Several embodiments of cutting tips for tools for creating voids in interior body regions are provided. The cutting tips provide for rotational and translational cutting. An actuator mechanism for deploying a cutting tip converts the rotational movement of a wheel into translational movement of a plunger rod. The actuator mechanism provides positive cutting action as the cutting tip is moved from a first, non-deployed position to a second, deployed position and from the second, deployed position to the first, non-deployed position. Methods of creating a void in bone provide one or more mechanical cutting tools that may be used in combination with one or more expandable void-creating structures to form a void of a desired size and configuration.
|
34. A method of creating a void in bone comprising
establishing a percutaneous access path leading into a bone,
introducing an expandable structure through the access path, the expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone,
expanding the expandable structure,
introducing through the access path a first tool having a cutting tip that extends radially from the access path to contact bone,
manipulating the cutting tip in the cancellous bone to enlarge or further define the void,
withdrawing the first tool,
introducing through the access path a second tool having a cutting tip that extends radially from the access path to contact bone, and
manipulating the cutting tip of the second tool in the cancellous bone to enlarge or further define the void.
1. A method of creating a void in bone comprising
establishing a percutaneous access path leading into a bone,
introducing through the access path a tool having a cutting tip that extends radially from the access path to contact bone,
manipulating the cutting tip in cancellous bone to create a void in the cancellous bone,
withdrawing the tool,
introducing a first expandable structure through the access path, the expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone,
expanding the first expandable structure in the cancellous bone to enlarge or further define the void,
withdrawing the first expandable structure, introducing a second expandable structure through the access path, and
expanding the second expandable structure in the cancellous bone to enlarge or further define the void.
8. A method of creating a void in bone comprising
establishing a percutaneous access path leading into a bone,
introducing through the access path a first tool having a cutting tip that extends radially from the access path to contact bone,
manipulating the cutting tip in cancellous bone to create a void in the cancellous bone,
withdrawing the first tool,
introducing an expandable structure through the access path, the expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone,
expanding the expandable structure in the cancellous bone to enlarge or further define the void,
withdrawing the expandable structure,
introducing through the access path a second tool having a cutting tip that extends radially from the access path to contact bone, and
manipulating the cutting tip of the second cutting tool in the cancellous bone to enlarge or further define the void.
14. A method of creating a void in bone comprising
establishing a percutaneous access path leading into a bone,
introducing through the access path a first tool having a cutting tip that extends radially from the access path to contact bone,
manipulating the cutting tip of the first tool in cancellous bone to create a void in the cancellous bone,
withdrawing the first tool,
introducing through the access path a second tool having a cutting tip that extends radially from the access path to contact bone,
manipulating the cutting tip of the second tool in the cancellous bone to enlarge or further define the void,
withdrawing the second tool,
introducing an expandable structure through the access path, the expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone, and
expanding the expandable structure in the cancellous bone to enlarge or further define the void.
27. A method of creating a void in bone comprising
establishing a percutaneous access path leading into a bone,
introducing a first expandable structure through the access path, the first expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone,
expanding the first expandable structure in cancellous bone to create a void,
withdrawing the first expandable structure,
introducing through the access path a tool having a cutting tip that extends radially from the access path to contact bone,
manipulating the cutting tip in the cancellous bone to enlarge or further define the void,
withdrawing the tool,
introducing a second expandable structure through the access path, the second expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone, and
expanding the second expandable structure in cancellous bone to enlarge or further define the void.
21. A method of creating a void in bone comprising
establishing a percutaneous access path leading into a bone,
introducing a first expandable structure through the access path, the first expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone,
expanding the first expandable structure in cancellous bone to create a void,
withdrawing the first expandable structure,
introducing a second expandable structure through the access path, the second expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone,
expanding the second expandable structure in the cancellous bone to enlarge or further define the void,
withdrawing the second expandable structure,
introducing through the access path a tool having a cutting tip that extends radially from the access path to contact bone, and
manipulating the cutting tip in the cancellous bone to enlarge or further define the void.
4. A method according to
wherein the second expandable structure is of a different size than the first expandable structure.
5. A method according to
wherein the second expandable structure is of a different configuration than the first expandable structure.
6. A method according to
wherein the second expandable structure is of the same size and configuration as the first expandable structure.
7. A method according to
wherein at least one of the first and second expandable structures is a balloon.
10. A method according to
wherein the cutting tip of the second tool is of a different size than the cutting tip of the first tool.
11. A method according to
wherein the cutting tip of the second tool is of a different configuration than the cutting tip of the first tool.
12. A method according to
wherein the cutting tip of the second tool is of the same size and configuration as the cutting tip of the first tool.
16. A method according to
introducing a filling material into the void.
18. A method according to
wherein the cutting tip of the second tool is of a different size than the cutting tip of the first tool.
19. A method according to
wherein the cutting tip of the second tool is of a different configuration than the cutting tip of the first tool.
20. A method according to
wherein the cutting tip of the second tool is of the same size and configuration as the cutting tip of the first tool.
22. A method according to
introducing a filling material into the void.
23. A method according to
wherein the second expandable structure is of a different size than the first expandable structure.
24. A method according to
wherein the second expandable structure is of a different configuration than the first expandable structure.
25. A method according to
wherein the second expandable structure is of the same size and configuration as the first expandable structure.
26. A method according to
wherein at least one of the first and second expandable structures is a balloon.
28. A method according to
introducing a filling material into the void.
29. A method according to
wherein the second expandable structure is of the same size and configuration as the first expandable structure.
30. A method according to
wherein the second expandable structure is of a different size from the first expandable structure.
31. A method according to
wherein the second expandable structure is of a different configuration from the first expandable structure.
32. A method according to
wherein at least one of the first and second expandable structures is a balloon.
35. A method according to
introducing a filling material into the void.
37. A method according to
wherein the cutting tip of the second tool is of a different size than the tip of the first tool.
38. A method according to
wherein the cutting tip of the second tool is of a different configuration than the tip of the first tool.
39. A method according to
wherein the cutting tip of the second tool is of the same size and configuration as the cutting tip of the first tool.
|
This application claims the benefit of provisional U.S. Application Ser. No. 60/499,934, filed Sep. 3, 2003, and entitled “Mechanical Devices for Creating Voids in Interior Body Regions and Related Methods.”
This invention relates generally to tools for creating cavities or voids in interior body regions. In particular, the invention relates to creating voids in bone for diagnostic or therapeutic purposes.
A minimally invasive method of forming a cavity or void within one of the body's solid organs, for both diagnostic and treatment purposes, is becoming increasingly important as radiological and other types of scanning techniques improve a physician's ability to view inside the body without having to make an incision.
The most common solid organ currently making use of a minimally invasive technique to form a void is bone. Typically this is any pathological bone in the body with a fracture, osteoporosis, or a tumor. The most commonly used void-forming method for bones is the inflatable bone tamp, as described in U.S. Pat. Nos. 4,969,888 and 5,108,404. Void formation in this case is usually followed by filling with a filling substance like bone cement or a bone substitute.
Mechanical methods are also available for making voids inside solid organs. Those solid organs include the brain, the kidneys, the spleen, the liver and bone. In the brain, for example, an abscess could be easily debrided and irrigated with a minimally invasive mechanical void technique. A fractured spleen could be approached with a minimally invasive technique, to make a small void to fill with gelfoam or some other coagulant to stop hemorrhage. An osteoporotic, fractured vertebral body or bone tumor could be approached by a minimally invasive mechanical system in order to create a cavity or void and then refill with a bone substitute. A demand exists for systems or methods that are capable of forming voids in bone and other interior body regions in safe and efficacious ways.
The invention provides systems and methods for creating voids in interior body regions.
One aspect of the invention provides a cutting tip for cutting or scraping bone. In one embodiment, a curette-type instrument at the end of a shaft can be mechanically angled into different positions to scrape material to form a void. In another embodiment, a mechanical device at the end of a shaft resembles a T-type configuration and allows both translational and rotational cutting to form a void. In a third embodiment, the cutting tip includes a turned and tapered trunk. In a fourth embodiment, the cutting tip includes a conical trunk. In a fifth embodiment, a sharp, stout, metal spring is provided on the end of a shaft. In a sixth embodiment, the distal end of a shaft carries two or more fingers to grab tissue for extraction. In a seventh embodiment, a hinged void-forming device is carried by a shaft and allows for formation of a void, which may be of a rectangular or any other pre-determined shape.
Another aspect of the invention provides an actuator mechanism for deploying a cutting tip. In one embodiment, rotational movement of a thumbwheel is converted to translational movement of a plunger rod. In an alternative embodiment, rotational movement of a control knob is converted to translational movement of a plunger rod through interaction of a series of gears.
Another aspect of the invention provides a tool for creating voids in interior body regions. The tool comprises a shaft, a tip for contacting bone, and a hinge member coupling the tip to the shaft. The tip becomes uncoupled if the torque applied exceeds a maximum hinge torque. The shaft includes a region of weakness proximal to the tip along which the shaft will break if the torque applied exceeds a maximum shaft torque. The maximum hinge torque is greater than the maximum shaft torque.
According to another aspect of the invention, a tool for creating voids in interior body regions comprises a shaft assembly including a lumen, a tip for contacting bone coupled to the shaft, and a rod slidable within the lumen. The rod is tethered to the tip.
According to another aspect of the invention, a tool for creating voids in interior body regions comprises a shaft including a lumen, and a tip for contacting bone coupled to the shaft by a coupling element. The tip is additionally tethered to the shaft such that the tip remains tethered to the shaft if the coupling element becomes inoperable.
According to another aspect of the invention, a tool for creating voids in interior body regions comprises a cannula and a shaft. The shaft has a handle and is sized and configured for passage through the cannula. A projection extends radially from the shaft to restrict forward advancement of the shaft within the cannula.
Another aspect of the invention provides methods of creating a void in bone. The methods provide one or more mechanical cutting tools that may be used in combination with one or more expandable void-creating structures to form a void of a desired size and configuration.
Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention that may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.
The systems and methods embodying the invention can be adapted for use virtually in any interior body region, where the formation of a cavity or void within tissue is required for a therapeutic or diagnostic purpose. The preferred embodiments show the invention in association with systems and methods used to treat bones. This is because the systems and methods which embody the invention are well suited for use in this environment. It should be appreciated that the systems and methods which embody features of the invention can be used in other interior body regions, as well.
Various embodiments of cutting tips are described below in detail. In each case their sizes and shapes could be produced to fit the ideal void to be formed, whether it is a void in a tibia or a vertebral body. In addition, these mechanical tools could be made of any bio-compatible metal (for example, but not limited to stainless steel, titanium, titanium alloys, tantalum, aluminum, aluminum alloys, or other metals) that has adequate shear and tensile strength to perform their void-forming function. Plastic polymers having suitable biomechanical properties may also be used for these tools. Alternatively, the tool may be plated or coated with a biocompatible material.
I. Mechanical Cutting Tool
A. Curette
The shaft 12 carries a void-forming structure 20 at its distal end 16. In the illustrated embodiment, the structure 20 takes the form of a multi-faceted cutting tip 20. The cutting tip 20 may be adapted for use in various body regions, e.g., to create a void in bone. The cutting tip 20 may also serve to remove hard or soft tumors from tissue. As used in this specification, a cutting tip is a surface adapted to mechanically form a void in bone through contact with the bone, e.g., by cutting, shearing, scooping, shaving, sciving, dissecting, or scoring of the bone.
The cutting tip 20 is hingedly coupled to distal end 16 of the shaft 12. The cutting tip 20 is desirably adapted to extend radially from the shaft 12 and radially from the pre-formed access path to a diameter that is greater than a diameter of the access path. The cutting tip 20 can be made of any suitable biocompatible material, e.g., stainless steel, cobalt chromium, titanium and alloys or mixtures thereof. The shaft 12 and cutting tip 20 can alternatively be made of different materials (e.g. alloys of stainless steel with different strengths: 303 stainless steel, 304 stainless steel, 17–4 stainless steel, 17–7 stainless steel) and welded or otherwise bonded together. As will be described in detail later, an actuator, e.g., wheel 22 (see also, e.g.,
In the closed position (represented by solid lines in
Desirably, the actuating mechanism provides positive, controlled movement in both directions (i.e., from the open, deployed position to the closed, non-deployed position and from the closed, non-deployed position to the open, deployed position) during all degrees of actuation. That is, the secured pivot position and angle A are maintained regardless of the rotational orientation of the shaft 12. The actuator mechanism provides positive cutting action as the tip is actuated in either direction to provide bi-directional cutting. Actuation may be repeated so as to provide continuous cutting. The speed of actuation may be varied to vary the speed of cutting. The cutting tip 20 also permits translational (i.e., longitudinal) movement along the axis S of the shaft 12 in a push-pull or sawing motion with the tip in the deployed position. The physician creates a desired void by repeated actuation, translational movement, or by performing a series of combined actuation and translational movements.
In use, the cutting tip 20 is placed in the closed position extending from the distal end 16 of the shaft 12, i.e., at a 0° angle A relative to axis S. The tool 10 may be introduced into a targeted treatment site through an open procedure. Desirably, the tool 10 is introduced in a closed and minimally invasive procedure in which a percutaneous cannula 23 is advanced into a desired treatment region, e.g., a vertebral body 37. The shaft 12 is then passed through the cannula 23 and the cutting tip 20 is extended beyond the distal end of the cannula 23. Alternatively, the cannula 23 may be removed after introduction of the tool 10. Fluoroscopy or other visualization techniques may be employed to aid in introducing the cannula 23 and tool into the targeted treatment area. The cutting tip 12 is then pivoted to a desired position, i.e., preferably any position between 0–150°, and most preferably about 90°. Also, conceivably the tip 20 could deploy in either direction without stopping in the non-deployed condition. Actuation may be repeated and the shaft 12 advanced in fore and aft directions by pushing and pulling in a sawing-like motion to thereby create a void.
If rotational cutting is desired, turning of shaft 12 is required to reposition the tip 20 to continue cutting. In this case, the cutting tip 20 is returned to the closed position and the shaft 12 turned or rotated to a new position. The cutting tip 20 is again pivoted to a desired angle A (open position) and the shaft 12 again advanced in fore and aft directions using a push-pull motion. It is apparent that the shaft 12 may be repositioned any number of times to produce a void of a desired configuration.
With reference now to
Desirably, the reduced distal tip diameter of the cannula 23 will allow the tip of the tool 10 to be inserted into the targeted bone, with a corresponding reduction in the size of the access path created in the bone. The smaller diameter section 27 of the cannula 23 will pass through the cortical wall into the bone, while the larger diameter section 25 can abut against the outside of the bone (sealing the opening, if desired), and will desirably stretch, but not tear, softer tissues.
In a preferred embodiment, the smaller diameter portion 27 is desirably sized such that, when the larger diameter portion 25 abuts the cortical bone 33 of the pedicle 35, the distal end of the smaller diameter portion 27 extends through the pedicle 35 and emerges into the vertebral body 37 and enters into cancellous bone 39. In this embodiment, the tool 10 could be sized such that, when fully inserted into the cannula 23, the distal cutting tip 20 would be prevented from contacting and/or breaching the anterior cortical wall 41 of the vertebral body 37 or targeted bone.
Other low profile bone access tools are described in U.S. patent application Ser. No. 09/952,014, filed Sep. 11, 2001, entitled “Systems and Methods for Accessing and Treating Diseased or Fractured Bone Employing a Guide Wire,” which is herein incorporated by reference.
B. T-Tip Embodiment
In many cases, it is desirable to cut in both a rotational as well as in a translational direction. In such cases, it is preferable that the rotational cutting motion reflects an ergonomic and natural motion for the physician.
As
A collar 130 divides the pivot region 124 and a trunk region 132 and provides additional strength and support to the cutting tip 120. The maximum width (W) of the trunk 132 is parallel to the axis S of the shaft 112 when the tip 120 is deployed at 900 (illustrated in phantom in
The trunk 132 carries a cutting disc 134 providing a dual rounded cutting surface extending on either side of the trunk 132, providing a 360° cutting surface. In a preferred embodiment, the diameter of disc 134 is approximately the same as the diameter of the shaft 112 so as to minimize stress on the tip 120 during cutting and to provide ease of passage through a cannula.
The tip includes a flat or straight cutting surface 136 along the tip of the disc 134 that provides greater ease in cutting bone on the pullback motion. When pushing, the shaft 112 provides the strength and force for cutting.
The disc 134 and trunk 132 together provide a large surface contact area that enables the tip 120 to take an aggressive bite into bone and gouge bone material in large chunks.
The disc configuration allows rotational cutting in both clockwise and counterclockwise directions. With reference to
The disc configuration also allows translational cutting in a push-pull or sawing motion as represented by arrows in
Desirably, as seen in
The stop 102 is positioned on the shaft 112 such that there is sufficient room to accommodate the physician's fingers wrapped around and under the handle 18. The stop 102 thus provides clearance between the physician's fingers and the percutaneous access cannula 104, preventing pinching or catching of the physician's fingers. The stop 102 stops insertion of the shaft 112 to leave a comfortable working distance for the physician's hand when rotating the shaft 112 (i.e., a sweeping cutting motion) or when using a push-pull cutting motion or a combination of both cutting motions. In a representative embodiment, the stop 102 is positioned approximately 1.75 inches (about 4.5 cm.) from the base of the handle 18. By restricting or preventing further advancement of the shaft 112, the stop 112 prevents advancement of the shaft 112 (and void-forming structure 20) within the vertebral body. This prevents the possibility of puncturing or breaching the anterior cortical wall of the vertebra 142 (see also
Desirably, a marker band 101 is positioned distal of the stop 102. As seen in
In a representative embodiment, the marker band 101 is located approximately 3 cm. distal of the stop 102. In this embodiment, when the shaft 112 is fully inserted into the cannula 104 (i.e., resting against the stop 102), the tip 120 extends approximately 3.5 cm. from the distal end 103 of the cannula 104 when the cutting tip 120 is in the non-deployed position (i.e., aligned with the axis S of the shaft 112), and approximately 3 cm. from the distal end 103 of the cannula 104 when the tip 120 is in the deployed position (e.g., at 90°).
In a preferred embodiment, a groove 105 is positioned proximal the stop 102. As best seen in
It is contemplated that the region of weakness can also be formed by any of a variety of other suitable means that provide that the shaft 112 will sever or break prior to the tip 120 becoming uncoupled from the shaft 112 (i.e., that provide that the maximum hinge torque is greater than the maximum shaft torque). For example, as shown in
With reference to
In use, the tool 100 is introduced into a targeted treatment site. Desirably, the tool 100 is introduced in a closed and minimally invasive procedure in which a percutaneous cannula 104 is advanced into a desired treatment region, e.g., a vertebral body. Introduction of the tool may be assisted by conventional visualization techniques, as previously described. The shaft 112 is then passed through the cannula 104 and the cutting tip 120 is extended beyond the distal end of the cannula 104. The cutting tip 112 is then pivoted to the desired position, i.e., any position between 0–90°.
The physician manipulates the cutting tip 120 by sweeping the shaft 112 along the full range of motion of the cam surface and cam follower. The stop 102 serves to limit translational movement of the shaft 112 along the cannula 104 and the lug or tine 108 limits rotational movement of the shaft 112 within the cannula 104 to create a void of a pre-determined size and shape. Because the void created is of a consistent and pre-determined size and shape, visualization is not required during cutting and void formation. The need for fluoroscopy or other visualization techniques is thereby reduced, limiting the patient's exposure to radiation or dyes. Upon completion of the procedure, the cutting tip 112 is returned to the non-deployed position and the cannula 104 and tool 100 are withdrawn.
C. Turned and Tapered Trunk Embodiment
This arrangement minimizes the combined surface area of the disc 234 and trunk 232 in contact with the bone during scraping and cutting and thus minimizes transmission of significant force and stress to the hinge mechanism.
The disc 234 has a convex front surface 248 providing a dome-shape. Preferably, the disc 234 has a diameter that is approximately the same as the diameter of the shaft 212, minimizing stress on the tip 220 during cutting and providing ease of passage of the tip 220 through a cannula. The domed configuration facilitates cutting and scraping of bone by producing leverage on the bone that allows the tip 220 to roll out of the bone easily. The domed configuration allows the tip to easily release from bone and to disengage from the bone for easy withdrawal.
The disc 234 provides a 360° cutting surface and permits both translational and rotational movement of the cutting disc 234 when deployed at the desired angle A, as previously described.
D. Conical Trunk Configuration
The trunk 332 also carries a dome-shaped disc 334 allowing both translational and rotational cutting, similar to the embodiment of
The combined cutting surface of the disc 334 and trunk 332 is minimized and is designed to reduce the force and stress on the hinged mechanism by minimizing the contact area in the bone in all directions. The same profile (symmetrical cross-section of the conical trunk 332) is presented to the bone regardless of whether pushing or pulling (translational) force, turning (rotational) force, or a combination of both forces is applied.
II. Actuator Mechanism
A. Thumbwheel Embodiment
The actuator mechanism provides a thumbwheel 150, an insert or cap 152, flange 154, plunger rod 156, and rotational stop 158. The thumbwheel 150, cap 152, flange 154, plunger rod 156, and stop 158 may be made of any suitable metal. The thumbwheel is seated in a free-floating manner in a slot 160 within handle 18. In a preferred embodiment, the handle 18 is made of a strong and durable polymer plastic.
The thumbwheel 150 extends, at least in part, from the handle 18 for manipulation by the thumb or index finger of the user, as seen in
The plunger rod 156 is sized and configured to be seated within the shaft 112 and to extend beyond the shaft 112 and thumbwheel 150 through bores in the cap 152 and thumbwheel 150. In the illustrated embodiment, the thumbwheel 150 and shaft 112 are positioned offset on the handle 18 for placement of the shaft 112 between the index and middle finger, as seen in
While the illustrated embodiment shows the tip 120 coupled to the shaft 112 and additionally tethered to the shaft 112 by a rod 156, it is contemplated that the tip 120 may be additionally tethered to the shaft 112 by any of a variety of ways to provide that the tip 120 remains tethered to the shaft 112 if the coupling element (e.g., pin 126) becomes inoperable. For example, in an alternative embodiment, the tip 120 is additionally tethered to shaft 112 by a cable or pulley (not shown).
The flange 154 is seated in a slot 170 within the handle 18 and is coupled to the shaft 112, e.g., by welding or by interference or compression fit. Desirably, the flange 154 includes an offset bore such that there is only one way in which it may be seated with slot 170. The flange 154 engages the shaft 112 within the handle 18 and is sized and configured to essentially prevent rotational movement of the shaft 112.
In the illustrated embodiment, the rod 156 has a rectangular end 172 sized and configured to pass through a complementary rectangular opening 174 in the stop 158. The stop 158 engages the rod 156 to prevent rotation of the rod 156 during actuation. The stop 158 is mounted to the plunger rod 156 and seated exterior to and against slot 160. The arrangement of the metal stop 158 against the plastic slot 160 creates additional frictional forces to provide additional strength and reinforcement and serves to limit the amount of torque delivered to the plunger rod 156.
Rotation of the thumbwheel 150 in a first direction advances the plunger rod 156 in a first direction along the shaft 112 to decrease tension on wire 166 and actuate deployment of the cutting tip 120. Rotation of the thumbwheel 150 in the opposite direction advances the plunger rod in the opposite direction within the shaft 112 and increases tension on wire 166 to actuate movement of the cutting tip 120 from the deployed to the non-deployed position. This arrangement converts the rotational movement of the thumbwheel 150 into the translational movement of the plunger rod 156.
In an alternative embodiment, shown in
B. Gear Embodiment
A central gear 178 is similar in configuration and function to the thumbwheel 150 shown in
Control knobs 180A and 180B are provided at each end of the handle 18 for actuation by the user's thumb. Alternatively, the control knobs 180A and 180B may be driven by a motor. Each control knob 180A and 180B defines a gear that actuates a corresponding intermediate gear 182A or 182B positioned between the control knob 180A or 180B and the central gear 178. Rotation of the control knob 180A or 180B actuates the corresponding intermediate gear 182A or 182B and the central gear 178. Rotational movement of the control knob 180 is thereby converted into translational movement of the plunger rod 156, similar to the previous embodiment.
The symmetric design is designed for easy use by either the right or left hand. Further, the symmetric design allows easy rotation of the handle 18.
In use, the shaft 112 is advanced through a cannula 104. The cutting tip 120 is extended beyond the distal end of the cannula 104. A control knob 180A or 180B is rotated to deploy the cutting tip 130 to the desired angle. The physician then creates a desired void by performing a series of translational and rotational movements of the shaft 112. The physician then returns the cutting tip 120 to the non-deployed position.
If desired, the handle 18 can then be rotated 180°. The opposing control knob 180A or 180B is then manipulated to again deploy the cutting tip 120 to a desired angle and another series of translational and rotational movements may be performed.
Once the desired void is created, the physician returns the tip 120 to the non-deployed position. The tool 100 is withdrawn from the patient. The physician then completes the procedure by filling the void with a bone cement or bone substitute, removing the cannula 104, and closing the incision.
The rate and/or force of cutting may be controlled by altering the transmission ratio. The force may be varied by varying the screw thread pitch or the transmission gear ratio. The rate of motion (i.e., speed of actuation) may be varied by manually or mechanically varying the speed of actuation.
III. Alternative Embodiments of Mechanical Void Creators
A. Shape Memory Alloys
A malleable rod 701 formed of a shape memory alloy, e.g., Nitinol, is provided. It is contemplated that the rod 701 may be of a variety of different diameters, tip configurations, and actuation angles. The rod 701 has a malleable or straightened state (
In another embodiment, the rod 701 is formed from a shape memory alloy with an activation temperature that is equal to room temperature, i.e., the rod 701 is fully austenitic at room temperature. Therefore, the rod 701 is fully articulated to its predetermined shape at room temperature. The rod 701 is chilled to a martensitic condition (malleable state) prior to insertion into bone, allowing for easy insertion. The rod 701 articulates to the predetermined, desired position upon returning to room temperature. This ensures that the proximal end of the cutting tip 720 attains full activation without depending on heat transfer from the distal end of the rod 701 (which is in contact with the patient) or any outside means (e.g., heat, voltage, etc.). A lumen 703 is provided in the rod 701 to facilitate the introduction of a cooling media (S), e.g., chilled saline, to deactivate the material and allow for easy withdrawal. In another alternative embodiment, the alloy is super-elastic and the cannula 104 confines the pre-bent or formed cutting tip 720 until the activation mechanism deploys the cutting tip 720 to extend beyond the cannula 104 (see
In another alternative embodiment, the rod 701 may be used to straighten the cannula 104 which is formed of a shape memory alloy. In this embodiment, the cutting tip 720 is disposed on the shape memory cannula 104 (not shown). The cannula 104 is educated to have a curved tip the rod 701 is moveably disposed within the cannula 104 to straighten the cannula 104 by fully engaging the rod 701 within the cannula 104 (i.e. by pushing the rod 701) and to allow the cannula 104 and cutting tip 720 to curve or articulate by pulling back on the rod 701. Desirably, the rod 701 is made of a rigid material, such as stainless steel.
In another embodiment, the activation temperature of the alloy is set at a temperature higher than body temperature. In this embodiment, the rod 701 is malleable for insertion and withdrawal. The rod 701 achieves full activation to its predetermined shape only through the application of heat or voltage. This permits control of the change of the state of the rod 701 from malleable to the predetermined shape, or any percentage there between, using a potentiometer or other suitable device.
The rod 701 may be attached to a handle by a standard square drive or Hudson-style orthopedic fitting on the proximal end (not shown). A torque-regulating handle could be mated to the rod 701 to allow for torque-limiting rotational scraping.
In one embodiment, the rod 701 is fixedly attached or otherwise coupled to a handle 18 having an actuator mechanism. For example, in the illustrated embodiment, the rod 701 is coupled to a thumbscrew 152 and is driven by an actuator mechanism similar to the mechanism illustrated in
In a preferred embodiment, the handle 18 includes a luer fitting 705. The fitting 705 is sized and configured to mate with a complementary luer fitting 707 on a fluid introduction device, e.g., a syringe 709, to establish fluid communication between the lumen 703 and the fluid introduction device 709. Fluid, e.g., chilled or heated saline, may be introduced from the syringe 709 through the rod lumen 703 to control movement of the rod 701 between the malleable (deactivated) and activated states.
In an alternative embodiment, shown in
In an alternative embodiment, illustrated in
B. Alternative Mechanical Void Creators
The void-creating device 620 provides for adjusting the height of the device 620. A positioning rod 621 is coupled to the device 620 for expanding and contracting the device 620. The height may be adjusted by drawing in the rod 621 to increase the height H and pushing out on the rod to decrease the height H of the device 620. Calibrated markings (not shown) may be provided on the rod handle to indicate the dimension of the device 620 as the rod 621 is drawn back or advanced. The height H may also be chosen to suit the intended use and particular individual anatomy.
IV. Creation of Voids in Bone
Two or more different mechanical cutting tools of the type described may also be used in combination to form a cavity or void of a desired size and configuration in a targeted bone. In addition, one or more mechanical cutting tools may be used in combination with one or more expandable void-creating tools to form the desired void.
Expandable structures for creating voids in bones are described in U.S. Pat. Nos. 4,969,888, 5,827,289, 5,972,015, 6,235,043, 6,248,110, and 6,607,544, all of which are herein incorporated by reference.
Fracture reduction and deformity correction is influenced by a variety of factors, including, but not limited to, acuteness of the fracture, bone quality (e.g. osteoporosis, bone cancers, steroid-induced osteoporosis), and healing. In some fractures, expansion of the expandable structure may be distorted by a region or regions of hard bone. This results in a high pressure within the expandable structure and low volume of expansion media within the expandable structure. The use of a mechanical cutting tool to selectively break up the region of hard bone will allow the expandable structure to achieve a more consistent and reliable fracture reduction. Mechanical cutting or scraping tools will break bone, but an expandable structure is required for the en-masse endplate reduction and deformity correction.
In use, an access path to bone is made using a conventional access cannula by techniques commonly known in the art. A first void creator, which may be a mechanical cutting tool or an expandable structure, is then introduced into a bone to create a void. The first void creator is then removed. A second void creator, which may be the same as or different from the first void creator, is then inserted into the bone to enlarge or further define the void to form a void of a desired size and configuration. The second void creator is then removed. If desired, a third void creator, which may be the same or different from the first and/or second void creators, may then be introduced to further enlarge and define the void and then removed. Desirably, a filling material, e.g., bone cement or bone substitute, is then injected or otherwise introduced into the void to fill the void.
In one embodiment, illustrated in
Alternatively, as shown in
In another embodiment, illustrated in
Alternatively, as shown in
A mechanical cutting tool 800 is then introduced (
If desired, a second expandable structure 900B, which may be of a different size and/or configuration from the first expandable structure 900A, is then introduced prior to filling the void 802 (
In an alternative method shown in
A first mechanical cutting tool 800A is then introduced (
If desired, a second mechanical cutting tool 800B, which may be of a different size and/or configuration from the first mechanical cutting tool 800A, is then introduced prior to filling the void 802 (
In an alternative method shown in
If desired, a second mechanical cutting tool 800B, which may be of a different size and/or configuration from the first mechanical cutting tool 800A, is then introduced prior to filling the void 802. The cutting tip 820B is manipulated in a series of longitudinal and/or rotational movements to enlarge and/or otherwise further define the void 802 created by the expandable structure 900A and first cutting tool 802A. The second cutting tool 802B is then removed. A filler material 804 may then be introduced into the void 802 to fill the void 802.
Alternatively, as seen in
Reiley, Mark A., Edidin, Avram Allan, Layne, Richard W., Scholten, Arie, Phillips, Frank M., Cantu, Alberto Ruiz, Way, Bryce Anton, Rothwell, Derek S.
Patent | Priority | Assignee | Title |
10022132, | Dec 12 2013 | Conventus Orthopaedics, Inc. | Tissue displacement tools and methods |
10022173, | Nov 10 2009 | Stryker Corporation | Systems and methods for vertebral or other bone structure height restoration and stabilization |
10024407, | Dec 19 2012 | Covidien LP | Lower anterior resection 90 degree instrument |
10028753, | Sep 26 2008 | Relievant Medsystems, Inc. | Spine treatment kits |
10028840, | Aug 16 2005 | IZI Medical Products, LLC | Spinal tissue distraction devices |
10039649, | Jun 06 2008 | Providence Medical Technology, Inc. | Composite spinal facet implant with textured surfaces |
10045788, | Dec 11 2006 | Arthrosurface Incorporated | Retrograde resection apparatus and method |
10045803, | Jul 03 2014 | Mayo Foundation for Medical Education and Research | Sacroiliac joint fusion screw and method |
10052116, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for treating tissue |
10070968, | Aug 24 2010 | Flexmedex, LLC | Support device and method for use |
10076342, | Dec 12 2013 | Conventus Orthopaedics, Inc. | Tissue displacement tools and methods |
10076343, | Dec 03 2002 | Arthrosurface Incorporated | System for articular surface replacement |
10080571, | Mar 06 2015 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
10085783, | Mar 14 2013 | IZI Medical Products, LLC | Devices and methods for treating bone tissue |
10085843, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10111704, | Sep 30 2002 | Relievant Medsystems, Inc. | Intraosseous nerve treatment |
10130793, | Jan 09 2012 | Covidien LP | Surgical articulation assembly |
10136934, | Dec 31 2007 | DFINE, INC. | Bone treatment systems and methods |
10149673, | Jun 06 2008 | Providence Medical Technology, Inc. | Facet joint implants and delivery tools |
10159497, | Dec 14 2012 | DePuy Synthes Products, Inc. | Device to aid in the deployment of a shape memory instrument |
10172721, | Jun 06 2008 | PROVIDENCE TECHNOLOGY, INC. | Spinal facet cage implant |
10188403, | Apr 24 2013 | T.A.G. Medical Devices—Agriculture Cooperative Ltd. | Bone material removal devices |
10201375, | May 28 2014 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Lateral mass fixation system |
10206731, | Jul 19 2013 | Pro-Dex, Inc. | Torque-limiting screwdrivers |
10219910, | Dec 29 2006 | Providence Medical Technology, Inc. | Cervical distraction method |
10226285, | Jun 06 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
10238501, | Jun 06 2008 | Providence Medical Technology, Inc. | Cervical distraction/implant delivery device |
10265099, | Sep 26 2008 | Relievant Medsystems, Inc. | Systems for accessing nerves within bone |
10271859, | Jan 09 2014 | SURGALIGN SPINE TECHNOLOGIES, INC | Undercutting system for use in conjunction with sacroiliac fusion |
10271883, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC. | Method for treating joint pain and associated instruments |
10285819, | Nov 12 2008 | Stout Medical Group, L.P. | Fixation device and method |
10285820, | Nov 12 2008 | Stout Medical Group, L.P. | Fixation device and method |
10285821, | Jun 22 2007 | SPINAL ELEMENTS, INC | Devices for treating the spine |
10292828, | Nov 12 2008 | Stout Medical Group, L.P. | Fixation device and method |
10307172, | Jul 03 2012 | Arthrosurface Incorporated | System and method for joint resurfacing and repair |
10314632, | Oct 07 2016 | MEDTRONIC HOLDING COMPANY SÀRL | Surgical system and methods of use |
10314633, | Nov 18 2005 | Stryker Corporation | Shape memory device with temperature-dependent deflectable segment and methods of positioning a shape memory device within a bone structure |
10335168, | Jun 10 2014 | MEDOS INTERNATIONAL SÀRL | Retro-cutting instrument with adjustable limit setting |
10357258, | Nov 05 2012 | Relievant Medsystems, Inc. | Systems and methods for creating curved paths through bone |
10376372, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10383674, | Jun 07 2016 | PRO-DEX, INC | Torque-limiting screwdriver devices, systems, and methods |
10390877, | Dec 30 2011 | RELIEVANT MEDSYSTEMS, INC | Systems and methods for treating back pain |
10405986, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10413332, | Apr 05 2016 | IMDS LLC | Joint fusion implant and methods |
10420651, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10426629, | Jun 22 2007 | SPINAL ELEMENTS, INC | Devices for treating the spine |
10433971, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10441295, | Oct 15 2013 | Stryker Corporation | Device for creating a void space in a living tissue, the device including a handle with a control knob that can be set regardless of the orientation of the handle |
10448959, | Apr 09 2015 | T.A.G. Medical Devices—Agriculture Cooperative Ltd. | Bone material removal device and a method for use thereof |
10456169, | Jan 09 2012 | Covidien LP | Articulation control mechanisms |
10456175, | Jun 06 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
10456187, | Aug 08 2013 | Relievant Medsystems, Inc. | Modulating nerves within bone using bone fasteners |
10463380, | Dec 09 2016 | DFINE, INC. | Medical devices for treating hard tissues and related methods |
10463423, | Mar 28 2003 | Relievant Medsystems, Inc. | Thermal denervation devices and methods |
10470781, | Dec 09 2016 | DFINE, INC. | Medical devices for treating hard tissues and related methods |
10478200, | Apr 17 2009 | Arthrosurface Incorporated | Glenoid resurfacing system and method |
10478241, | Oct 27 2016 | Merit Medical Systems, Inc. | Articulating osteotome with cement delivery channel |
10478246, | Sep 12 2012 | Relievant Medsystems, Inc. | Ablation of tissue within vertebral body involving internal cooling |
10492918, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10517611, | Nov 05 2012 | Relievant Medsystems, Inc. | Systems for navigation and treatment within a vertebral body |
10537340, | Oct 19 2014 | T A G MEDICAL PRODUCTS CORPORATION LTD | Kit including a guiding system and a bone material removal device |
10555817, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10568666, | Jun 06 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
10575957, | Mar 07 2014 | Arthrosurface Incoporated | Anchor for an implant assembly |
10575959, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10575963, | Jun 22 2007 | SPINAL ELEMENTS, INC | Devices for treating the spine |
10583013, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10588646, | Jun 17 2008 | Globus Medical, Inc. | Devices and methods for fracture reduction |
10588672, | Jun 06 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
10588691, | Sep 12 2012 | Relievant Medsystems, Inc. | Radiofrequency ablation of tissue within a vertebral body |
10596002, | Jan 04 2010 | SURGALIGN SPINE TECHNOLOGIES, INC | Sacroiliac fusion system |
10603087, | Jan 14 2008 | Conventus Orthopaedics, Inc. | Apparatus and methods for fracture repair |
10603177, | Apr 25 2016 | IMDS LLC | Joint fusion instrumentation and methods |
10610244, | Apr 25 2016 | IMDS LLC | Joint fusion instrumentation and methods |
10624652, | Apr 29 2010 | DFINE, INC. | System for use in treatment of vertebral fractures |
10624748, | Mar 07 2014 | Arthrosurface Incorporated | System and method for repairing articular surfaces |
10624749, | Feb 24 2003 | Arthrosurface Incorporated | Trochlear resurfacing system and method |
10624752, | Jul 17 2006 | Arthrosurface Incorporated | Tibial resurfacing system and method |
10624754, | Mar 07 2014 | Arthrosurface Incorporated | System and method for repairing articular surfaces |
10624762, | Sep 07 2018 | Orthorebirth USA | Bone graft delivery device for minimally invasive surgery |
10639164, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
10660656, | Jan 06 2017 | DFINE, INC. | Osteotome with a distal portion for simultaneous advancement and articulation |
10660657, | Feb 11 2016 | T.A.G. Medical Devices—Agriculture Cooperative Ltd. | Bone material removal device and a method for use thereof |
10667827, | Mar 06 2015 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
10682243, | Oct 13 2015 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Spinal joint implant delivery device and system |
10695073, | Aug 22 2017 | Arthrex, Inc. | Control system for retrograde drill medical device |
10695096, | Apr 16 2013 | Arthrosurface Incorporated | Suture system and method |
10751071, | Apr 25 2016 | IMDS LLC; Mayo Foundation for Medical Education and Research | Joint fusion instrumentation and methods |
10758289, | May 01 2006 | STOUT MEDICAL GROUP, L P | Expandable support device and method of use |
10786361, | Feb 14 2003 | DEPUY SYNTHES PRODUCTS, INC | In-situ formed intervertebral fusion device and method |
10813677, | May 01 2006 | STOUT MEDICAL GROUP, L P | Expandable support device and method of use |
10888433, | Dec 14 2016 | DEPUY SYNTHES PRODUCTS, INC | Intervertebral implant inserter and related methods |
10905440, | Sep 26 2008 | Relievant Medsystems, Inc. | Nerve modulation systems |
10905487, | Nov 10 2009 | Stryker Corporation | Systems and methods for vertebral or other bone structure height restoration and stabilization |
10905854, | Jan 09 2012 | Covidien LP | Surgical articulation assembly |
10918426, | Jul 04 2017 | CONVENTUS ORTHOPAEDICS, INC | Apparatus and methods for treatment of a bone |
10940014, | Nov 12 2008 | Stout Medical Group, L.P. | Fixation device and method |
10940016, | Jul 05 2017 | DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL | Expandable intervertebral fusion cage |
10945743, | Apr 17 2009 | Arthrosurface Incorporated | Glenoid repair system and methods of use thereof |
10952750, | Jan 09 2014 | SURGALIGN SPINE TECHNOLOGIES, INC | Undercutting system for use in conjunction with sacroiliac fusion |
10959740, | Dec 11 2006 | Arthrosurface Incorporated | Retrograde resection apparatus and method |
10966840, | Jun 24 2010 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
10973652, | Jun 26 2007 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
11006992, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC. | Method for treating joint pain and associated instruments |
11007010, | Sep 12 2019 | RELIEVANT MEDSYSTEMS, INC | Curved bone access systems |
11013544, | Oct 07 2016 | MEDTRONIC HOLDING COMPANY SÀRL | Surgical system and methods of use |
11020132, | Apr 24 2016 | T A G MEDICAL DEVICES - AGRICULTURE COOPERATIVE LTD | Guiding device and method of using thereof |
11026744, | Nov 28 2016 | DFINE, INC. | Tumor ablation devices and related methods |
11026806, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
11033283, | Oct 19 2014 | T A G MEDICAL PRODUCTS CORPORATION LTD | Kit including a guiding system and a bone material removal device |
11033306, | Dec 18 2009 | Charles River Engineering Solutions and Technologies, LLC | Articulating tool and methods of using |
11051862, | Nov 03 2001 | DePuy Synthes Products, Inc. | Device for straightening and stabilizing the vertebral column |
11051954, | Sep 21 2004 | Stout Medical Group, L.P. | Expandable support device and method of use |
11058466, | May 28 2014 | Providence Medical Technology, Inc. | Lateral mass fixation system |
11058553, | Jun 06 2008 | Providence Medical Technology, Inc. | Spinal facet cage implant |
11065039, | Jun 28 2016 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Spinal implant and methods of using the same |
11065046, | Aug 08 2013 | Relievant Medsystems, Inc. | Modulating nerves within bone |
11071575, | Jun 07 2016 | Pro-Dex, Inc. | Torque-limiting screwdriver devices, systems, and methods |
11083445, | Mar 31 2016 | Medartis AG | Knife and retractor system |
11083587, | Mar 07 2014 | Arthrosurface Incorporated | Implant and anchor assembly |
11090128, | Aug 20 2018 | PRO-DEX, INC | Torque-limiting devices, systems, and methods |
11096794, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
11116570, | Nov 28 2016 | DFINE, INC | Tumor ablation devices and related methods |
11123103, | Sep 12 2019 | RELIEVANT MEDSYSTEMS, INC | Introducer systems for bone access |
11129649, | Apr 25 2016 | IMDS LLC; Mayo Foundation for Medical Education and Research | Joint fusion implant and methods |
11129728, | Oct 03 2018 | Surgically implantable joint spacer | |
11141144, | Jun 06 2008 | Providence Medical Technology, Inc. | Facet joint implants and delivery tools |
11141208, | May 01 2006 | STOUT MEDICAL GROUP, L P | Expandable support device and method of use |
11160563, | Nov 05 2012 | Relievant Medsystems, Inc. | Systems for navigation and treatment within a vertebral body |
11160663, | Aug 04 2017 | Arthrosurface Incorporated | Multicomponent articular surface implant |
11173036, | Jan 04 2010 | SURGALIGN SPINE TECHNOLOGIES, INC | Sacroiliac fusion system |
11191552, | Jul 03 2012 | ARTHROSURFACE, INCORPORATED | System and method for joint resurfacing and repair |
11197681, | May 20 2009 | Merit Medical Systems, Inc. | Steerable curvable vertebroplasty drill |
11202641, | Aug 01 2018 | T A G MEDICAL DEVICES - AGRICULTURE COOPERATIVE LTD | Adjustable drilling device and a method for use thereof |
11202655, | Sep 12 2019 | Relievant Medsystems, Inc. | Accessing and treating tissue within a vertebral body |
11207100, | Sep 12 2019 | Relievant Medsystems, Inc. | Methods of detecting and treating back pain |
11207187, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
11224521, | Jun 06 2008 | Providence Medical Technology, Inc. | Cervical distraction/implant delivery device |
11234716, | Feb 22 2019 | Globus Medical, Inc.; Globus Medical, Inc | Methods and apparatus for performing discectomy |
11234764, | Nov 05 2012 | Relievant Medsystems, Inc. | Systems for navigation and treatment within a vertebral body |
11259818, | Oct 15 2013 | Stryker Corporation | Methods for creating a void within a bone |
11272964, | Jun 06 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
11273050, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
11284907, | Jun 10 2014 | MEDOS INTERNATIONAL SARL | Retro-cutting instrument with adjustable limit setting |
11285010, | Dec 29 2006 | Providence Medical Technology, Inc. | Cervical distraction method |
11291502, | Nov 05 2012 | Relievant Medsystems, Inc. | Methods of navigation and treatment within a vertebral body |
11337819, | Feb 24 2003 | Arthrosurface Incorporated | Trochlear resurfacing system and method |
11344339, | Jun 06 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
11344350, | Oct 27 2016 | DFINE, INC. | Articulating osteotome with cement delivery channel and method of use |
11344424, | Jun 14 2017 | MEDOS INTERNATIONAL SARL | Expandable intervertebral implant and related methods |
11357557, | Jul 03 2014 | Mayo Foundation for Medical Education and Research | Bone joint reaming tool |
11382647, | Oct 15 2004 | Spinal Elements, Inc. | Devices and methods for treating tissue |
11399878, | Jan 14 2008 | Conventus Orthopaedics, Inc. | Apparatus and methods for fracture repair |
11426199, | Sep 12 2019 | Relievant Medsystems, Inc. | Methods of treating a vertebral body |
11426286, | Mar 06 2020 | EIT Emerging Implant Technologies GmbH | Expandable intervertebral implant |
11426290, | Mar 06 2015 | SYNTHES USA PRODUCTS, LLC; DEPUY SYNTHES PRODUCTS, INC | Expandable intervertebral implant, system, kit and method |
11432938, | Feb 14 2003 | DEPUY SYNTHES PRODUCTS, INC | In-situ intervertebral fusion device and method |
11432942, | Dec 07 2006 | DEPUY SYNTHES PRODUCTS, INC | Intervertebral implant |
11446042, | Feb 11 2016 | T A G MEDICAL PRODUCTS CORPORATION LTD | Bone material removal device and a method for use thereof |
11446155, | May 08 2017 | MEDOS INTERNATIONAL SARL | Expandable cage |
11446156, | Oct 25 2018 | MEDOS INTERNATIONAL SARL | Expandable intervertebral implant, inserter instrument, and related methods |
11452607, | Oct 11 2010 | DePuy Synthes Products, Inc. | Expandable interspinous process spacer implant |
11452609, | Mar 30 2009 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
11471171, | Sep 26 2008 | Relievant Medsystems, Inc. | Bipolar radiofrequency ablation systems for treatment within bone |
11471210, | Dec 30 2011 | Relievant Medsystems, Inc. | Methods of denervating vertebral body using external energy source |
11471289, | Jul 17 2006 | Arthrosurface Incorporated | Tibial resurfacing system and method |
11478259, | Apr 17 2009 | ARTHROSURFACE, INCORPORATED | Glenoid resurfacing system and method |
11478358, | Mar 12 2019 | Arthrosurface Incorporated | Humeral and glenoid articular surface implant systems and methods |
11497618, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
11497619, | Mar 07 2013 | DePuy Synthes Products, Inc. | Intervertebral implant |
11510723, | Nov 08 2018 | DFINE, INC. | Tumor ablation device and related systems and methods |
11510788, | Jun 28 2016 | EIT Emerging Implant Technologies GmbH | Expandable, angularly adjustable intervertebral cages |
11540842, | Dec 09 2016 | DFINE, INC. | Medical devices for treating hard tissues and related methods |
11559408, | Jan 09 2008 | Providence Medical Technology, Inc. | Methods and apparatus for accessing and treating the facet joint |
11596419, | Mar 09 2017 | FLOWER ORTHOPEDICS CORPORATION | Plating depth gauge and countersink instrument |
11596468, | Sep 12 2012 | Relievant Medsystems, Inc. | Intraosseous nerve treatment |
11596522, | Jun 28 2016 | EIT Emerging Implant Technologies GmbH | Expandable and angularly adjustable intervertebral cages with articulating joint |
11596523, | Jun 28 2016 | EIT Emerging Implant Technologies GmbH | Expandable and angularly adjustable articulating intervertebral cages |
11602438, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
11607230, | Jan 06 2017 | DFINE, INC. | Osteotome with a distal portion for simultaneous advancement and articulation |
11607319, | Mar 07 2014 | Arthrosurface Incorporated | System and method for repairing articular surfaces |
11607321, | Dec 10 2009 | DePuy Synthes Products, Inc. | Bellows-like expandable interbody fusion cage |
11612491, | Mar 30 2009 | DePuy Synthes Products, Inc. | Zero profile spinal fusion cage |
11617655, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
11622868, | Jun 26 2007 | DePuy Synthes Products, Inc. | Highly lordosed fusion cage |
11642229, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
11648036, | Apr 16 2013 | Arthrosurface Incorporated | Suture system and method |
11648128, | Jan 04 2018 | Providence Medical Technology, Inc.; PROVIDENCE MEDICAL TECHNOLOGY, INC | Facet screw and delivery device |
11653934, | Mar 06 2015 | Warsaw Orthopedic, Inc. | Surgical instrument and method |
11654033, | Jun 29 2010 | DePuy Synthes Products, Inc. | Distractible intervertebral implant |
11660206, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
11666366, | Nov 10 2009 | Stryker Corporation | Systems and methods for vertebral or other bone structure height restoration and stabilization |
11672579, | Dec 31 2007 | DFine Inc. | Bone treatment systems and methods |
11684485, | Feb 04 2020 | Surgically implantable joint spacer | |
11690635, | Aug 01 2018 | T A G MEDICAL PRODUCTS CORPORATION LTD | Adjustable drilling device and a method for use thereof |
11690667, | Sep 12 2012 | Relievant Medsystems, Inc. | Radiofrequency ablation of tissue within a vertebral body |
11701168, | Sep 12 2012 | Relievant Medsystems, Inc. | Radiofrequency ablation of tissue within a vertebral body |
11701234, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
11707285, | Jan 09 2014 | Surgalign Spine Technologies, Inc. | Undercutting system for use in conjunction with sacroiliac fusion |
11707359, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
11712276, | Dec 22 2011 | Arthrosurface Incorporated | System and method for bone fixation |
11712341, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
11712342, | Apr 05 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant |
11712345, | Dec 07 2006 | DePuy Synthes Products, Inc. | Intervertebral implant |
11730493, | Feb 22 2019 | Globus Medical Inc. | Methods and apparatus for performing discectomy |
11737814, | Sep 12 2012 | Relievant Medsystems, Inc. | Cryotherapy treatment for back pain |
11737881, | Jan 17 2008 | DePuy Synthes Products, Inc. | Expandable intervertebral implant and associated method of manufacturing the same |
11737882, | Jan 04 2010 | SURGALIGN SPINE TECHNOLOGIES, INC | Sacroiliac fusion system |
11752009, | Apr 06 2021 | MEDOS INTERNATIONAL SARL | Expandable intervertebral fusion cage |
11766334, | Mar 07 2014 | Arthrosurface Incorporated | System and method for repairing articular surfaces |
11779353, | Apr 09 2015 | T A G MEDICAL PRODUCTS CORPORATION LTD | Bone material removal device and a method for use thereof |
11806245, | Mar 06 2020 | EIT Emerging Implant Technologies GmbH | Expandable intervertebral implant |
11813172, | Jan 04 2018 | Providence Medical Technology, Inc. | Facet screw and delivery device |
11844536, | Mar 06 2018 | MEDOS INTERNATIONAL SARL | Methods, systems, and devices for instability repair |
11844537, | Apr 24 2016 | T A G MEDICAL PRODUCTS CORPORATION LTD | Guiding device and method of using thereof |
11849986, | Apr 24 2019 | Stryker Corporation | Systems and methods for off-axis augmentation of a vertebral body |
11850160, | Mar 26 2021 | MEDOS INTERNATIONAL SARL | Expandable lordotic intervertebral fusion cage |
11850164, | Mar 07 2013 | DePuy Synthes Products, Inc. | Intervertebral implant |
11871968, | May 19 2017 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Spinal fixation access and delivery system |
11872139, | Jun 24 2010 | DePuy Synthes Products, Inc. | Enhanced cage insertion assembly |
11882991, | Aug 20 2018 | Pro-Dex, Inc. | Torque-limiting devices, systems, and methods |
11890038, | Oct 30 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
11890144, | Jun 07 2016 | Pro-Dex, Inc. | Torque-limiting screwdriver devices, systems, and methods |
11896242, | Oct 19 2014 | T A G MEDICAL PRODUCTS CORPORATION LTD | Kit including a guiding system and a bone material removal device |
11911287, | Jun 24 2010 | DePuy Synthes Products, Inc. | Lateral spondylolisthesis reduction cage |
7442195, | Sep 12 2005 | Apparatus and method for the reduction of bone fractures | |
7510558, | May 01 2000 | ARTHROSURFACE INC | System and method for joint resurface repair |
7553307, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for tissue modification |
7555343, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for selective surgical removal of tissue |
7578819, | May 16 2005 | SPINAL ELEMENTS, INC | Spinal access and neural localization |
7601152, | Oct 26 1998 | Expanding Orthopedics, Inc. | Expandable orthopedic device |
7604641, | May 01 2000 | Arthrosurface Incorporated | System and method for joint resurface repair |
7618462, | May 01 2000 | Arthrosurface Incorporated | System and method for joint resurface repair |
7654735, | Nov 03 2005 | CARDINAL HEALTH IRELAND UNLIMITED COMPANY | Electronic thermometer |
7666226, | Aug 16 2005 | IZI Medical Products, LLC | Spinal tissue distraction devices |
7666227, | Aug 16 2005 | IZI Medical Products, LLC | Devices for limiting the movement of material introduced between layers of spinal tissue |
7670339, | Oct 26 1998 | Expanding Orthopedics, Inc. | Expandable orthopedic device |
7670374, | Aug 16 2005 | IZI Medical Products, LLC | Methods of distracting tissue layers of the human spine |
7670375, | Aug 16 2005 | IZI Medical Products, LLC | Methods for limiting the movement of material introduced between layers of spinal tissue |
7678151, | May 01 2000 | Arthrosurface, Inc | System and method for joint resurface repair |
7682378, | Nov 10 2004 | DFINE, INC | Bone treatment systems and methods for introducing an abrading structure to abrade bone |
7713273, | Nov 18 2005 | Stryker Corporation | Device, system and method for delivering a curable material into bone |
7713305, | May 01 2000 | Arthrosurface, Inc | Articular surface implant |
7731692, | Jul 11 2005 | CARDINAL HEALTH IRELAND UNLIMITED COMPANY | Device for shielding a sharp tip of a cannula and method of using the same |
7738968, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for selective surgical removal of tissue |
7738969, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for selective surgical removal of tissue |
7740631, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for tissue modification |
7749230, | Sep 02 2004 | CROSSTREES MEDICAL, INC ; CROSSTREES MEDICAL INC | Device and method for distraction of the spinal disc space |
7785368, | Aug 16 2005 | IZI Medical Products, LLC | Spinal tissue distraction devices |
7799035, | Nov 18 2005 | Stryker Corporation | Device, system and method for delivering a curable material into bone |
7811291, | Nov 16 2007 | Merit Medical Systems, Inc | Closed vertebroplasty bone cement injection system |
7824431, | Dec 29 2006 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Cervical distraction method |
7828773, | Jul 11 2005 | KPR U S , LLC | Safety reset key and needle assembly |
7828802, | Jan 16 2004 | EXPANDING ORTHOPEDICS, INC | Bone fracture treatment devices and methods of their use |
7828804, | Nov 08 2002 | SDGI Holdings, Inc | Transpedicular intervertebral disk access methods and devices |
7828853, | Feb 22 2005 | Arthrosurface, Inc | Articular surface implant and delivery system |
7842041, | Nov 16 2007 | Merit Medical Systems, Inc | Steerable vertebroplasty system |
7850650, | Jul 11 2005 | KPR U S , LLC | Needle safety shield with reset |
7857813, | Aug 29 2006 | SPINAL ELEMENTS, INC | Tissue access guidewire system and method |
7857817, | May 01 2000 | Arthrosurface Inc. | System and method for joint resurface repair |
7867233, | Nov 08 2002 | Warsaw Orthopedic, Inc | Transpedicular intervertebral disk access methods and devices |
7887538, | Oct 15 2005 | SPINAL ELEMENTS, INC | Methods and apparatus for tissue modification |
7896883, | May 01 2000 | ARTHROSURFACE INC | Bone resurfacing system and method |
7896885, | Dec 03 2002 | Arthrosurface, Inc | Retrograde delivery of resurfacing devices |
7901408, | Dec 03 2002 | Arthrosurface, Inc | System and method for retrograde procedure |
7905857, | Jul 11 2005 | KPR U S , LLC | Needle assembly including obturator with safety reset |
7909873, | Dec 15 2006 | Globus Medical, Inc | Delivery apparatus and methods for vertebrostenting |
7914545, | Dec 03 2002 | Arthrosurface, Inc | System and method for retrograde procedure |
7918849, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for tissue access |
7931689, | Feb 27 2001 | SPINEOLOGY, INC | Method and apparatus for treating a vertebral body |
7938830, | Oct 15 2004 | SPINAL ELEMENTS, INC | Powered tissue modification devices and methods |
7951163, | Nov 20 2003 | Arthrosurface, Inc | Retrograde excision system and apparatus |
7955391, | Aug 16 2005 | IZI Medical Products, LLC | Methods for limiting the movement of material introduced between layers of spinal tissue |
7959577, | Sep 06 2007 | SPINAL ELEMENTS, INC | Method, system, and apparatus for neural localization |
7963915, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for tissue access |
7963993, | Aug 16 2005 | IZI Medical Products, LLC | Methods of distracting tissue layers of the human spine |
7967864, | Aug 16 2005 | IZI Medical Products, LLC | Spinal tissue distraction devices |
7967865, | Aug 16 2005 | IZI Medical Products, LLC | Devices for limiting the movement of material introduced between layers of spinal tissue |
7976498, | Jul 11 2005 | KPR U S , LLC | Needle assembly including obturator with safety reset |
7976549, | Mar 23 2006 | Theken Spine, LLC | Instruments for delivering spinal implants |
7988695, | Dec 21 2005 | Theken Spine, LLC | Articulated delivery instrument |
7993343, | Sep 29 2003 | Crosstrees Medical, Inc. | Extractable filler for inserting medicine into vertebral body |
7993345, | Sep 02 2004 | Crosstress Medical, Inc. | Device and method for distraction of the spinal disc space |
8007500, | May 21 2003 | Crosstrees Medical, Inc. | Extractable filler for inserting medicine into animal tissue |
8021366, | Jul 11 2005 | Kyphon SARL | Axial load limiting system and methods |
8048080, | Oct 15 2004 | SPINAL ELEMENTS, INC | Flexible tissue rasp |
8057544, | Aug 16 2005 | IZI Medical Products, LLC | Methods of distracting tissue layers of the human spine |
8062298, | May 04 2006 | SPINAL ELEMENTS, INC | Flexible tissue removal devices and methods |
8062300, | May 04 2006 | SPINAL ELEMENTS, INC | Tissue removal with at least partially flexible devices |
8092456, | Oct 15 2005 | SPINAL ELEMENTS, INC | Multiple pathways for spinal nerve root decompression from a single access point |
8109933, | Apr 03 2007 | DFINE, INC | Bone treatment systems and methods |
8128633, | Nov 18 2005 | Stryker Corporation | Device, system, and method for forming a cavity in and delivering a curable material into bone |
8137352, | Oct 16 2006 | Depuy Synthes Products, LLC | Expandable intervertebral tool system and method |
8142462, | May 28 2004 | Cavitech, LLC | Instruments and methods for reducing and stabilizing bone fractures |
8147559, | May 01 2000 | Arthrosurface Incorporated | System and method for joint resurface repair |
8162889, | Jul 11 2005 | KPR U S , LLC | Safety reset key and needle assembly |
8163018, | Feb 14 2006 | Warsaw Orthopedic, Inc | Treatment of the vertebral column |
8172848, | Apr 27 2007 | MIMEDX PROCESSING SERVICES, LLC | Surgical instruments for spinal disc implants and related methods |
8177841, | May 01 2000 | ARTHROSURFACE INC | System and method for joint resurface repair |
8192435, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for tissue modification |
8192436, | Dec 07 2007 | SPINAL ELEMENTS, INC | Tissue modification devices |
8197545, | Oct 27 2005 | DEPUY SYNTHES PRODUCTS, INC | Nucleus augmentation delivery device and technique |
8221397, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for tissue modification |
8221420, | Feb 16 2009 | AOI MEDICAL, INC | Trauma nail accumulator |
8226657, | Nov 10 2009 | Carefusion 2200, Inc | Systems and methods for vertebral or other bone structure height restoration and stabilization |
8241335, | Nov 10 2004 | DFINE, INC. | Bone treatment systems and methods for introducing an abrading structure to abrade bone |
8257356, | Oct 15 2004 | SPINAL ELEMENTS, INC | Guidewire exchange systems to treat spinal stenosis |
8267966, | Jun 06 2008 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Facet joint implants and delivery tools |
8277437, | Apr 02 2008 | Laurimed, LLC | Method of accessing two lateral recesses |
8277506, | Jun 24 2008 | Stryker Corporation | Method and structure for stabilizing a vertebral body |
8287538, | Jan 14 2008 | CONVENTUS ORTHOPAEDICS; CONVENTUS ORTHOPAEDICS, INC | Apparatus and methods for fracture repair |
8292909, | Jun 30 2010 | Myromed, LLC | Devices and methods for cutting tissue |
8298254, | Jun 30 2010 | Myromed, LLC | Devices and methods for cutting and evacuating tissue |
8303516, | Sep 06 2007 | SPINAL ELEMENTS, INC | Method, system and apparatus for neural localization |
8303594, | Dec 30 2008 | HOWMEDICA OSTEONICS CORP | Method and apparatus for removal of tissue |
8317791, | Jul 11 2005 | Kyphon SARL | Torque limiting device and methods |
8343158, | Feb 15 2007 | Depuy International Limited | Tool for forming a cavity within a bone |
8348894, | Jul 11 2005 | KPR U S , LLC | Needle assembly including obturator with safety reset |
8348950, | Jan 04 2010 | SURGALIGN SPINE TECHNOLOGIES, INC | Sacroiliac fusion system |
8348979, | Dec 29 2006 | Providence Medical Technology, Inc. | Cervical distraction method |
8353911, | May 21 2007 | AOI MEDICAL, INC | Extendable cutting member |
8357104, | Nov 01 2007 | KPR U S , LLC | Active stylet safety shield |
8357199, | Oct 27 2005 | Depuy Synthes Products, LLC | Nucleus augmentation delivery device and technique |
8361067, | Sep 30 2002 | Relievant Medsystems, Inc. | Methods of therapeutically heating a vertebral body to treat back pain |
8361152, | Jun 06 2008 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Facet joint implants and delivery tools |
8361159, | Dec 03 2002 | Arthrosurface, Inc | System for articular surface replacement |
8366712, | Oct 15 2005 | SPINAL ELEMENTS, INC | Multiple pathways for spinal nerve root decompression from a single access point |
8366773, | Aug 16 2005 | IZI Medical Products, LLC | Apparatus and method for treating bone |
8388624, | Feb 24 2003 | Arthrosurface Incorporated | Trochlear resurfacing system and method |
8394101, | Feb 23 2009 | Globus Medical, Inc. | Discectomy instrument |
8394102, | Jun 25 2009 | SPINAL ELEMENTS, INC | Surgical tools for treatment of spinal stenosis |
8398641, | Jul 01 2008 | SPINAL ELEMENTS, INC | Tissue modification devices and methods |
8409206, | Jul 01 2008 | SPINAL ELEMENTS, INC | Tissue modification devices and methods |
8414571, | Jan 07 2010 | RELIEVANT MEDSYSTEMS, INC | Vertebral bone navigation systems |
8414587, | Jan 26 2007 | LAURIMED LLC | Styli used to position device for carrying out selective discetomy |
8419653, | May 16 2005 | SPINAL ELEMENTS, INC | Spinal access and neural localization |
8419687, | Jul 11 2005 | CARDINAL HEALTH IRELAND UNLIMITED COMPANY | Device for shielding a sharp tip of a cannula and method of using the same |
8419730, | Sep 26 2008 | RELIEVANT MEDSYSTEMS, INC | Systems and methods for navigating an instrument through bone |
8419731, | Sep 30 2002 | Relievant Medsystems, Inc. | Methods of treating back pain |
8425507, | Sep 30 2002 | Relievant Medsystems, Inc. | Basivertebral nerve denervation |
8425558, | Jun 06 2008 | SPECK PRODUCT DESIGN, INC ; PROVIDENCE MEDICAL TECHNOLOGY, INC | Vertebral joint implants and delivery tools |
8430881, | Oct 15 2004 | SPINAL ELEMENTS, INC | Mechanical tissue modification devices and methods |
8454617, | Jun 22 2007 | SPINAL ELEMENTS, INC | Devices for treating the spine |
8506636, | Sep 08 2006 | Theken Spine, LLC | Offset radius lordosis |
8512347, | Jun 06 2008 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Cervical distraction/implant delivery device |
8523809, | Jul 11 2005 | CARDINAL HEALTH IRELAND UNLIMITED COMPANY | Device for shielding a sharp tip of a cannula and method of using the same |
8523871, | Apr 03 2007 | DFINE, INC | Bone treatment systems and methods |
8523872, | Dec 03 2002 | Arthrosurface Incorporated | Tibial resurfacing system |
8529576, | Nov 18 2005 | Stryker Corporation | Device, system and method for delivering a curable material into bone |
8535309, | Jan 07 2010 | RELIEVANT MEDSYSTEMS, INC | Vertebral bone channeling systems |
8535327, | Mar 17 2009 | IZI Medical Products, LLC | Delivery apparatus for use with implantable medical devices |
8540717, | May 01 2000 | Arthrosurface Incorporated | System and method for joint resurface repair |
8551097, | Aug 29 2006 | SPINAL ELEMENTS, INC | Tissue access guidewire system and method |
8556902, | Dec 03 2002 | Arthrosurface Incorporated | System and method for retrograde procedure |
8556910, | Apr 03 2007 | DFINE, INC | Bone treatment systems and methods |
8556978, | Aug 16 2005 | IZI Medical Products, LLC | Devices and methods for treating the vertebral body |
8562607, | Nov 19 2004 | DFINE, INC | Bone treatment systems and methods |
8562634, | May 28 2004 | Cavitech, LLC | Instruments and methods for reducing and stabilizing bone fractures |
8568416, | Oct 15 2004 | SPINAL ELEMENTS, INC | Access and tissue modification systems and methods |
8568417, | Dec 18 2009 | Charles River Engineering Solutions and Technologies, LLC | Articulating tool and methods of using |
8579902, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for tissue modification |
8585704, | May 04 2006 | SPINAL ELEMENTS, INC | Flexible tissue removal devices and methods |
8591583, | Aug 16 2005 | IZI Medical Products, LLC | Devices for treating the spine |
8613744, | Sep 30 2002 | RELIEVANT MEDSYSTEMS, INC | Systems and methods for navigating an instrument through bone |
8613745, | Oct 15 2004 | SPINAL ELEMENTS, INC | Methods, systems and devices for carpal tunnel release |
8617163, | Oct 15 2004 | SPINAL ELEMENTS, INC | Methods, systems and devices for carpal tunnel release |
8623014, | Sep 26 2008 | Relievant Medsystems, Inc. | Systems for denervation of basivertebral nerves |
8623025, | Dec 15 2006 | Globus Medical, Inc | Delivery apparatus and methods for vertebrostenting |
8623054, | Jun 06 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
8628528, | Sep 26 2008 | Relievant Medsystems, Inc. | Vertebral denervation |
8647346, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for tissue modification |
8652138, | Oct 15 2004 | SPINAL ELEMENTS, INC | Flexible tissue rasp |
8657842, | Jun 30 2010 | Myromed, LLC | Devices and methods for cutting tissue |
8663228, | Dec 07 2007 | SPINAL ELEMENTS, INC | Tissue modification devices |
8663230, | Dec 03 2002 | Arthrosurface Incorporated | Retrograde delivery of resurfacing devices |
8685052, | Jun 30 2010 | Myromed, LLC | Devices and methods for cutting tissue |
8690884, | Nov 18 2005 | Stryker Corporation | Multistate-curvature device and method for delivering a curable material into bone |
8753345, | Jun 06 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
8753347, | Jun 06 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
8753377, | Jun 06 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
8771276, | Dec 01 2010 | Stryker Corporation | Systems and methods for forming a cavity in, and delivering curable material into, bone |
8771278, | Nov 10 2009 | Stryker Corporation | Systems and methods for vertebral or other bone structure height restoration and stabilization |
8801626, | Oct 15 2005 | SPINAL ELEMENTS, INC | Flexible neural localization devices and methods |
8801787, | Aug 16 2005 | IZI Medical Products, LLC | Methods of distracting tissue layers of the human spine |
8801800, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC | Bone-derived implantable devices and tool for subchondral treatment of joint pain |
8808284, | Sep 26 2008 | Relievant Medsystems, Inc. | Systems for navigating an instrument through bone |
8808376, | Aug 16 2005 | IZI Medical Products, LLC | Intravertebral implants |
8814873, | Jun 24 2011 | IZI Medical Products, LLC | Devices and methods for treating bone tissue |
8815099, | Jan 21 2014 | Myromed, LLC | Devices and methods for filtering and/or collecting tissue |
8821504, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC | Method for treating joint pain and associated instruments |
8827981, | Nov 16 2007 | Merit Medical Systems, Inc | Steerable vertebroplasty system with cavity creation element |
8828062, | Jun 06 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
8834417, | Jun 06 2005 | CARDINAL HEALTH IRELAND UNLIMITED COMPANY | Needle assembly with removable depth stop |
8834472, | Jun 06 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
8834530, | Dec 29 2006 | Providence Medical Technology, Inc. | Cervical distraction method |
8840632, | Jun 30 2010 | Myromed, LLC | Devices and methods for cutting tissue |
8845637, | Aug 29 2006 | SPINAL ELEMENTS, INC | Tissue access guidewire system and method |
8845638, | May 12 2011 | SEASPINE, INC | Tissue disruption device and corresponding methods |
8845639, | Jul 14 2008 | SPINAL ELEMENTS, INC | Tissue modification devices |
8864768, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC | Coordinate mapping system for joint treatment |
8864827, | May 01 2000 | Arthrosurface Inc. | System and method for joint resurface repair |
8882764, | Mar 28 2003 | Relievant Medsystems, Inc. | Thermal denervation devices |
8882771, | Oct 16 2006 | Depuy Synthes Products, LLC | Method for manipulating intervertebral tissue |
8882793, | Jun 30 2010 | Myromed, LLC | Devices and methods for cutting tissue |
8882836, | Aug 16 2005 | IZI Medical Products, LLC | Apparatus and method for treating bone |
8894658, | Nov 10 2009 | Stryker Corporation | Apparatus and method for stylet-guided vertebral augmentation |
8900235, | Jan 05 2005 | SEASPINE, INC | Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices |
8900251, | May 28 2010 | SURGALIGN SPINE TECHNOLOGIES, INC | Radial deployment surgical tool |
8900279, | Jun 09 2011 | SURGALIGN SPINE TECHNOLOGIES, INC | Bone screw |
8906022, | Mar 08 2010 | CONVENTUS ORTHOPAEDICS, INC ; CONVENTUS ORTHOPAEDICS | Apparatus and methods for securing a bone implant |
8906032, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC | Instruments for a variable angle approach to a joint |
8926615, | Dec 03 2002 | ARTHROSURFACE, INC. | System and method for retrograde procedure |
8961518, | Jan 20 2010 | CONVENTUS ORTHOPAEDICS, INC ; CONVENTUS ORTHOPAEDICS | Apparatus and methods for bone access and cavity preparation |
8961553, | Sep 14 2007 | CROSSTREES MEDICAL, INC | Material control device for inserting material into a targeted anatomical region |
8961609, | Aug 16 2005 | IZI Medical Products, LLC | Devices for distracting tissue layers of the human spine |
8961614, | Nov 22 2004 | ARTHROSURFACE, INC. | Articular surface implant and delivery system |
8968408, | Jun 22 2007 | SPINAL ELEMENTS, INC | Devices for treating the spine |
8979929, | Aug 16 2005 | IZI Medical Products, LLC | Spinal tissue distraction devices |
8992522, | Sep 26 2008 | RELIEVANT MEDSYSTEMS, INC | Back pain treatment methods |
8992523, | Sep 30 2002 | Relievant Medsystems, Inc. | Vertebral treatment |
9005288, | Jan 09 2008 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Methods and apparatus for accessing and treating the facet joint |
9011492, | Jun 06 2008 | Providence Medical Technology, Inc. | Facet joint implants and delivery tools |
9017314, | Jun 01 2011 | Covidien LP | Surgical articulation assembly |
9017325, | Sep 26 2008 | Relievant Medsystems, Inc. | Nerve modulation systems |
9023038, | Sep 30 2002 | Relievant Medsystems, Inc. | Denervation methods |
9033987, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC. | Navigation and positioning instruments for joint repair |
9039701, | Sep 26 2008 | Relievant Medsystems, Inc. | Channeling paths into bone |
9044338, | Aug 16 2005 | IZI Medical Products, LLC | Spinal tissue distraction devices |
9044343, | Dec 03 2002 | Arthrosurface Incorporated | System for articular surface replacement |
9050112, | Aug 23 2011 | Flexmedex, LLC | Tissue removal device and method |
9055955, | May 01 2000 | Arthrosurface Inc. | Bone resurfacing system and method |
9066716, | Mar 30 2011 | Arthrosurface Incorporated | Suture coil and suture sheath for tissue repair |
9066808, | Aug 16 2005 | IZI Medical Products, LLC | Method of interdigitating flowable material with bone tissue |
9095393, | May 30 2012 | Stryker Corporation | Method for balloon-aided vertebral augmentation |
9101371, | Nov 03 2010 | SURGALIGN SPINE TECHNOLOGIES, INC | Method of repairing sacroiliac fusion |
9101386, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for treating tissue |
9113919, | Jan 04 2010 | SURGALIGN SPINE TECHNOLOGIES, INC | Sacroiliac fusion system |
9113988, | May 21 2003 | Crosstrees Medical, Inc. | Method for inserting medicine into animal tissue |
9119639, | Aug 09 2011 | DEPUY SYNTHES PRODUCTS, INC | Articulated cavity creator |
9119721, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC. | Method for treating joint pain and associated instruments |
9125682, | Oct 15 2005 | SPINAL ELEMENTS, INC | Multiple pathways for spinal nerve root decompression from a single access point |
9149283, | Nov 03 2010 | SURGALIGN SPINE TECHNOLOGIES, INC | Sacroiliac fusion system |
9149286, | Nov 12 2010 | Flexmedex, LLC | Guidance tool and method for use |
9161763, | Jan 04 2010 | SURGALIGN SPINE TECHNOLOGIES, INC | Sacroiliac fusion system |
9162041, | Oct 27 2005 | DePuy Synthes Products, Inc. | Nucleus augmentation delivery device and technique |
9168078, | May 30 2012 | Stryker Corporation | Apparatus and method for stylet-guided vertebral augmentation |
9173676, | Sep 26 2008 | Relievant Medsystems, Inc. | Nerve modulation methods |
9192397, | Jun 17 2008 | Globus Medical, Inc | Devices and methods for fracture reduction |
9204869, | Jan 09 2012 | Covidien LP | Articulation control mechanisms |
9204873, | May 01 2000 | Arthrosurface Incorporated | System and method for joint resurface repair |
9220554, | Feb 18 2010 | Globus Medical, Inc | Methods and apparatus for treating vertebral fractures |
9237916, | Dec 15 2006 | Globus Medical, Inc | Devices and methods for vertebrostenting |
9241729, | Dec 14 2012 | DEPUY SYNTHES PRODUCTS, INC | Device to aid in the deployment of a shape memory instrument |
9247952, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for tissue access |
9254138, | May 12 2011 | SEASPINE, INC | Tissue disruption device and corresponding methods |
9259241, | Sep 26 2008 | Relievant Medsystems, Inc. | Methods of treating nerves within bone using fluid |
9259257, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC | Instruments for targeting a joint defect |
9259326, | Aug 16 2005 | IZI Medical Products, LLC | Spinal tissue distraction devices |
9259329, | Sep 21 2004 | Stout Medical Group, L.P. | Expandable support device and method of use |
9265522, | Sep 26 2008 | Relievant Medsystems, Inc. | Methods for navigating an instrument through bone |
9265551, | Jul 19 2013 | PRO-DEX, INC | Torque-limiting screwdrivers |
9271701, | Jan 09 2012 | Covidien LP | Surgical articulation assembly |
9271835, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC. | Implantable devices for subchondral treatment of joint pain |
9282980, | Oct 16 2006 | DePuy Synthes Products, Inc. | Device and method for manipulating intervertebral tissue |
9283076, | Apr 17 2009 | Arthrosurface Incorporated | Glenoid resurfacing system and method |
9308001, | Mar 18 2011 | RODRIGUEZ, CARLOS ANDRES | Vertebral cavitation surgical tool |
9314252, | Jun 24 2011 | IZI Medical Products, LLC | Devices and methods for treating bone tissue |
9314253, | Jul 01 2008 | SPINAL ELEMENTS, INC | Tissue modification devices and methods |
9314349, | Sep 21 2004 | STOUT MEDICAL GROUP, L P | Expandable support device and method of use |
9320618, | Oct 15 2004 | SPINAL ELEMENTS, INC | Access and tissue modification systems and methods |
9326806, | Sep 02 2003 | CROSSTREES MEDICAL, INC | Devices and methods for the treatment of bone fracture |
9326866, | Aug 16 2005 | IZI Medical Products, LLC | Devices for treating the spine |
9333086, | Jun 06 2008 | Providence Medical Technology, Inc. | Spinal facet cage implant |
9345491, | Oct 15 2004 | SPINAL ELEMENTS, INC | Flexible tissue rasp |
9351741, | May 04 2006 | SPINAL ELEMENTS, INC | Flexible tissue removal devices and methods |
9351745, | Feb 24 2003 | Arthrosurface Incorporated | Trochlear resurfacing system and method |
9351746, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC. | Coordinate mapping system for joint treatment |
9351835, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC. | Method for treating joint pain and associated instruments |
9357989, | May 01 2000 | Arthrosurface Incorporated | System and method for joint resurface repair |
9358029, | Dec 11 2006 | ARTHROSURFACE INC | Retrograde resection apparatus and method |
9358059, | Nov 18 2005 | Stryker Corporation | Device and method for delivering a curable material into bone |
9381049, | Jun 06 2008 | Providence Medical Technology, Inc. | Composite spinal facet implant with textured surfaces |
9386996, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC. | Navigation and positioning instruments for joint repair |
9421064, | Sep 26 2008 | Relievant Medsystems, Inc. | Nerve modulation systems |
9439693, | Feb 01 2013 | DEPUY SYNTHES PRODUCTS, INC | Steerable needle assembly for use in vertebral body augmentation |
9439765, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC. | Method for subchondral treatment of joint pain using implantable devices |
9456829, | Oct 15 2004 | SPINAL ELEMENTS, INC | Powered tissue modification devices and methods |
9463029, | Dec 07 2007 | SPINAL ELEMENTS, INC | Tissue modification devices |
9463041, | Oct 15 2004 | SPINAL ELEMENTS, INC | Devices and methods for tissue access |
9468448, | Jul 03 2012 | Arthrosurface Incorporated | System and method for joint resurfacing and repair |
9470297, | Dec 19 2012 | Covidien LP | Lower anterior resection 90 degree instrument |
9480485, | Mar 23 2009 | Globus Medical, Inc | Devices and methods for vertebrostenting |
9486279, | Sep 30 2002 | Relievant Medsystems, Inc. | Intraosseous nerve treatment |
9492151, | Oct 15 2005 | SPINAL ELEMENTS, INC | Multiple pathways for spinal nerve root decompression from a single access point |
9492200, | Apr 16 2013 | Arthrosurface Incorporated | Suture system and method |
9510885, | Nov 16 2007 | Merit Medical Systems, Inc | Steerable and curvable cavity creation system |
9517093, | Jan 14 2008 | Conventus Orthopaedics, Inc. | Apparatus and methods for fracture repair |
9526551, | Nov 10 2009 | Stryker Corporation | Apparatus and method for stylet-guided vertebral augmentation |
9532796, | Jun 30 2010 | Myromed, LLC | Devices and methods for cutting tissue |
9549745, | Jul 12 2011 | ECA Medical Instruments | Delivery devices and systems for tools used in medical procedures |
9610083, | Aug 09 2011 | DePuy Synthes Products, Inc. | Articulated cavity creator |
9622791, | Jun 06 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
9622873, | Dec 29 2006 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Cervical distraction method |
9622874, | Jun 06 2008 | Providence Medical Technology, Inc. | Cervical distraction/implant delivery device |
9629665, | Jun 06 2008 | Providence Medical Technology, Inc. | Vertebral joint implants and delivery tools |
9642712, | Jun 22 2007 | SPINAL ELEMENTS, INC | Methods for treating the spine |
9662126, | Apr 17 2009 | Arthrosurface Incorporated | Glenoid resurfacing system and method |
9668750, | Apr 24 2013 | T.A.G. Medical Devices—Agriculture Cooperative Ltd. | Bone material removal devices |
9687255, | Jun 17 2008 | Globus Medical, Inc | Device and methods for fracture reduction |
9713478, | Jan 04 2010 | SURGALIGN SPINE TECHNOLOGIES, INC | Method of performing sacroiliac fusion |
9717544, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC. | Subchondral treatment of joint pain |
9724107, | Sep 26 2008 | Relievant Medsystems, Inc. | Nerve modulation systems |
9724151, | Aug 08 2013 | RELIEVANT MEDSYSTEMS, INC | Modulating nerves within bone using bone fasteners |
9730739, | Jan 15 2010 | Conventus Orthopaedics, Inc. | Rotary-rigid orthopaedic rod |
9730744, | Nov 20 2009 | ZIMMER KNEE CREATIONS, INC. | Method for treating joint pain and associated instruments |
9763731, | Feb 10 2012 | Myromed, LLC | Vacuum powered rotary devices and methods |
9770289, | Feb 10 2012 | Myromed, LLC | Vacuum powered rotary devices and methods |
9770339, | Jul 14 2005 | Stout Medical Group, L.P. | Expandable support device and method of use |
9775627, | Nov 05 2012 | Relievant Medsystems, Inc. | Systems and methods for creating curved paths through bone and modulating nerves within the bone |
9788870, | Jan 14 2008 | Conventus Orthopaedics, Inc. | Apparatus and methods for fracture repair |
9788963, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
9788974, | Aug 16 2005 | IZI Medical Products, LLC | Spinal tissue distraction devices |
9795395, | Jun 10 2014 | MEDOS INTERNATIONAL SÀRL | Retro-cutting instrument with adjustable limit setting |
9795429, | Nov 18 2005 | Stryker Corporation | Device and method for removing bodily material |
9795430, | Mar 08 2010 | Conventus Orthopaedics, Inc. | Apparatus and methods for securing a bone implant |
9801729, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
9808351, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
9814589, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
9814590, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
9833321, | Apr 25 2016 | IMDS LLC; Mayo Foundation for Medical Education and Research | Joint fusion instrumentation and methods |
9848889, | Jan 20 2010 | Conventus Orthopaedics, Inc. | Apparatus and methods for bone access and cavity preparation |
9848944, | Mar 28 2003 | Relievant Medsystems, Inc. | Thermal denervation devices and methods |
9861492, | Mar 07 2014 | Arthrosurface Incorporated | Anchor for an implant assembly |
9901371, | Jan 09 2012 | Covidien LP | Articulation control mechanisms |
9907595, | Nov 10 2009 | Stryker Corporation | Systems and methods for vertebral or other bone structure height restoration and stabilization |
9924986, | Dec 18 2009 | Charles River Engineering Solutions and Technologies, LLC | Articulating tool and methods of using |
9924990, | Mar 08 2010 | Conventus Orthopaedics, Inc. | Apparatus and methods for securing a bone implant |
9925060, | Feb 14 2003 | DePuy Synthes Products, Inc. | In-situ formed intervertebral fusion device and method |
9931211, | Feb 24 2003 | Arthrosurface Incorporated | Trochlear resurfacing system and method |
9931219, | Mar 07 2014 | Arthrosurface Incorporated | Implant and anchor assembly |
9962265, | Mar 07 2014 | Arthrosurface Incorporated | System and method for repairing articular surfaces |
9980715, | Feb 05 2014 | Trinity Orthopedics, LLC | Anchor devices and methods of use |
9993277, | Mar 08 2010 | Conventus Orthopaedics, Inc. | Apparatus and methods for securing a bone implant |
D669168, | Nov 18 2005 | Stryker Corporation | Vertebral augmentation needle |
D732667, | Oct 23 2012 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Cage spinal implant |
D745156, | Oct 23 2012 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Spinal implant |
D841165, | Oct 13 2015 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Cervical cage |
D884895, | Oct 13 2015 | Providence Medical Technology, Inc. | Cervical cage |
D887552, | Jul 01 2016 | PROVIDENCE MEDICALTECHNOLOGY, INC ; PROVIDENCE MEDICAL TECHNOLOGY, INC | Cervical cage |
D911525, | Jun 21 2019 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Spinal cage |
D933230, | Apr 15 2019 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Cervical cage |
D945621, | Feb 27 2020 | PROVIDENCE MEDICAL TECHNOLOGY, INC | Spinal cage |
RE46356, | Sep 30 2002 | Relievant Medsystems, Inc. | Method of treating an intraosseous nerve |
RE48460, | Sep 30 2002 | Relievant Medsystems, Inc. | Method of treating an intraosseous nerve |
RE48501, | Oct 23 2012 | Providence Medical Technology, Inc. | Cage spinal implant |
Patent | Priority | Assignee | Title |
3181533, | |||
3640280, | |||
3828790, | |||
4203444, | Nov 07 1977 | Smith & Nephew, Inc | Surgical instrument suitable for closed surgery such as of the knee |
4573448, | Oct 05 1983 | HOWMEDICA OSTEONICS CORP | Method for decompressing herniated intervertebral discs |
4601290, | Oct 11 1983 | Cabot Technology Corporation | Surgical instrument for cutting body tissue from a body area having a restricted space |
4644951, | Sep 16 1985 | Concept, Inc. | Vacuum sleeve for a surgical appliance |
4969888, | Feb 09 1989 | Kyphon SARL | Surgical protocol for fixation of osteoporotic bone using inflatable device |
5015255, | May 10 1989 | ZIMMER SPINE, INC | Spinal stabilization method |
5062845, | May 10 1989 | ZIMMER SPINE, INC | Method of making an intervertebral reamer |
5100423, | Aug 21 1990 | Medical Engineering & Development Institute, Inc.; MED INSTITUTE MEDICAL ENGINEERING AND DEVELOPMENT INSTITUTE, INC , A CORP OF IN | Ablation catheter |
5108404, | Feb 09 1989 | Kyphon SARL | Surgical protocol for fixation of bone using inflatable device |
5242461, | Jul 22 1991 | DOW CORNING ENTERPRISES | Variable diameter rotating recanalization catheter and surgical method |
5269785, | Jun 28 1990 | Bonutti Skeletal Innovations LLC | Apparatus and method for tissue removal |
5397320, | Mar 03 1994 | Dissecting surgical device and associated method | |
5437665, | Oct 12 1993 | Electrosurgical loop electrode instrument for laparoscopic surgery | |
5439464, | Mar 09 1993 | Shapiro Partners Limited | Method and instruments for performing arthroscopic spinal surgery |
5445639, | May 10 1989 | ZIMMER SPINE, INC | Intervertebral reamer construction |
5496330, | Feb 19 1993 | Boston Scientific Corporation | Surgical extractor with closely angularly spaced individual filaments |
5499981, | Mar 16 1993 | EP Technologies, Inc | Flexible interlaced multiple electrode assemblies |
5509919, | Sep 24 1993 | Apparatus for guiding a reaming instrument | |
5536267, | Nov 08 1993 | AngioDynamics, Inc | Multiple electrode ablation apparatus |
5540693, | Feb 12 1992 | Sierra Surgical, Inc. | Surgical instrument for cutting hard tissue and method of use |
5571098, | Nov 01 1994 | General Hospital Corporation, The | Laser surgical devices |
5582618, | Jan 12 1993 | PJ SURGICAL, INC | Surgical cutting instrument |
5658280, | May 22 1995 | Neomend, Inc | Resectoscope electrode assembly with simultaneous cutting and coagulation |
5730704, | Feb 24 1992 | Loop electrode array mapping and ablation catheter for cardiac chambers | |
5814044, | Feb 10 1995 | Atricure, Inc | Apparatus and method for morselating and removing tissue from a patient |
5827289, | Jan 26 1994 | ORTHOPHOENIX, LLC | Inflatable device for use in surgical protocols relating to treatment of fractured or diseased bones |
5827312, | Jun 09 1995 | Instratek Incorporated | Marked cannula |
5876399, | May 28 1997 | Irvine Biomedical, Inc. | Catheter system and methods thereof |
5879353, | Jan 17 1995 | W L GORE & ASSOCIATES, INC | Guided bone rasp |
5891147, | Jun 25 1996 | SDGI Holdings, Inc. | Minimally invasive spinal surgical methods & instruments |
5925039, | Jun 12 1996 | KENTUCKY PACKAGING SERVICE LP | Electrosurgical instrument with conductive ceramic or cermet and method of making same |
5928239, | Mar 16 1998 | Washington, University of | Percutaneous surgical cavitation device and method |
5957884, | Feb 10 1995 | Atricure, Inc | System for morselating and removing tissue from a patient |
5972015, | Aug 15 1997 | ORTHOPHOENIX, LLC | Expandable, asymetric structures for deployment in interior body regions |
5984937, | Mar 31 1997 | MAQUET CARDIOVASCULAR LLC | Orbital dissection cannula and method |
6015406, | Jan 09 1996 | Gyrus Medical Limited | Electrosurgical instrument |
6048346, | Aug 13 1997 | ORTHOPHOENIX, LLC | Systems and methods for injecting flowable materials into bones |
6066154, | Jan 26 1994 | ORTHOPHOENIX, LLC | Inflatable device for use in surgical protocol relating to fixation of bone |
6241734, | Aug 14 1998 | ORTHOPHOENIX, LLC | Systems and methods for placing materials into bone |
6248110, | Jan 26 1994 | ORTHOPHOENIX, LLC | Systems and methods for treating fractured or diseased bone using expandable bodies |
6425887, | Dec 09 1998 | Cook Medical Technologies LLC | Multi-directional needle medical device |
6440138, | Apr 06 1998 | ORTHOPHOENIX, LLC | Structures and methods for creating cavities in interior body regions |
6468279, | Jan 27 1998 | Kyphon SARL | Slip-fit handle for hand-held instruments that access interior body regions |
6575919, | Oct 19 1999 | ORTHOPHOENIX, LLC | Hand-held instruments that access interior body regions |
6607544, | Jan 26 1994 | ORTHOPHOENIX, LLC | Expandable preformed structures for deployment in interior body regions |
6641587, | Aug 14 1998 | ORTHOPHOENIX, LLC | Systems and methods for treating vertebral bodies |
6645213, | Aug 13 1997 | ORTHOPHOENIX, LLC | Systems and methods for injecting flowable materials into bones |
6679886, | Sep 01 2000 | Synthes USA, LLC | Tools and methods for creating cavities in bone |
6716216, | Aug 14 1998 | ORTHOPHOENIX, LLC | Systems and methods for treating vertebral bodies |
6719773, | Jun 01 1998 | ORTHOPHOENIX, LLC | Expandable structures for deployment in interior body regions |
6726691, | Aug 14 1998 | ORTHOPHOENIX, LLC | Methods for treating fractured and/or diseased bone |
6746451, | Jun 01 2001 | Cavitech, LLC | Tissue cavitation device and method |
20010041896, | |||
20020026195, | |||
20020082608, | |||
20020099385, | |||
20020156482, | |||
20020169471, | |||
20020191487, | |||
20030032929, | |||
20030032963, | |||
20030050644, | |||
20030233096, | |||
20040092948, | |||
DE88001970, | |||
FR9915288, | |||
WO128439, | |||
WO9639970, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 16 2004 | Kyphon Inc. | (assignment on the face of the patent) | / | |||
Nov 14 2004 | PHILLIPS FRANK M | Kyphon Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016108 | /0942 | |
Dec 06 2004 | LAYNE, RICHARD W | Kyphon Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016108 | /0942 | |
Dec 06 2004 | WAY, BRYCE ANTON | Kyphon Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016108 | /0942 | |
Dec 06 2004 | ROTHWELL, DEREK S | Kyphon Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016108 | /0942 | |
Dec 06 2004 | EDIDIN, AVRAM ALLAN | Kyphon Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016108 | /0942 | |
Dec 07 2004 | CANTU, ALBERTO RUIZ | Kyphon Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016108 | /0942 | |
Dec 08 2004 | REILEY, MARK A | Kyphon Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016108 | /0942 | |
Dec 20 2004 | SCHOLTEN, ARIE | Kyphon Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016108 | /0942 | |
Jan 18 2007 | Kyphon Inc | BANK OF AMERICA, N A , AS ADMINISTRATIVE AGENT | SECURITY AGREEMENT | 018875 | /0574 | |
Nov 01 2007 | BANK OF AMERICA, N A | KYPHON, INC | TERMINATION RELEASE OF SECURITY INTEREST | 020666 | /0869 | |
Jan 18 2008 | Kyphon Inc | Medtronic Spine LLC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 020993 | /0042 | |
Mar 25 2008 | Medtronic Spine LLC | Kyphon SARL | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 021070 | /0278 | |
Apr 25 2013 | Kyphon SARL | ORTHOPHOENIX, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 030529 | /0001 | |
Jan 10 2017 | ORTHOPHOENIX, LLC | DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041333 | /0001 | |
Jan 10 2017 | MOTHEYE TECHNOLOGIES, LLC | DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041333 | /0001 | |
Jan 10 2017 | SYNCHRONICITY IP LLC | DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041333 | /0001 | |
Jan 10 2017 | TRAVERSE TECHNOLOGIES CORP | DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041333 | /0001 | |
Jan 10 2017 | 3D NANOCOLOR CORP | DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041333 | /0001 | |
Jan 10 2017 | BISMARCK IP INC | DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041333 | /0001 | |
Jan 10 2017 | MAGNUS IP GMBH | DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041333 | /0001 | |
Jan 10 2017 | MUNITECH IP S À R L | DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041333 | /0001 | |
Jan 10 2017 | VERMILION PARTICIPATIONS | DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041333 | /0001 | |
Jan 10 2017 | MARATHON VENTURES S À R L | DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041333 | /0001 | |
Jan 10 2017 | NYANZA PROPERTIES | DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041333 | /0001 | |
Jan 10 2017 | TLI COMMUNICATIONS GMBH | DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041333 | /0001 | |
Jan 10 2017 | MARATHON IP GMBH | DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041333 | /0001 | |
Jan 10 2017 | MEDTECH DEVELOPMENT DEUTSCHLAND GMBH | DBD CREDIT FUNDING LLC, AS COLLATERAL AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 041333 | /0001 |
Date | Maintenance Fee Events |
Feb 02 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 02 2012 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 10 2017 | REM: Maintenance Fee Reminder Mailed. |
Aug 28 2017 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 02 2008 | 4 years fee payment window open |
Feb 02 2009 | 6 months grace period start (w surcharge) |
Aug 02 2009 | patent expiry (for year 4) |
Aug 02 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 02 2012 | 8 years fee payment window open |
Feb 02 2013 | 6 months grace period start (w surcharge) |
Aug 02 2013 | patent expiry (for year 8) |
Aug 02 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 02 2016 | 12 years fee payment window open |
Feb 02 2017 | 6 months grace period start (w surcharge) |
Aug 02 2017 | patent expiry (for year 12) |
Aug 02 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |