A light collector for use with an illumination system, particularly an automotive interior illumination system. The light collector includes several waveguides capable of conducting light through internal reflection with the waveguides being arranged in a stacked configuration. Each waveguide includes an angled input surface at least some of which are oriented at different angles. With this arrangement, light from a single light source can be collected and routed to several locations.
|
13. A light collecting apparatus for collecting and distributing light in an illumination system having a light source, said apparatus comprising:
a first waveguide capable of conducting light by internal reflection and having a first notch for collecting light emitted by the light source, and
a second waveguide capable of conducting light by internal reflection and having a second notch for collecting light emitted by the light source, wherein said first and second notch for collecting light emitted by the light source, wherein said first and second notches open towards the light source thereby creating a space for the light source between said first and second notches such that a first portion of the light emitted by the light source enters said first waveguide through said first notch and a second portion of the light emitted by the light source enters said second waveguide through said second notch.
1. A light collecting apparatus for collecting and distributing light in an illumination system having a light source, said apparatus comprising:
a first waveguide capable of conducting light by internal reflection and having a first angled input surface for collecting light emitted by the light source,
a second waveguide capable of conducting light by internal reflection and having a second angled input surface for collecting light emitted by the light source, wherein said first and second waveguides are stacked, and said first and second angled input surfaces are oriented at different angles such that a first portion of the light emitted by the light source is collected by said first angled input surface and conducted through said first waveguide by internal reflection and a second portion of the light emitted by the light source is collected by said second angled input surface and conducted through said second waveguide by internal reflection.
18. An automotive interior illumination system for collecting light and distributing the collected light to a plurality of areas, said system generally comprising:
a light source for emitting light,
a first waveguide capable of conducting light by internal reflection and having a first angled input surface for collecting light emitted by said light source,
a second waveguide capable of conducting light by internal reflection and having a second angled input surface for collecting light emitted by said light source,
a first optical element located proximate one end of said first waveguide such that at least a portion of the light exiting the one end of the first waveguide impinges upon said first optical element, and
a second optical element located proximate one end of said second waveguide, such that at least a portion of the light exiting the one end of said second waveguide impinges upon said second optical element, wherein said first and second waveguides are stacked, and said first and second angled input surfaces are oriented at different angles such that a first portion of the light emitted by said light source is collected by said first angled input surface and conducted through said first waveguide by internal reflection, and a second portion of the light emitted by said light source is collected by said second angled input surface and conducted through said second waveguide by internal reflection.
2. The light collecting apparatus of
3. The light collecting apparatus of
4. The light collecting apparatus of
5. The light collecting apparatus of
6. The light collecting apparatus of
7. The light collecting apparatus of
8. The light collecting apparatus of
9. The light collecting apparatus of
10. The light collecting apparatus of
11. The light collecting apparatus of
12. The light collecting apparatus of
15. The light collecting apparatus of
16. The light collecting apparatus of
17. The light collecting apparatus of
19. The illumination system of
|
The present invention relates generally to light collectors used in connection with distributed illumination systems. More specifically, the present invention relates to light collectors that utilize multiple waveguides for collecting and distributing light emitted from a single light source.
Waveguides are devices that due to their composition, shape, and other design characteristics exhibit the ability of being able to conduct light via internal reflection. This quality has been extensively utilized in a wide spectrum of applications, ranging from illumination systems to telecommunications networks. Light transmitting applications relating to illumination systems have particular concerns, among them is the manner in which light is collected by the waveguide for subsequent distribution. The light collector of the present invention addresses this and other concerns.
Illumination systems and other light conducting devices have utilized a variety of different configurations for the purpose of collecting and distributing light; one example being shown in U.S. Pat. No. 5,357,592 issued to Neilson. The Neilson patent discloses an optical energy gathering device in the form of a sheet of transparent material with a plurality of light collector disks attached to the sheet that collect and route light through the sheet. The light collectors are disks, each having angled outer edges that internally reflect light impinging upon the disk at its outer edges. The disks can have an outer edge angle that is uniform around the perimeter of the disks, or can include different input edge angles on opposing sides of the disk to accommodate the collection of light that impinges upon the disk at an angle relative to the normal to the disk surface.
Optical devices with angled input surfaces have also been previously used in illumination systems. For example, U.S. Pat. No. 4,669,034 issued to Bansbach et al. discloses a glare prevention device in the form of a series of stacked, annular rings, each having an angled input surface. A light source located at the center of the device radiates light into the stacked rings with the angled input surfaces operating to direct the light upwardly and downwardly, thereby preventing lateral glare from the device. Each of the rings directly receives a portion of the light emitted by the source and is used primarily to refract the light to prevent glare, although a limited amount of internal reflection may occur in each ring.
Neither of the above-noted patents address all of the various considerations involved in a distributed illumination system of the type that uses waveguides to collect and route light to remote locations, especially those involving spatial constraints such as is often present in automotive illumination systems. Accordingly, it would be advantageous to provide a light collector, wherein light from a single source was collected and distributed via separate waveguides to remote areas of an illumination system that is employed in an application having limited space.
The present invention provides a light collecting apparatus for collecting and distributing light in an illumination system having a light source. The apparatus comprises a first waveguide capable of conducting light by internal reflection and having a first angled input surface which is capable of collecting light emitted by the light source. The light collecting apparatus also comprises a second waveguide capable of conducting light by internal reflection and having a second angled input surface which is capable of collecting light emitted by the light source. The first and second waveguides are stacked with the first and second angled input surfaces being oriented at different angles such that a first portion of the light emitted by the light source is collected by the first angled input surface and conducted through said first waveguide by internal reflection, and a second portion of the light emitted by the light source is collected by the second angled input surface and conducted through said second waveguide by internal reflection.
In accordance with another aspect of the invention, there is provided a light collecting apparatus that includes a plurality of waveguides each having a notch used to collect light from a common source. The apparatus comprises a first waveguide capable of conducting light by internal reflection and having a first notch for collecting light emitted by the light source. The apparatus also comprises a second waveguide capable of conducting light by internal reflection and having a second notch for collecting light emitted by the light source. The first and second notches open towards the light source such that a space for the light source is formed between them. A first portion of the light emitted by the light source enters the first waveguide through the first notch, and a second portion of the light emitted by the light source enters the second waveguide through the second notch.
In accordance with yet another aspect of the invention, there is provided a light collecting apparatus that enables both local and distributed illumination. The apparatus comprises a waveguide capable of conducting light through internal reflection and having an angled input surface. This angled input surface collects light emitted by the light source and at least partially defines a notch. The apparatus also comprises an optical element capable of influencing light distribution and is located adjacent the waveguide at an axial position that is proximate the notch. The notch opens towards the light source such that a first portion of light emitted by the light source is collected by the angled input surface and conducted through the waveguide by internal reflection. A second portion of the light emitted by the light source passes through the waveguide at the angled input surface and impinges upon the optical element.
The light collecting apparatus can be utilized as part of an automotive interior illumination system that provides illumination to a variety of locations within an automobile.
Objects, features and advantages of this invention include providing a light collecting apparatus for use with an illumination system, wherein the apparatus is compact and includes a stacked waveguide configuration for efficiently collecting and distributing light from a light source to a plurality of areas.
With reference to
Referring now to
Second waveguide 30 and third waveguide 40 are arranged such that they are generally parallel to the first waveguide and are situated on top of it in a stacked formation. The configuration of the second and third waveguides is similar to that previously described in relation to the first waveguide. Again, second and third waveguides 30, 40 are elongated light conducting components whose longitudinal lengths are interrupted by second and third notched shaped spaces 36 and 46, respectively. The axial position of the centers of notches 36 and 46 are substantially equal to the axial position of the center of notch 26. Though the positions of the different notched spaces are essentially equal, the angles forming them are not. In this embodiment, angle θ2 is formed between second angled input surface 32 and a line normal to the longitudinal surface of second waveguide 30, and is greater than angle θ1. Likewise, angle θ3 is formed by the third angled input surface 42 and a line normal to the longitudinal surface of waveguide 40, and is greater than both angle θ1 and angle θ2. The reasoning for having increasingly greater input angles is to allow those waveguides further away from the light source to have an increasingly greater ability of capturing a portion of the light emitted from the light source, as will be subsequently described in further detail.
Although light collector 14 has thus far been described in specific reference to the embodiment shown in
Referring back now to
In general, light is emitted from light source 12 and a portion of that light impinges upon one of the first angled input surfaces 22, 24. A part of that impinging light is directed into first waveguide 20 and subsequently distributed throughout the length of the waveguide to some remote location, where the light exits the axial end of the waveguide and passes through an optical element 18 that focuses, disperses, or otherwise influences its distribution. The part of the impinging light that is not directed into the first waveguide is passed to the second waveguide 30 where a similar process takes place. Again, a portion of the total light that impinges the second waveguide is directed into that waveguide for distribution while the remaining portion of light is passed on to the third waveguide 40. Consequently, light collector 14 partitions the light that strikes it into different light conducting channels where the light is then distributed to various locations around the illumination system.
Considering the operation in greater detail, a first light ray 60 is emitted from the light source and strikes first angled input surface 22. Due to the boundary between different indices of refraction and the assumption that first waveguide 20 has a greater index of refraction than the surrounding air environment, light ray 60 is refracted and bent inward towards the line normal to the angled input surface, as is commonly known in the art. After entering the waveguide, ray 60 impinges the outer surface of the waveguide at an angle θi which is greater than an angle referred to as the critical angle θc (θi>θc). Accordingly, light ray 60 reflects off of this outer surface and is conducted throughout the length of the waveguide by internal reflection. Light ray 62 is also emitted from the light source and strikes input surface 22. After being refracted in a manner similar to that previously described, the ray impinges the outer surface of first waveguide 20. In this case, however, the angle of incidence is less than the critical angle, (θi<θc), and thus light ray 62 is not internally reflected, rather, it is transmitted out of the first waveguide such that it strikes input surface 32. At this interface, the light ray is again refracted and enters second waveguide 30. As seen from the drawing, the light ray strikes the outer surface of the second waveguide at an angle θi, where θi>θc. Consequently, light ray 62 is internally reflected within second waveguide 30 and conducted along its length. In a similar fashion, light ray 64 passes through first and second waveguides until it impinges input surface 42, where the ray is refracted into third waveguide 40. Once again, the ray experiences internal reflection within the third waveguide and is routed to a remote location, as previously explained.
Thus, the light collector of the present invention utilizes optical properties to distribute light from a light source to various locations throughout the illumination system. It should be noted that the collector 14 could utilize different material compositions and thus different indices of refraction in the various waveguides to achieve a result similar to that described. Other variations of the stacked waveguide described herein can be used without departing from the scope of the present invention.
Referring now to
In use, a portion of the total light emitted by light source 70 impinges the first angled input surfaces 74, 76, and an example of this is illustrated by light ray 90. Light ray 90 strikes input surface 74 and is refracted as it enters first waveguide 72. As previously described, the light travels down the length of the first waveguide according to the principals of internal reflection. Similarly, light ray 92 impinges angled input surface 80 and is refracted into second waveguide 78. In this manner, a first portion of the total light radiated from light source 70 is collected by first angled input surfaces 74, 76 and distributed through the first waveguide to a distant location, and a second portion of the total light is collected by the input surfaces 80, 82 and distributed throughout the second waveguide. The compact configuration of this light collector allows for its implementation in lighting applications where the spatial constraints are strict, such as in various types of automotive interior lighting applications.
In the embodiment of
In operation, light collector 100 receives light from the light source 102. A first portion of that light strikes the angled input surfaces and is channeled into waveguide 104 for distribution to a remote area, while a second portion of the light received by apparatus 100 is transmitted through the waveguide and impinges the adjacently positioned lens 110. For illustrative purposes, light ray 112 is shown emanating from light source 102 and impinging angled input surface 106 of the waveguide. As previously explained, the light ray is refracted into the interior of waveguide 104, where it is internally reflected throughout the length of the waveguide. A second light ray 114 strikes input surface 106, is refracted as it enters the waveguide, impinges the back surface of the waveguide where it exits, and continues until it strikes lens 110. As mentioned, the lens can be one of any number of optical devices used to affect the distribution of light, and is depicted as a double convex lens in this particular embodiment. Once light ray 114 strikes the lens, it is distributed such that it illuminates a desired area proximate the lens. Accordingly, collector 100 of this embodiment collects light from a light source where a first portion of the collected light is directed into a waveguide for distribution, and a second portion is transmitted out of the waveguide such that it impinges an adjacently positioned lens for illumination of the surrounding area.
As will be appreciated, a lens can also be used in other embodiments to utilize light from the light source that is not captured by the waveguides. For example, a lens could be placed above the internal space 84 where light source 70 is located in
It will thus be apparent that there has been provided in accordance with the present invention a light collector and illumination system which achieves the aims and advantages specified herein. It will, of course, be understood that the forgoing description is of preferred exemplary embodiments of the invention and that the invention is not limited to the specific embodiments shown. Various changes and modification will become apparent to those skilled in the art and all such changes and modifications are intended to be within the scope of the present invention.
Hulse, George Robert, Young, Joe Parton
Patent | Priority | Assignee | Title |
9075170, | Sep 16 2009 | PHILIPS LIGHTING HOLDING B V | Optical element |
Patent | Priority | Assignee | Title |
4669034, | Feb 13 1985 | Semperlux GmbH | Non-glare device for large surface light emitting means |
4826273, | Aug 18 1987 | LEAR CORPORATION EEDS AND INTERIORS | Remote, automotive light diverting system |
4936663, | Aug 10 1988 | Light radiator | |
4954930, | Sep 27 1988 | ALPS Electric Co., Ltd. | Illumination light guide |
5163105, | May 03 1989 | Robert Bosch GmbH | Coupling component for a light-waveguide |
5357592, | Aug 17 1993 | Lockheed Martin Corporation | Optical energy concentrator/reflector |
5436805, | Oct 29 1992 | Hughes Electronics Corporation | Thermally insulated distributed light network from a central light source |
5508513, | Dec 09 1994 | Xerox Corporation | Fiber optic scanning beam detector |
5835649, | Jun 02 1997 | The University of British Columbia | Light directing and collecting fiber optic probe |
5845038, | Jan 28 1997 | Minnesota Mining and Manufacturing Company | Optical fiber illumination system |
5934782, | Nov 29 1997 | THE BANK OF NEW YORK MELLON, AS ADMINISTRATIVE AGENT | Light guide apparatus |
5991048, | Oct 25 1995 | University of Washington | Surface plasmon resonance light pipe sensor |
6139176, | Jul 02 1998 | REBO LIGHTING & ELECTRONICS, LLC | Optical waveguide structure with raised or embedded waveguides |
6367941, | Feb 24 1999 | 3M Innovative Properties Company | Illumination device for producing predetermined intensity patterns |
6473554, | Dec 12 1996 | SEOUL SEMICONDUCTOR CO , LTD | Lighting apparatus having low profile |
20020172459, |
Date | Maintenance Fee Events |
Dec 19 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 02 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 28 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 05 2008 | 4 years fee payment window open |
Jan 05 2009 | 6 months grace period start (w surcharge) |
Jul 05 2009 | patent expiry (for year 4) |
Jul 05 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 05 2012 | 8 years fee payment window open |
Jan 05 2013 | 6 months grace period start (w surcharge) |
Jul 05 2013 | patent expiry (for year 8) |
Jul 05 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 05 2016 | 12 years fee payment window open |
Jan 05 2017 | 6 months grace period start (w surcharge) |
Jul 05 2017 | patent expiry (for year 12) |
Jul 05 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |