food product is controlled by the stroke of the piston to prevent multiple containers from being improperly filled. The filling system is activated by opening the filler manifold actuator and retracting the filler cylinder which draws in the product. The filler manifold actuator is then closed, the filler cylinder pushes forward and simultaneously the positive shut-off valve opens, pumping the product into the container. The positive shut-off valve then closes to prevent any product from dripping during the filling cycle. In the event a container has a low product fill the sensor will also signal the programmable logic control and that container is then rejected from the novel filling and sealing production line and this information is then used to modify the time the positive control valve remains open to automatically correct for fill errors for each of the filler heads.
The pick and place assembly in the preferred embodiment utilizes eight vacuum cups four vacuum cups per each position screw conveyor with each pick and place assembly accommodating two position screw conveyors. As a result three pick and place mechanisms are mounted on cross-supports to accommodate the twelve production lanes provided by the six position screw conveyors. The vacuum cups of the pick and place mechanism are operated individually by pumps and valves to individually and selectively remove foils located above the assembly and then allow the pick and place mechanism to mechanically pivot 180 degrees by guide shafts and cams driven place mechanism are operated individually by pumps and valves to individually and selectively remove foils located above the assembly and then allow the pick and place mechanism to mechanically pivot 180 degrees by guide shafts and cams driven by cylinders so that at the bottom of the stoke the pick and place mechanism deposits the foil directly down into a single shuttle plate having twenty-four cavities for accommodating the twelve production lanes provided by the six position screw conveyors. If any container has been removed or is defective, the foil is not removed and the corresponding opening for the shuttle plate remains empty.
The shuttle plate then moves from the pick and place assembly position to the heat-seal position to line up the fill seal in direct perpendicular alignment to the heat-seal pistons. However, prior to the advancement of the shuttle plate assembly the heat-seal pistons purge the filled containers with nitrogen gas through a manifold operated by three solenoid control valves. The nitrogen is routed through the pistons' heads as previously described, and when all of the containers that are to be sealed are purged with nitrogen gas, the shuttle plate moves into position and the pistons are advanced through the openings in the shuttle plate to seal the foil to the container to provide a filled and sealed container.
As the foil is heat-sealed to the container it is also form-fitted around the top surface of the container (Picture 5 and 6) and a foiled tab provided on the foil seal protrudes outwardly and, as the shuttle plate moves back to the pick and place position, it folds the tab over the top of the container. As the container exits the sealing area the tab is brushed back to bend the tab over the too of the container to provide a final filled and sealed container. Any container not properly having a proper foil seal or with low product level are rejected as previously described.
The filled, sealed and inspected containers are then sleeved with a sleeve containing a label and the sleeve is heat-shrunk to the container in the heat tunnels. A telescoping straw is applied to the outside of the container with the novel straw applicator to provide a final, filled, sealed, labeled, packaged product including a telescoping straw as illustrated in Picture 4. A comparison of Picture 4 with Picture 1 (prior art) illustrates the difference in appearance of the final product as a result of utilizing the novel straw applicator as well as the utilization of the novel ambient air purging heat-sealing pistons to form fit the foil seal around the container in the novel filler sealer machine of the invention.
The novel filling and sealing machine is controlled by an Allen Bradley SLC 5/04 PLC. A programmable logic control monitors all of the sensors discussed in addition to failsafe sensors located on all major assemblies. The novel production line can include screens and computer interfaces for operators to monitor the entire automated production system.
The cleaning of the novel filling and sealing apparatus is provided by a clean in place showering system which utilizes a series of overhead clean in place tubing which creates a sanitized water shower system for cleaning all of the components which handle food or components upon which food product can be spilled during production. The nozzles of the showering system create an overlapping fan-like dowsing effect for dowsing all of the lanes in the novel filling and sealing machine. The clean in place system further circulates cleaning solution through the filler manifolds, filler valves to the filler pumps and to the positive shut-off valves and en returns the cleaning solution to the clean in place manifold. The closed loop clean in place system requires that all internal components are free from cracks and other imperfections or welds that would prevent proper cleaning during the clean in place cycle. The same is true with the heater heads which are designed to pivot toward the output end of the novel filling and sealing apparatus of the invention. The pivotable heater heads allows access for cleaning of any heater heads that might contact any food product surface.
As will be recognized by those skilled in the art the novel integrated automated production line can be used to fill containers other than yogurt beverage containers or other yogurt product containers and is applicable to various types of fluid food products, particularly baby food, dairy products, creams, puddings and food as well as to filling containers with non-food fluid materials in a liquid or dry form. As will be further recognized by those skilled in the art the novel production line is not limited to plastic containers but can be easily adapted to glass bottles, metal or other containers which may or may not be transparent and from which the level of the liquid can be read either through the container or sensed by a sender through the top of the container to determine the volume of material in the container or weighed in novel filler sealer apparatus where the contents of the container are sold by weight.
It will also be appreciated the invention is not limited to containers that have a ton of cross-section less than the base of the container since such containers can be filled in alternative embodiments of the novel filling and sealing machine of the invention. It will be further appreciated that various portions of the novel production line are novel in their own right including the orientation conveyor, novel filling and sealing apparatus and novel straw applicator which may be used alone in various other types of production lines without using the entire novel production line of the invention. Similarly certain aspects of the production line, including the novel ambient air purging sealer piston, positive shut-off valve, novel straw applicator belt and novel screw conveyor, novel retractable production line scale may be utilized without utilizing the entire production line, entire machines or entire novel systems of the present invention. These subcomponents as well as the entire novel production line are each themselves subject to changes and modifications by those skilled in the art for purposes of implementing the invention in a variety of applications. In addition the computer control of production flow techniques utilizing the accumulation conveyor(s) may be achieved by other flow rate mechanisms alone or with conveyors and such flow rate control mechanisms will be referred to generically as “accumulation means”. As a result those skilled in the art will recognize the invention has a wide range or applications and implementations which are deemed includes within the scope of the present invention as defined in the following claims.
Further, as used herein and in the following claims, the word ‘comprising’ or ‘comprises’ is used in its American technical sense to mean the enumerated elements include but do not exclude additional elements which may or may not be specifically included in the dependent claims. It will be understood such additions, whether or not included in the dependent claims, are modifications that both can be made within the scope of the invention. It will be appreciated that these and other modifications can be made within the scope other invention as defined in the following claims.
De Cardenas, Gilbert L., Barker, Kenneth N.
Patent | Priority | Assignee | Title |
11472579, | Dec 04 2018 | GPCP IP HOLDINGS LLC | Film securing apparatus and method |
11548667, | Dec 04 2018 | GPCP IP HOLDINGS LLC | Film securing apparatus and method |
7172220, | Nov 02 2001 | QUALITY ASSURED ENTERPRISES, INC | Extended text label for a tube container and method of manufacture thereof |
7334378, | Dec 18 2003 | PLUS ONE TECHNO CO , LTD | Packaging machine and weighing apparatus |
7469517, | Dec 06 2004 | Phoenix Closures, Inc. | Closure transferring mechanism |
7527079, | Aug 24 2005 | Graphic Packaging International, Inc | Method and apparatus for facilitating filling a container |
9008985, | Aug 18 2009 | KHS GmbH | Automatic test method for an inspection device |
Patent | Priority | Assignee | Title |
1346613, | |||
2183433, | |||
2571036, | |||
3012650, | |||
3189171, | |||
3517797, | |||
3708945, | |||
3978979, | Mar 14 1975 | Egyesult Izzolampa es Villamossagi RT | Apparatus for arranging, separating and positioning of items being conveyed |
4223778, | May 12 1978 | OWENS-ILLINOIS PLASTIC PRODUCTS INC , A CORP OF DE | Parison handling assemblies and methods for handling parisons |
4271954, | Apr 03 1979 | New England Machinery, Inc. | Bottle orienting apparatus |
4384915, | Feb 22 1980 | Aktiebolaget Tetra Pak | Apparatus for heat-attaching articles in a production line |
4572758, | Feb 13 1984 | Indag Gesellschaft fur Industriebedarf mBH | Machinery and method for attaching drinking straws in protective coverings to beverage containers |
4605047, | Mar 17 1982 | Bausch & Strobel Maschinenfabrik GmbH & Co. | Filling device for bulk material, especially liquids |
4662154, | Oct 12 1984 | Continental Can Company, Inc. | Liquid inert gas dispenser and control |
4691496, | Jan 31 1983 | Peco Controls Corporation | Filler line monitoring system |
4789016, | Oct 25 1985 | ICICLE SEAFOODS, INC | Container filling apparatus |
4947979, | Sep 14 1988 | R & B Machine Tool Company | Transfer apparatus |
4969308, | Jul 15 1988 | Tetra Pak Finance & Trading S.A. | Method of attaching a drinking straw to a pack and apparatus for carrying out the method |
5033254, | Apr 19 1990 | Rexam Beverage Can Company | Head-space calibrated liquified gas dispensing system |
5037366, | May 17 1990 | Gilliland Industrials Corporation | Device for attaching a straw to a carton container |
5406772, | Aug 12 1992 | Eli Lilly and Company | Transfer conveyor system for use between sterile and non-sterile environments |
5673533, | Nov 27 1995 | Abbott Laboratories | On-line container and seal integrity test system |
6205743, | Apr 16 1998 | Techne Technipack Engineering Italia S.p.A. | Automatic machine for manufacturing, checking, filling and capping bottles made of thermoplastic material |
DE4114889, | |||
JP63307005, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Date | Maintenance Fee Events |
Jan 05 2009 | REM: Maintenance Fee Reminder Mailed. |
Jun 28 2009 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 28 2008 | 4 years fee payment window open |
Dec 28 2008 | 6 months grace period start (w surcharge) |
Jun 28 2009 | patent expiry (for year 4) |
Jun 28 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 28 2012 | 8 years fee payment window open |
Dec 28 2012 | 6 months grace period start (w surcharge) |
Jun 28 2013 | patent expiry (for year 8) |
Jun 28 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 28 2016 | 12 years fee payment window open |
Dec 28 2016 | 6 months grace period start (w surcharge) |
Jun 28 2017 | patent expiry (for year 12) |
Jun 28 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |