An engine control system in a vehicle including an internal combustion engine, an electronic throttle controlling air flow to the internal combustion engine, a controller controlling the position of the electronic throttle, an accelerator pedal having an accelerator pedal sensor that generates a signal to the controller, and where the controller computes a rate of change for the accelerator pedal and actuates the electronic throttle to a desired position based upon the rate of change for the accelerator pedal.
|
8. An engine control system in a vehicle comprising:
an internal combustion engine;
a throttle controlling air flow to said internal combustion engine;
a controller controlling the position of said electronic throttle;
an accelerator pedal having an accelerator pedal sensor which generates a signal to said controller;
wherein said controller predicts a rate of change for said accelerator pedal and actuates said electronic throttle to a desired position based upon said predicted rate of change for said accelerator pedal; and
wherein said predicted rate of change for said accelerator pedal is based upon at least a spring force of said accelerator pedal.
1. An engine control system in a vehicle comprising:
an internal combustion engine;
an electronic throttle controlling air flow to said internal combustion engine;
a controller controlling the position of said electronic throttle;
an accelerator pedal having an accelerator pedal sensor which generates a signal to said controller;
wherein said controller computes a rate of change for said accelerator pedal and actuates said electronic throttle to a desired position based upon said rate of change for said accelerator pedal; and
wherein said predicted rate of change for said accelerator pedal is based upon at least a spring force of said accelerator pedal.
2. The engine control system of
3. The engine control system of
4. The engine control system of
9. The engine control system
10. The engine control system of
11. The engine control system of
14. The engine control system of
|
The present invention relates to the control of internal combustion engines. More specifically, the present invention relates to a method and apparatus to control an electronic throttle.
Electronic engine control has evolved from mechanical control systems employing simple switches and analog devices to a highly precise fuel and ignition control system employing powerful electronics. The miniaturization and cost reduction of electronics has put the power of the computer age into the hands of automotive engineers. Microprocessors have allowed complex programs involving numerous variables to be used in the control of present day combustion engines, leading to better engine control and performance.
An important facet of combustion engine control is the regulation of air flow into a cylinder by a throttle and accordingly the quantity of fuel delivered into the cylinder. In an internal combustion engine (ICE), a throttle, having a movable throttle plate, directly regulates the power produced by the ICE at any operating condition by regulating the air flow into the ICE. The throttle plate is positioned to increase or decrease air flow into the ICE. The ICE acts as an air pump with the mass flow rate of air entering the engine varying directly with throttle plate angular position or area. Presently, there is a need in the art to precisely control throttle plate position in a throttle body to tightly regulate the flow of air and fuel into a cylinder.
In the operation of a standard vehicle ICE, a driver will depress the accelerator pedal to generate a major portion of a throttle plate position command to vary the throttle plate angle and accordingly the air flow into the ICE. A controller coupled to a fuel injector, monitoring various engine variables, will regulate the fuel that is mixed with the air, such that the injected fuel generally increases in proportion to air flow. If a carburetor is used, the air flow through the carburetor will directly regulate the amount of fuel mixed with the air, with respect to the vacuum or suction formed by the air flow through the throttle body. For any given fuel-air mixture, the power produced by the ICE is directly proportional to the mass flow rate of air into the ICE controlled by the throttle plate position.
The positioning and stability of the throttle plate directly affects the tuning or stability of the ICE. Ideally, when a position command is given to position the throttle plate, the throttle plate will step to that exact position without a large amount of overshoot and undershoot and at a desired angular speed.
When a driver of a vehicle thinks about pushing the accelerator pedal, the intention to accelerate is being communicated from the mind of the driver to the car, through the movement of the foot. The interface between the driver and the vehicle is the accelerator pedal, which takes a finite amount of time to settle into a final position. The accelerator pedal position is translated through a calibration, to the systems that control the throttle plate within the throttle body, to produce the desired amount of torque output from the ICE. This sequence of events culminates in an “acceleration” that the driver desired at the time he/she depressed the accelerator pedal.
In most cases, there exists a physical time delay from control input at the accelerator pedal, which may be described as the initial incremental change in pedal position, to the throttle final position of the throttle plate. The commanded throttle position is typically embedded within the calibration as a two-dimensional look-up table (pedal position and vehicle speed inputs, throttle position output). The driver observes this physical delay as a lag in the vehicle's responsiveness. Although in maintaining certain brand characteristics such a damped response is desirable, in all vehicles certain maneuvers warrant an immediate response by the vehicle (for example, in an aggressive start from a stop and in a passing maneuver from 50 mph to 80 mph). In such driving conditions, the driver consciously demands an immediate response. The time between the initial movements of the pedal, to the final position of the pedal that the driver's foot settles to, is on the order of tenths of a second. This time delay is built into the throttle response lag and is undesirable as perceived by the consumer. This delay is further compounded by the transient response of the engine caused by physical delays such as the inertia of filling air into the intake manifold. The torque generated during a transient response by an ICE is usually less than at equivalent steady state operating points for the ICE.
The present invention is a method and apparatus to reduce the amount of time between the driver's desire for acceleration and the vehicle's response, allowing the vehicle to react to the driver's requests relatively quicker than in past applications. Typically, a driver who desires acceleration applies a force at the accelerator pedal. The accelerator pedal moves due to the force with a certain kinetic energy (velocity) and acceleration associated with it. The accelerator pedal generates a resistance to motion due to a spring as well as friction in the mechanism. The accelerator pedal settles at a final position once the kinetic energy is dissipated and is stored as potential energy within the compressed spring. This transfer of energy from kinetic to potential energy occurs over a certain time. It is this time that may be regarded as an undesirable delay in vehicle response by the driver.
In an actual driving situation, the driver does not apply an instantaneous force (or high jerk) by stabbing at the accelerator pedal and taking his foot off, to let the accelerator pedal settle to a final position after overcoming the spring force. Instead, the driver typically applies a continuous force. This causes the accelerator pedal velocity to vary with time. The final position that the accelerator pedal would come to rest at under the influence of the instantaneous force varies with time correspondingly. The ability to predict that final position of an accelerator pedal based on instantaneous pedal velocity will reduce the delay in response by the vehicle.
As described previously, accelerator pedal movement has a certain rate associated with it. If the progression/control of the throttle plate takes the accelerator pedal rate into account, a prediction of final desired throttle blade position can be made. This determination can be made from a map that scales throttle position based on accelerator pedal rate. The scaling factor based on pedal rate can also be created to compensate for the lower transient torque delivered at a given operating point of the ICE. By predicting the resting point of the accelerator pedal and communicating the predicted resting point to an electronic throttle, the responsiveness of the vehicle will be improved.
An electronic throttle controller 20 includes power circuitry to modulate the electronic throttle 12, via the actuator 18, and circuitry to receive position and speed input from throttle plate. In the preferred embodiment of the present invention, an absolute rotary encoder is coupled to the electronic throttle plate 12 and/or actuator to provide speed and position information to the electronic throttle controller 20. In alternate embodiments of the present invention, a potentiometer may be used to provide speed and position information for the throttle plate 12. The electronic throttle controller 20 further includes communication circuitry 22 such as a serial link or automotive communication network interface to communicate with the powertrain controller over an automotive communications network. In alternate embodiments of the present invention, the electronic throttle controller 20 may be fully integrated into a powertrain controller to eliminate the need for a physically separate electronic throttle controller.
The following variables will be used to describe the present invention:
When the operator actuates the accelerator pedal 32, the energy exerted by the operator must be balanced by the system 30. Thus, the initial kinetic energy of the pedal 32=Energy absorbed by the spring 33 (including frictional work dissipated within the linkage)
Calculating initial kinetic energy, K.E.
Incremental energy absorbed by spring 33, dWp over the incremental distance, dx
dWp=Pf*dx
By integrating over the pedal 32 displacement, x:
Since K.E.=Wp, it can be shown that
And the final pedal 32 position (X) will be
X can therefore be predicted in real time as the instantaneous pedal 32 rate varies.
While this invention has been described in terms of some specific embodiments, it will be appreciated that other forms can readily be adapted by one skilled in the art. Accordingly, the scope of this invention is to be considered limited only by the following claims.
Patent | Priority | Assignee | Title |
10036338, | Apr 26 2016 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Condition-based powertrain control system |
10124750, | Apr 26 2016 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Vehicle security module system |
10235479, | May 06 2015 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Identification approach for internal combustion engine mean value models |
10272779, | Aug 05 2015 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | System and approach for dynamic vehicle speed optimization |
10309281, | Sep 19 2011 | WILMINGTON SAVINGS FUND SOCIETY, FSB, AS SUCCESSOR ADMINISTRATIVE AND COLLATERAL AGENT | Coordinated engine and emissions control system |
10309287, | Nov 29 2016 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Inferential sensor |
10415492, | Jan 29 2016 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Engine system with inferential sensor |
10423131, | Jul 31 2015 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Quadratic program solver for MPC using variable ordering |
10503128, | Jan 28 2015 | WILMINGTON SAVINGS FUND SOCIETY, FSB, AS SUCCESSOR ADMINISTRATIVE AND COLLATERAL AGENT | Approach and system for handling constraints for measured disturbances with uncertain preview |
10621291, | Feb 16 2015 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Approach for aftertreatment system modeling and model identification |
11057213, | Oct 13 2017 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Authentication system for electronic control unit on a bus |
11144017, | Jul 31 2015 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Quadratic program solver for MPC using variable ordering |
11156180, | Nov 04 2011 | Garrett Transportation I, Inc. | Integrated optimization and control of an engine and aftertreatment system |
11180024, | Aug 05 2015 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | System and approach for dynamic vehicle speed optimization |
11506138, | Jan 29 2016 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Engine system with inferential sensor |
11619189, | Nov 04 2011 | GARRETT TRANSPORTATION I INC. | Integrated optimization and control of an engine and aftertreatment system |
11687047, | Jul 31 2015 | GARRETT TRANSPORTATION I INC. | Quadratic program solver for MPC using variable ordering |
11687688, | Feb 09 2016 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Approach for aftertreatment system modeling and model identification |
7467614, | Dec 29 2004 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Pedal position and/or pedal change rate for use in control of an engine |
8265854, | Jul 17 2008 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Configurable automotive controller |
8360040, | Aug 18 2005 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Engine controller |
8504175, | Jun 02 2010 | Honeywell International Inc.; Honeywell International Inc | Using model predictive control to optimize variable trajectories and system control |
8620461, | Sep 24 2009 | Honeywell International, Inc. | Method and system for updating tuning parameters of a controller |
9170573, | Sep 24 2009 | Honeywell International Inc. | Method and system for updating tuning parameters of a controller |
9650934, | Nov 04 2011 | WILMINGTON SAVINGS FUND SOCIETY, FSB, AS SUCCESSOR ADMINISTRATIVE AND COLLATERAL AGENT | Engine and aftertreatment optimization system |
9677493, | Sep 19 2011 | WILMINGTON SAVINGS FUND SOCIETY, FSB, AS SUCCESSOR ADMINISTRATIVE AND COLLATERAL AGENT | Coordinated engine and emissions control system |
9920697, | Mar 26 2014 | GM Global Technology Operations LLC | Engine control systems and methods for future torque request increases |
9938908, | Jun 14 2016 | GM Global Technology Operations LLC | System and method for predicting a pedal position based on driver behavior and controlling one or more engine actuators based on the predicted pedal position |
RE44452, | Dec 29 2004 | JPMORGAN CHASE BANK, N A , AS ADMINISTRATIVE AGENT | Pedal position and/or pedal change rate for use in control of an engine |
Patent | Priority | Assignee | Title |
4691676, | Mar 12 1985 | Nissan Motor Company, Limited | Apparatus for throttle valve control |
4735181, | Apr 28 1986 | Mazda Motor Corporation | Throttle valve control system of internal combustion engine |
4799467, | Jul 16 1986 | Honda Giken Kogyo Kabushiki Kaisha | Throttle valve control system for an internal combustion engine |
5255653, | Apr 17 1989 | Lucas Industries public limited company | Engine throttle control system |
5431139, | Dec 23 1993 | Ford Global Technologies, LLC | Air induction control system for variable displacement internal combustion engine |
6526941, | Aug 14 2001 | WILMINGTON TRUST FSB, AS ADMINISTRATIVE AGENT | Dynamic electronic throttle position feedforward system |
6637382, | Sep 11 2002 | Ford Global Technologies, LLC | Turbocharger system for diesel engine |
6687602, | May 03 2001 | GM Global Technology Operations LLC | Method and apparatus for adaptable control of a variable displacement engine |
6705287, | Apr 06 2001 | Ford Global Technologies, LLC | Method and regulating arrangement for heating the cab of a motor vehicle with a diesel engine |
Date | Maintenance Fee Events |
Dec 11 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 12 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 29 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 12 2008 | 4 years fee payment window open |
Jan 12 2009 | 6 months grace period start (w surcharge) |
Jul 12 2009 | patent expiry (for year 4) |
Jul 12 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 12 2012 | 8 years fee payment window open |
Jan 12 2013 | 6 months grace period start (w surcharge) |
Jul 12 2013 | patent expiry (for year 8) |
Jul 12 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 12 2016 | 12 years fee payment window open |
Jan 12 2017 | 6 months grace period start (w surcharge) |
Jul 12 2017 | patent expiry (for year 12) |
Jul 12 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |