Several embodiments of cutting tips for tools for creating voids in interior body regions are provided. The cutting tips provide for rotational and translational cutting. An actuator mechanism for deploying a cutting tip converts the rotational movement of a wheel into translational movement of a plunger rod. The actuator mechanism provides positive cutting action as the cutting tip is moved from a first, non-deployed position to a second, deployed position and from the second, deployed position to the first, non-deployed position. Methods of creating a void in bone provide one or more mechanical cutting tools that may be used in combination with one or more expandable void-creating structures to form a void of a desired size and configuration.

Patent
   6923813
Priority
Sep 03 2003
Filed
Jul 16 2004
Issued
Aug 02 2005
Expiry
Jul 16 2024
Assg.orig
Entity
Large
555
71
EXPIRED
34. A method of creating a void in bone comprising
establishing a percutaneous access path leading into a bone,
introducing an expandable structure through the access path, the expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone,
expanding the expandable structure,
introducing through the access path a first tool having a cutting tip that extends radially from the access path to contact bone,
manipulating the cutting tip in the cancellous bone to enlarge or further define the void,
withdrawing the first tool,
introducing through the access path a second tool having a cutting tip that extends radially from the access path to contact bone, and
manipulating the cutting tip of the second tool in the cancellous bone to enlarge or further define the void.
1. A method of creating a void in bone comprising
establishing a percutaneous access path leading into a bone,
introducing through the access path a tool having a cutting tip that extends radially from the access path to contact bone,
manipulating the cutting tip in cancellous bone to create a void in the cancellous bone,
withdrawing the tool,
introducing a first expandable structure through the access path, the expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone,
expanding the first expandable structure in the cancellous bone to enlarge or further define the void,
withdrawing the first expandable structure, introducing a second expandable structure through the access path, and
expanding the second expandable structure in the cancellous bone to enlarge or further define the void.
8. A method of creating a void in bone comprising
establishing a percutaneous access path leading into a bone,
introducing through the access path a first tool having a cutting tip that extends radially from the access path to contact bone,
manipulating the cutting tip in cancellous bone to create a void in the cancellous bone,
withdrawing the first tool,
introducing an expandable structure through the access path, the expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone,
expanding the expandable structure in the cancellous bone to enlarge or further define the void,
withdrawing the expandable structure,
introducing through the access path a second tool having a cutting tip that extends radially from the access path to contact bone, and
manipulating the cutting tip of the second cutting tool in the cancellous bone to enlarge or further define the void.
14. A method of creating a void in bone comprising
establishing a percutaneous access path leading into a bone,
introducing through the access path a first tool having a cutting tip that extends radially from the access path to contact bone,
manipulating the cutting tip of the first tool in cancellous bone to create a void in the cancellous bone,
withdrawing the first tool,
introducing through the access path a second tool having a cutting tip that extends radially from the access path to contact bone,
manipulating the cutting tip of the second tool in the cancellous bone to enlarge or further define the void,
withdrawing the second tool,
introducing an expandable structure through the access path, the expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone, and
expanding the expandable structure in the cancellous bone to enlarge or further define the void.
27. A method of creating a void in bone comprising
establishing a percutaneous access path leading into a bone,
introducing a first expandable structure through the access path, the first expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone,
expanding the first expandable structure in cancellous bone to create a void,
withdrawing the first expandable structure,
introducing through the access path a tool having a cutting tip that extends radially from the access path to contact bone,
manipulating the cutting tip in the cancellous bone to enlarge or further define the void,
withdrawing the tool,
introducing a second expandable structure through the access path, the second expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone, and
expanding the second expandable structure in cancellous bone to enlarge or further define the void.
21. A method of creating a void in bone comprising
establishing a percutaneous access path leading into a bone,
introducing a first expandable structure through the access path, the first expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone,
expanding the first expandable structure in cancellous bone to create a void,
withdrawing the first expandable structure,
introducing a second expandable structure through the access path, the second expandable structure being adapted to undergo expansion in cancellous bone to compact cancellous bone to create a void in the cancellous bone,
expanding the second expandable structure in the cancellous bone to enlarge or further define the void,
withdrawing the second expandable structure,
introducing through the access path a tool having a cutting tip that extends radially from the access path to contact bone, and
manipulating the cutting tip in the cancellous bone to enlarge or further define the void.
2. A method according to claim 1, further comprising
introducing a filling material into the void.
3. A method according to claim 1, further comprising,
withdrawing the second expandable structure.
4. A method according to claim 1
wherein the second expandable structure is of a different size than the first expandable structure.
5. A method according to claim 1
wherein the second expandable structure is of a different configuration than the first expandable structure.
6. A method according to claim 1
wherein the second expandable structure is of the same size and configuration as the first expandable structure.
7. A method according to claim 1
wherein at least one of the first and second expandable structures is a balloon.
9. A method according to claim 8, further comprising
introducing a filling material into the void.
10. A method according to claim 8
wherein the cutting tip of the second tool is of a different size than the cutting tip of the first tool.
11. A method according to claim 8
wherein the cutting tip of the second tool is of a different configuration than the cutting tip of the first tool.
12. A method according to claim 8
wherein the cutting tip of the second tool is of the same size and configuration as the cutting tip of the first tool.
13. A method according to claim 8
wherein the expandable structure is a balloon.
15. A method according to claim 14, further comprising
withdrawing the expandable structure.
16. A method according to claim 14, further comprising
introducing a filling material into the void.
17. A method according to claim 14
wherein the expandable structure is a balloon.
18. A method according to claim 14
wherein the cutting tip of the second tool is of a different size than the cutting tip of the first tool.
19. A method according to claim 14
wherein the cutting tip of the second tool is of a different configuration than the cutting tip of the first tool.
20. A method according to claim 14
wherein the cutting tip of the second tool is of the same size and configuration as the cutting tip of the first tool.
22. A method according to claim 21, further comprising
introducing a filling material into the void.
23. A method according to claim 21
wherein the second expandable structure is of a different size than the first expandable structure.
24. A method according to claim 21
wherein the second expandable structure is of a different configuration than the first expandable structure.
25. A method according to claim 21
wherein the second expandable structure is of the same size and configuration as the first expandable structure.
26. A method according to claim 21
wherein at least one of the first and second expandable structures is a balloon.
28. A method according to claim 27, further comprising
introducing a filling material into the void.
29. A method according to claim 27
wherein the second expandable structure is of the same size and configuration as the first expandable structure.
30. A method according to claim 27
wherein the second expandable structure is of a different size from the first expandable structure.
31. A method according to claim 27
wherein the second expandable structure is of a different configuration from the first expandable structure.
32. A method according to claim 27
wherein at least one of the first and second expandable structures is a balloon.
33. A method according to claim 27
withdrawing the second expandable structure.
35. A method according to claim 34, further comprising
introducing a filling material into the void.
36. A method according to claim 34
wherein the expandable structure is a balloon.
37. A method according to claim 34
wherein the cutting tip of the second tool is of a different size than the tip of the first tool.
38. A method according to claim 34
wherein the cutting tip of the second tool is of a different configuration than the tip of the first tool.
39. A method according to claim 34
wherein the cutting tip of the second tool is of the same size and configuration as the cutting tip of the first tool.

This application claims the benefit of provisional U.S. Application Ser. No. 60/499,934, filed Sep. 3, 2003, and entitled “Mechanical Devices for Creating Voids in Interior Body Regions and Related Methods.”

This invention relates generally to tools for creating cavities or voids in interior body regions. In particular, the invention relates to creating voids in bone for diagnostic or therapeutic purposes.

A minimally invasive method of forming a cavity or void within one of the body's solid organs, for both diagnostic and treatment purposes, is becoming increasingly important as radiological and other types of scanning techniques improve a physician's ability to view inside the body without having to make an incision.

The most common solid organ currently making use of a minimally invasive technique to form a void is bone. Typically this is any pathological bone in the body with a fracture, osteoporosis, or a tumor. The most commonly used void-forming method for bones is the inflatable bone tamp, as described in U.S. Pat. Nos. 4,969,888 and 5,108,404. Void formation in this case is usually followed by filling with a filling substance like bone cement or a bone substitute.

Mechanical methods are also available for making voids inside solid organs. Those solid organs include the brain, the kidneys, the spleen, the liver and bone. In the brain, for example, an abscess could be easily debrided and irrigated with a minimally invasive mechanical void technique. A fractured spleen could be approached with a minimally invasive technique, to make a small void to fill with gelfoam or some other coagulant to stop hemorrhage. An osteoporotic, fractured vertebral body or bone tumor could be approached by a minimally invasive mechanical system in order to create a cavity or void and then refill with a bone substitute. A demand exists for systems or methods that are capable of forming voids in bone and other interior body regions in safe and efficacious ways.

The invention provides systems and methods for creating voids in interior body regions.

One aspect of the invention provides a cutting tip for cutting or scraping bone. In one embodiment, a curette-type instrument at the end of a shaft can be mechanically angled into different positions to scrape material to form a void. In another embodiment, a mechanical device at the end of a shaft resembles a T-type configuration and allows both translational and rotational cutting to form a void. In a third embodiment, the cutting tip includes a turned and tapered trunk. In a fourth embodiment, the cutting tip includes a conical trunk. In a fifth embodiment, a sharp, stout, metal spring is provided on the end of a shaft. In a sixth embodiment, the distal end of a shaft carries two or more fingers to grab tissue for extraction. In a seventh embodiment, a hinged void-forming device is carried by a shaft and allows for formation of a void, which may be of a rectangular or any other pre-determined shape.

Another aspect of the invention provides an actuator mechanism for deploying a cutting tip. In one embodiment, rotational movement of a thumbwheel is converted to translational movement of a plunger rod. In an alternative embodiment, rotational movement of a control knob is converted to translational movement of a plunger rod through interaction of a series of gears.

Another aspect of the invention provides a tool for creating voids in interior body regions. The tool comprises a shaft, a tip for contacting bone, and a hinge member coupling the tip to the shaft. The tip becomes uncoupled if the torque applied exceeds a maximum hinge torque. The shaft includes a region of weakness proximal to the tip along which the shaft will break if the torque applied exceeds a maximum shaft torque. The maximum hinge torque is greater than the maximum shaft torque.

According to another aspect of the invention, a tool for creating voids in interior body regions comprises a shaft assembly including a lumen, a tip for contacting bone coupled to the shaft, and a rod slidable within the lumen. The rod is tethered to the tip.

According to another aspect of the invention, a tool for creating voids in interior body regions comprises a shaft including a lumen, and a tip for contacting bone coupled to the shaft by a coupling element. The tip is additionally tethered to the shaft such that the tip remains tethered to the shaft if the coupling element becomes inoperable.

According to another aspect of the invention, a tool for creating voids in interior body regions comprises a cannula and a shaft. The shaft has a handle and is sized and configured for passage through the cannula. A projection extends radially from the shaft to restrict forward advancement of the shaft within the cannula.

Another aspect of the invention provides methods of creating a void in bone. The methods provide one or more mechanical cutting tools that may be used in combination with one or more expandable void-creating structures to form a void of a desired size and configuration.

FIG. 1 is a perspective view of a mechanical tool for creating voids in interior body regions and illustrating pivoting movement of the cutting tip in phantom.

FIG. 2 is a perspective view of a bone treatment device.

FIG. 3 is a perspective view illustrating insertion and use of the device of FIG. 2 in a vertebra.

FIG. 4 is a perspective view of an alternative embodiment of a cutting tip and illustrating pivoting movement of the tip in phantom.

FIG. 5 is a front plan view of the tip shown in FIG. 4 and illustrating rotational movement of the cutting tip.

FIG. 6 illustrates 180° rotational movement of the cutting tip in a vertebra to create a 180° void.

FIG. 7 illustrates the shaft rotated 180° relative to FIG. 6 and the cutting tip again rotated 180° to form a 360° void.

FIG. 8 is a side view of the tip shown in FIG. 4 and illustrating translational movement of the cutting tip in a sawing-like motion.

FIG. 9 illustrates the translational movement of the cutting tip and formation of a void in a vertebra.

FIG. 10 is a perspective view illustrating the use of a marker band to identify the position of the cutting tip in relation to the distal end of the cannula.

FIG. 11 is a perspective view illustrating use of a stop to limit translational advancement of the shaft within a cannula.

FIG. 12A is an enlarged view of a groove located on the shaft of the cutting tool.

FIG. 12B is a perspective view of an alternative embodiment of a shaft in which a portion of the shaft is formed of a material of reduced strength and/or rigidity relative to the rest of the shaft.

FIG. 13 is a perspective view of an alternative embodiment of a stop that limits translational and rotational movement of the shaft along and within the cannula.

FIG. 13A is a perspective view of an alternative embodiment of a T-shaped slot that limits translation and rotational movement of the shaft along and within the cannula.

FIG. 14 is a schematic view representing the preset size and configuration of a void formed by performing a full sweep motion of a cam follower along a cam surface.

FIG. 15 is a perspective view of an alternative embodiment of a cutting tip and illustrating pivoting movement of the tip in phantom.

FIG. 16 is a front plan view of the tip shown in FIG. 15 and illustrating rotational movement of the cutting tip.

FIG. 17 is a perspective view of an alternative embodiment of a cutting tip and illustrating pivoting movement of the tip in phantom.

FIG. 18 is a front plan view of the tip shown in FIG. 17 and illustrating rotational movement of the cutting tip.

FIG. 19 is a sectional view of an actuator mechanism for deploying a cutting tip and showing placement of the tool in the user's hand.

FIG. 20 is a close-up and partial sectional view of the thumbwheel, threaded cap, flange, and stop of FIG. 19.

FIG. 21 is a cut-away view of the tether and hinge mechanism of the cutting tip.

FIG. 22 is a side sectional view of an alternative embodiment of an actuator mechanism in which a lever actuates movement of the plunger rod.

FIG. 23 is a perspective view of a tool incorporating an alternative embodiment of an actuator mechanism.

FIG. 24 is a top sectional view of an alternative embodiment of an actuator mechanism.

FIG. 25 is a side sectional view of an alternative embodiment of an actuator mechanism and showing placement of the tool in the user's hand.

FIG. 26 is a side partial section view illustrating an alternative embodiment of a mechanical bone cutting tool illustrating the cutting tip in a straightened or malleable state and retracted within a cannula.

FIG. 27 is a view similar to FIG. 26 and illustrating advancement of the cutting tip beyond the distal tip of the cannula and the introduction of fluid to activate the cutting tip.

FIG. 28 is a view similar to FIG. 27 and illustrating activation of the cutting tip to a predetermined configuration.

FIG. 29 is a side view of an alternative embodiment of a cutting tip illustrating the cutting tip in a straightened or malleable state.

FIG. 30 is a view similar to FIG. 29 illustrating the cutting tip in the activated state.

FIG. 31 is a side view of an alternative embodiment of a cutting tip illustrating the cutting tip in a straightened or malleable state.

FIG. 32 is a view similar to FIG. 31 illustrating the cutting tip in the activated state.

FIG. 33 is a side view of an alternative embodiment of a cutting tip carried by a shaft and illustrating a dual lumen extending through the shaft into the cutting tip.

FIG. 34 is a side view of an alternative embodiment of a cutting tip illustrating a throughbore extending through the cutting tip.

FIG. 35A is a side view illustrating a pre-bent or formed cutting tip confined by a cannula.

FIG. 35B is a side view similar to FIG. 35A illustrating the deployment of the pre-bent or formed cutting tip by extension of the tip beyond the cannula.

FIG. 36 is a side view of an alternative embodiment of a mechanical void-creating device.

FIG. 37 is a side view of an alternative embodiment of a mechanical void-creating device.

FIG. 38 is a side view of an alternative embodiment of a mechanical void-creating device.

FIG. 39 is a top view of the device shown in FIG. 38.

FIG. 40 is a side view of an alternative embodiment of the device of FIGS. 38 and 39 in which spring blades extend from the device.

FIGS. 41A–D illustrate a method of creating and filling a void in bone in which a first mechanical cutting tool is used to create a void in bone and a second mechanical cutting tool is used to expand and/or further define the void.

FIGS. 42A–E illustrate an alternative method of creating and filling a void in bone in which a first mechanical cutting tool is used to create a void in bone and a second mechanical cutting tool and then an expandable body are used to expand and/or further define the void.

FIGS. 43A–D illustrate an alternative method of creating and filling a void in bone in which a first expandable body is used to create a void in bone and a second expandable body is used to expand and/or further define the void.

FIGS. 44A–E illustrate an alternative method of creating and filling a void in bone in which a first expandable body is used to create a void in bone and a second expandable body and then a mechanical cutting tool are used to expand and/or further define the void.

FIGS. 45A–E illustrate an alternative method of creating and filling a void in bone in which a first expandable body is used to create a void in bone and a mechanical cutting tool and then a second expandable body are used to expand and/or further define the void.

FIGS. 46A–E illustrate an alternative method of creating and filling a void in bone in which an expandable body is used to create a void in bone and a first mechanical cutting tool and then a second mechanical cutting tool are used to expand and/or further define the void.

FIGS. 47A–E illustrate an alternative method of creating and filling a void in bone in which a first cutting tool is used to create a void in bone and an expandable body and then a second mechanical cutting tool are used to expand and/or further define the void.

FIGS. 48A–E illustrate an alternative method of creating and filling a void in bone in which a mechanical cutting tool is used to create a void in bone and a first expandable body and then a second expandable body are used to expand and/or further define the void.

Although the disclosure hereof is detailed and exact to enable those skilled in the art to practice the invention, the physical embodiments herein disclosed merely exemplify the invention that may be embodied in other specific structure. While the preferred embodiment has been described, the details may be changed without departing from the invention, which is defined by the claims.

The systems and methods embodying the invention can be adapted for use virtually in any interior body region, where the formation of a cavity or void within tissue is required for a therapeutic or diagnostic purpose. The preferred embodiments show the invention in association with systems and methods used to treat bones. This is because the systems and methods which embody the invention are well suited for use in this environment. It should be appreciated that the systems and methods which embody features of the invention can be used in other interior body regions, as well.

Various embodiments of cutting tips are described below in detail. In each case their sizes and shapes could be produced to fit the ideal void to be formed, whether it is a void in a tibia or a vertebral body. In addition, these mechanical tools could be made of any bio-compatible metal (for example, but not limited to stainless steel, titanium, titanium alloys, tantalum, aluminum, aluminum alloys, or other metals) that has adequate shear and tensile strength to perform their void-forming function. Plastic polymers having suitable biomechanical properties may also be used for these tools. Alternatively, the tool may be plated or coated with a biocompatible material.

I. Mechanical Cutting Tool

A. Curette

FIGS. 1–3 show a tool 10 capable of forming a cavity or void in a targeted treatment area. The tool 10 comprises a shaft 12 having a proximal and a distal end, respectively 14 and 16. The shaft 12 preferable includes a handle 18 to aid in gripping and maneuvering the shaft 12 through a pre-formed access path into bone. The handle 18 can be made of any suitable material, e.g., any rigid polymer or metal or combination thereof, secured about the shaft 12. The handle 18 is desirably sized and configured to be securely and comfortably grasped by the physician.

The shaft 12 carries a void-forming structure 20 at its distal end 16. In the illustrated embodiment, the structure 20 takes the form of a multi-faceted cutting tip 20. The cutting tip 20 may be adapted for use in various body regions, e.g., to create a void in bone. The cutting tip 20 may also serve to remove hard or soft tumors from tissue. As used in this specification, a cutting tip is a surface adapted to mechanically form a void in bone through contact with the bone, e.g., by cutting, shearing, scooping, shaving, sciving, dissecting, or scoring of the bone.

The cutting tip 20 is hingedly coupled to distal end 16 of the shaft 12. The cutting tip 20 is desirably adapted to extend radially from the shaft 12 and radially from the pre-formed access path to a diameter that is greater than a diameter of the access path. The cutting tip 20 can be made of any suitable biocompatible material, e.g., stainless steel, cobalt chromium, titanium and alloys or mixtures thereof. The shaft 12 and cutting tip 20 can alternatively be made of different materials (e.g. alloys of stainless steel with different strengths: 303 stainless steel, 304 stainless steel, 174 stainless steel, 177 stainless steel) and welded or otherwise bonded together. As will be described in detail later, an actuator, e.g., wheel 22 (see also, e.g., FIGS. 19 and 23), permits selective movement of the cutting tip 20 from a first, closed or non-deployed position to a second, open or deployed position.

In the closed position (represented by solid lines in FIG. 1), the cutting tip 20 extends from the distal end 16 of the shaft 12 along the axis S of the shaft 12. In this position, the shaft 12 can be easily passed through a cannula 23 or other instrument. The hinge mechanism permits pivoting of the tip 20 at an angle A transverse to axis S of shaft 12 to the opened position (represented in phantom in FIG. 1). In a preferred embodiment, the cutting tip 20 is adapted to pivot and be selectively secured in any pivot position from 0–90° relative to the axis S of the shaft 12.

Desirably, the actuating mechanism provides positive, controlled movement in both directions (i.e., from the open, deployed position to the closed, non-deployed position and from the closed, non-deployed position to the open, deployed position) during all degrees of actuation. That is, the secured pivot position and angle A are maintained regardless of the rotational orientation of the shaft 12. The actuator mechanism provides positive cutting action as the tip is actuated in either direction to provide bi-directional cutting. Actuation may be repeated so as to provide continuous cutting. The speed of actuation may be varied to vary the speed of cutting. The cutting tip 20 also permits translational (i.e., longitudinal) movement along the axis S of the shaft 12 in a push-pull or sawing motion with the tip in the deployed position. The physician creates a desired void by repeated actuation, translational movement, or by performing a series of combined actuation and translational movements.

In use, the cutting tip 20 is placed in the closed position extending from the distal end 16 of the shaft 12, i.e., at a 0° angle A relative to axis S. The tool 10 may be introduced into a targeted treatment site through an open procedure. Desirably, the tool 10 is introduced in a closed and minimally invasive procedure in which a percutaneous cannula 23 is advanced into a desired treatment region, e.g., a vertebral body 37. The shaft 12 is then passed through the cannula 23 and the cutting tip 20 is extended beyond the distal end of the cannula 23. Alternatively, the cannula 23 may be removed after introduction of the tool 10. Fluoroscopy or other visualization techniques may be employed to aid in introducing the cannula 23 and tool into the targeted treatment area. The cutting tip 12 is then pivoted to a desired position, i.e., preferably any position between 0–150°, and most preferably about 90°. Also, conceivably the tip 20 could deploy in either direction without stopping in the non-deployed condition. Actuation may be repeated and the shaft 12 advanced in fore and aft directions by pushing and pulling in a sawing-like motion to thereby create a void.

If rotational cutting is desired, turning of shaft 12 is required to reposition the tip 20 to continue cutting. In this case, the cutting tip 20 is returned to the closed position and the shaft 12 turned or rotated to a new position. The cutting tip 20 is again pivoted to a desired angle A (open position) and the shaft 12 again advanced in fore and aft directions using a push-pull motion. It is apparent that the shaft 12 may be repositioned any number of times to produce a void of a desired configuration.

With reference now to FIGS. 2 and 3, the cannula 23 desirably incorporates a distal portion having a reduced profile. The cannula 23 includes a large diameter portion 25, a small diameter distal portion 27, and a transition portion 29. Alternatively, the cannula 23 may provide a taper between the large and small diameter portions 25 and 27 (not shown). The shaft 12 of the tool 10 is desirably sized to fit within a lumen 31 extending through the cannula 23, and may be of a constant or varying size.

Desirably, the reduced distal tip diameter of the cannula 23 will allow the tip of the tool 10 to be inserted into the targeted bone, with a corresponding reduction in the size of the access path created in the bone. The smaller diameter section 27 of the cannula 23 will pass through the cortical wall into the bone, while the larger diameter section 25 can abut against the outside of the bone (sealing the opening, if desired), and will desirably stretch, but not tear, softer tissues.

In a preferred embodiment, the smaller diameter portion 27 is desirably sized such that, when the larger diameter portion 25 abuts the cortical bone 33 of the pedicle 35, the distal end of the smaller diameter portion 27 extends through the pedicle 35 and emerges into the vertebral body 37 and enters into cancellous bone 39. In this embodiment, the tool 10 could be sized such that, when fully inserted into the cannula 23, the distal cutting tip 20 would be prevented from contacting and/or breaching the anterior cortical wall 41 of the vertebral body 37 or targeted bone.

Other low profile bone access tools are described in U.S. patent application Ser. No. 09/952,014, filed Sep. 11, 2001, entitled “Systems and Methods for Accessing and Treating Diseased or Fractured Bone Employing a Guide Wire,” which is herein incorporated by reference.

B. T-Tip Embodiment

In many cases, it is desirable to cut in both a rotational as well as in a translational direction. In such cases, it is preferable that the rotational cutting motion reflects an ergonomic and natural motion for the physician. FIGS. 4–9 illustrate an embodiment of a cutting tool 100 having a cutting tip 120 which permits translational, rotational, or simultaneous translational and rotational movement of the cutting tip using an ergonomic and natural motion. The cutting tip is made from any suitable biocompatible material, e.g., stainless steel.

As FIG. 4 illustrates, the cutting tip 120 provides a pivot region 124 hingedly attached to a shaft 112, e.g., pivot pin 126 passes through hole 128 in pivot region 124 and into shaft 112. This arrangement permits a wide range of pivot motion allowing the cutting tip to pivot at virtually any desired angle. In a preferred embodiment, the cutting tip 120 is adapted to pivot from 0–90° relative to the axis S of the shaft 112. Similar to the embodiment of FIG. 1, the actuating mechanism is positive in both directions.

A collar 130 divides the pivot region 124 and a trunk region 132 and provides additional strength and support to the cutting tip 120. The maximum width (W) of the trunk 132 is parallel to the axis S of the shaft 112 when the tip 120 is deployed at 900 (illustrated in phantom in FIG. 4).

The trunk 132 carries a cutting disc 134 providing a dual rounded cutting surface extending on either side of the trunk 132, providing a 360° cutting surface. In a preferred embodiment, the diameter of disc 134 is approximately the same as the diameter of the shaft 112 so as to minimize stress on the tip 120 during cutting and to provide ease of passage through a cannula.

The tip includes a flat or straight cutting surface 136 along the tip of the disc 134 that provides greater ease in cutting bone on the pullback motion. When pushing, the shaft 112 provides the strength and force for cutting.

The disc 134 and trunk 132 together provide a large surface contact area that enables the tip 120 to take an aggressive bite into bone and gouge bone material in large chunks.

The disc configuration allows rotational cutting in both clockwise and counterclockwise directions. With reference to FIG. 5, the tip 120 is extended to a desired angle A, e.g., 90° along axis T. The shaft 112 is then rotated 0–90° in a first direction (represented by arrow 138) relative to axis T. The shaft 112 can be rotated 0–90° in the opposite direction (represented by arrow 140) relative to axis T to create a void extending 180° by a simple turning of the physician's wrist.

FIG. 6 illustrates rotation of the cutting tip 120 in bone, e.g., a vertebra 142, to create a 180° void. In many cases, it may be desirable to create a void extending 360°. As FIG. 7 shows, after formation of a 180° void, the shaft 112 may be rotated 180° and again aligned approximately along axis T. The shaft 112 is then rotated 0–90° in a first direction (represented by arrow 144) relative to axis T. The shaft 112 can be rotated 0–90° in the opposite direction (represented by arrow 146) relative to axis T to create a void extending 360°. The physician can monitor the position of the tip 120 with use of fluoroscopy.

The disc configuration also allows translational cutting in a push-pull or sawing motion as represented by arrows in FIGS. 8 and 9. In use, the physician may deliver translational and rotational forces simultaneously by pushing in and pulling out while simultaneously rotating a handle or alternating rotational and translational motions. In this manner, the physician controls rotational and translational movement of the cutting tip 120 to create a void of desired size and shape, e.g., cylindrical.

Desirably, as seen in FIG. 10, the shaft 112 carries a boss or stop 102 designed to limit forward, i.e., translational, motion of the shaft 112 within a cannula 104. The diameter of the stop 102 approximates the diameter of the cannula 104 so that the stop 102 rests against the face or top 106 of the cannula 104 to stop forward advancement of the shaft 112 within the cannula 104.

The stop 102 is positioned on the shaft 112 such that there is sufficient room to accommodate the physician's fingers wrapped around and under the handle 18. The stop 102 thus provides clearance between the physician's fingers and the percutaneous access cannula 104, preventing pinching or catching of the physician's fingers. The stop 102 stops insertion of the shaft 112 to leave a comfortable working distance for the physician's hand when rotating the shaft 112 (i.e., a sweeping cutting motion) or when using a push-pull cutting motion or a combination of both cutting motions. In a representative embodiment, the stop 102 is positioned approximately 1.75 inches (about 4.5 cm.) from the base of the handle 18. By restricting or preventing further advancement of the shaft 112, the stop 112 prevents advancement of the shaft 112 (and void-forming structure 20) within the vertebral body. This prevents the possibility of puncturing or breaching the anterior cortical wall of the vertebra 142 (see also FIG. 9).

Desirably, a marker band 101 is positioned distal of the stop 102. As seen in FIG. 10, when the shaft 112 is fully inserted into the access cannula 104, the marker band 101 is aligned with the face 106 of the cannula 104 as the cutting tip 120 is exiting the cannula 104 into a bone, e.g., a vertebra 142. As shown in FIG. 11, when the shaft 112 is fully inserted into the cannula 104, the tip 120 extends beyond the distal end 103 of the cannula 103.

In a representative embodiment, the marker band 101 is located approximately 3 cm. distal of the stop 102. In this embodiment, when the shaft 112 is fully inserted into the cannula 104 (i.e., resting against the stop 102), the tip 120 extends approximately 3.5 cm. from the distal end 103 of the cannula 104 when the cutting tip 120 is in the non-deployed position (i.e., aligned with the axis S of the shaft 112), and approximately 3 cm. from the distal end 103 of the cannula 104 when the tip 120 is in the deployed position (e.g., at 90°).

In a preferred embodiment, a groove 105 is positioned proximal the stop 102. As best seen in FIG. 12, the groove 105 is a turned angular cut having an angle G with a radius R on the shaft 112 to define a line of weakness on the shaft 112. In a representative embodiment, the groove 105 is a 60° angular cut (i.e., G=approximately 60°) having a radius R of approximately 0.006′ inch. The mean torque required for failure of the shaft 112 at groove 105 (the maximum shaft torque) is less than the torque required for failure of the shaft 112 at pin 126 (the maximum hinge torque) (see also FIG. 4), or more generally, of the cutting assembly itself. For example, it has been found that the mean torque required to scrape normal bone is approximately 2.0 in.-lb. In a representative embodiment, the mean torque required for failure of the shaft 105 at groove 105 is approximately 7.3 in.-lb. and the mean torque required for failure at pin 128 is 9.3 in.-lb. In the event that excessive torque is translated through the shaft 112, the groove 105 results in the shaft 112 breaking or severing at the groove 112 before the tip 120 breaks or fails at the pivot region 124. This provides an additional safety feature that allows the shaft 112 and undeformed pivot region 124 to be safely removed from the cannula 104 without complications. Failure or deformation of the pivot region 124 is avoided.

It is contemplated that the region of weakness can also be formed by any of a variety of other suitable means that provide that the shaft 112 will sever or break prior to the tip 120 becoming uncoupled from the shaft 112 (i.e., that provide that the maximum hinge torque is greater than the maximum shaft torque). For example, as shown in FIG. 12B, a portion 111 of the shaft 112 may be formed of a material of reduced strength and/or rigidity relative to the remaining portions 113A and 113B of the shaft 112 to define a region of weakness. In one representative embodiment, shaft portions 113A and 113B are formed of a biocompatible metal and shaft portion 111 is formed of a biocompatible plastic material.

With reference to FIG. 13, the shaft 112 may also carry a boss or stop 102 with a tine or lug 108 that selectively mates with a complementary slot or groove 110 in a cannula 104 or other access device so as to limit rotational motion to a preset angle. In this arrangement, the slot or groove 110 defines a cam surface. The tine or lug 108 serves as a cam follower. The configuration of the cam surface and cam follower can vary, but preferably define a system in which a sweep of the cam follower across the full range of motion of the cam surface consistently creates a void of a predetermined size and shape.

FIG. 13 shows an embodiment in which the cam surface takes the form of an elongated slot 110 in the circumferential margin of the cannula 104. The depth of reach is defined by the depth of the slot. That is, the length LS of the slot limits forward advancement of the stop 102 (and therefore the shaft 112) within the cannula 104. The width WS of the slot is greater than the width WC of the lug or tine 102 by a pre-determined amount. The angle of rotation is controlled by the extent of the slot 110, i.e., the difference in width between the slot 110 and the width of tine or lug 108 (i.e., the difference between WS and WC). Because the depth of the reach and the angle of rotation are pre-determined and constant, a sweep of the full range of motion of the cam surface and the cam follower consistently creates a void of a predetermined size and shape. For example, FIG. 14 illustrates the formation of a pre-determined pie-shaped void having an angle Al. The pre-determined void has a length corresponding to the length LS of slot 110 as shown in FIG. 13. The slot 110 can be varied, e.g., by varying the width of the slot 110 along its length, to form voids of a desired, pre-determined shape and size. For example, FIG. 13A illustrates an alternative embodiment of a slot 110A in which the slot 110A is generally T-shaped and adapted to form a pre-determined void biased such that the most forward portion is of greater volume, with each volume also being wedge shaped.

In use, the tool 100 is introduced into a targeted treatment site. Desirably, the tool 100 is introduced in a closed and minimally invasive procedure in which a percutaneous cannula 104 is advanced into a desired treatment region, e.g., a vertebral body. Introduction of the tool may be assisted by conventional visualization techniques, as previously described. The shaft 112 is then passed through the cannula 104 and the cutting tip 120 is extended beyond the distal end of the cannula 104. The cutting tip 112 is then pivoted to the desired position, i.e., any position between 0–90°.

The physician manipulates the cutting tip 120 by sweeping the shaft 112 along the full range of motion of the cam surface and cam follower. The stop 102 serves to limit translational movement of the shaft 112 along the cannula 104 and the lug or tine 108 limits rotational movement of the shaft 112 within the cannula 104 to create a void of a pre-determined size and shape. Because the void created is of a consistent and pre-determined size and shape, visualization is not required during cutting and void formation. The need for fluoroscopy or other visualization techniques is thereby reduced, limiting the patient's exposure to radiation or dyes. Upon completion of the procedure, the cutting tip 112 is returned to the non-deployed position and the cannula 104 and tool 100 are withdrawn.

C. Turned and Tapered Trunk Embodiment

FIGS. 15 and 16 illustrate an alternative embodiment of a tool 200 for creating voids in interior body regions. In this embodiment, the trunk 232 is tapered and rotated 90° relative to the embodiment shown in FIGS. 4–9 so that the maximum width W of the trunk is perpendicular to the axis S of the shaft 212 when the tip 220 is deployed at a 90° angle A from the axis S of the shaft 212.

This arrangement minimizes the combined surface area of the disc 234 and trunk 232 in contact with the bone during scraping and cutting and thus minimizes transmission of significant force and stress to the hinge mechanism.

The disc 234 has a convex front surface 248 providing a dome-shape. Preferably, the disc 234 has a diameter that is approximately the same as the diameter of the shaft 212, minimizing stress on the tip 220 during cutting and providing ease of passage of the tip 220 through a cannula. The domed configuration facilitates cutting and scraping of bone by producing leverage on the bone that allows the tip 220 to roll out of the bone easily. The domed configuration allows the tip to easily release from bone and to disengage from the bone for easy withdrawal.

The disc 234 provides a 360° cutting surface and permits both translational and rotational movement of the cutting disc 234 when deployed at the desired angle A, as previously described.

D. Conical Trunk Configuration

FIGS. 17 and 18 illustrate another alternative embodiment of a tool 300 for creating voids in interior body regions. In this embodiment, the trunk 332 is tapered similar to the embodiment of FIGS. 15 and 16, but is conical.

The trunk 332 also carries a dome-shaped disc 334 allowing both translational and rotational cutting, similar to the embodiment of FIGS. 15 and 16.

The combined cutting surface of the disc 334 and trunk 332 is minimized and is designed to reduce the force and stress on the hinged mechanism by minimizing the contact area in the bone in all directions. The same profile (symmetrical cross-section of the conical trunk 332) is presented to the bone regardless of whether pushing or pulling (translational) force, turning (rotational) force, or a combination of both forces is applied.

II. Actuator Mechanism

A. Thumbwheel Embodiment

FIGS. 19–22 illustrate one embodiment of an actuator mechanism for use with a void-forming tool. The actuator mechanism converts rotational motion into translational movement to control the deployment of a cutting tip. By way of illustration and not limitation, the actuator mechanism is illustrated with the cutting tip 120 embodiment of FIGS. 4–9.

The actuator mechanism provides a thumbwheel 150, an insert or cap 152, flange 154, plunger rod 156, and rotational stop 158. The thumbwheel 150, cap 152, flange 154, plunger rod 156, and stop 158 may be made of any suitable metal. The thumbwheel is seated in a free-floating manner in a slot 160 within handle 18. In a preferred embodiment, the handle 18 is made of a strong and durable polymer plastic.

The thumbwheel 150 extends, at least in part, from the handle 18 for manipulation by the thumb or index finger of the user, as seen in FIG. 19. The thumbwheel 150 desirably includes grooves or knurls for easy grasping and manipulation. While the thumbwheel 150 may be configured for manual manipulation, it is contemplated that the actuator may also be power-driven. The cap 152 is seated within the thumbwheel 150 and is desirably threaded or otherwise adapted to engage the wheel 150 so as to move with the wheel 150. The cap 152 is connected, e.g., by welding, to the plunger rod 156. The transmission ratio, and therefore the amount of torque delivered, may be controlled by altering the thread pitch of the cap 152.

The plunger rod 156 is sized and configured to be seated within the shaft 112 and to extend beyond the shaft 112 and thumbwheel 150 through bores in the cap 152 and thumbwheel 150. In the illustrated embodiment, the thumbwheel 150 and shaft 112 are positioned offset on the handle 18 for placement of the shaft 112 between the index and middle finger, as seen in FIG. 19. As shown in FIG. 21, the distal end of the plunger rod 156 is coupled to tether wire 166. The tether 160 is looped to pass through holes 168 in cutting tip 120 below pin 126 and is swaged or welded to the plunger rod 156. Movement of plunger rod 156 regulates pressure on the tether 160 to actuate the tip 120 between the deployed and non-deployed positions. The tether 160 will keep the tip 120 attached to shaft 112 in the event of breakage or failure of pin 126 to permit easy removal. This prevents parts from being left behind during removal, thereby providing an additional safety feature.

While the illustrated embodiment shows the tip 120 coupled to the shaft 112 and additionally tethered to the shaft 112 by a rod 156, it is contemplated that the tip 120 may be additionally tethered to the shaft 112 by any of a variety of ways to provide that the tip 120 remains tethered to the shaft 112 if the coupling element (e.g., pin 126) becomes inoperable. For example, in an alternative embodiment, the tip 120 is additionally tethered to shaft 112 by a cable or pulley (not shown).

The flange 154 is seated in a slot 170 within the handle 18 and is coupled to the shaft 112, e.g., by welding or by interference or compression fit. Desirably, the flange 154 includes an offset bore such that there is only one way in which it may be seated with slot 170. The flange 154 engages the shaft 112 within the handle 18 and is sized and configured to essentially prevent rotational movement of the shaft 112.

In the illustrated embodiment, the rod 156 has a rectangular end 172 sized and configured to pass through a complementary rectangular opening 174 in the stop 158. The stop 158 engages the rod 156 to prevent rotation of the rod 156 during actuation. The stop 158 is mounted to the plunger rod 156 and seated exterior to and against slot 160. The arrangement of the metal stop 158 against the plastic slot 160 creates additional frictional forces to provide additional strength and reinforcement and serves to limit the amount of torque delivered to the plunger rod 156.

Rotation of the thumbwheel 150 in a first direction advances the plunger rod 156 in a first direction along the shaft 112 to decrease tension on wire 166 and actuate deployment of the cutting tip 120. Rotation of the thumbwheel 150 in the opposite direction advances the plunger rod in the opposite direction within the shaft 112 and increases tension on wire 166 to actuate movement of the cutting tip 120 from the deployed to the non-deployed position. This arrangement converts the rotational movement of the thumbwheel 150 into the translational movement of the plunger rod 156.

In an alternative embodiment, shown in FIG. 22, a lever 176 is hingedly attached to the plunger rod 156. Movement of the lever 176 in a first direction advances the plunger in a first direction to deploy the cutting tip 120, and movement of the lever 176 in the opposite direction advances the plunger 156 in a second direction to move the cutting tip 120 from the deployed to the non-deployed position. In this manner, the lever 176 permits the physician to continuously and conveniently move the tip 120 itself without moving the shaft 112 to create a reciprocating cutting motion.

B. Gear Embodiment

FIGS. 23–25 illustrate an embodiment of an actuator similar to the embodiment of FIGS. 19–21. The actuator provides a series of gears that interact to convert rotational motion to translational motion.

A central gear 178 is similar in configuration and function to the thumbwheel 150 shown in FIGS. 19–21. The central gear 178 and shaft 112 are centered along the bottom of the handle 18 for placement of the shaft 112 between the middle and ring fingers.

Control knobs 180A and 180B are provided at each end of the handle 18 for actuation by the user's thumb. Alternatively, the control knobs 180A and 180B may be driven by a motor. Each control knob 180A and 180B defines a gear that actuates a corresponding intermediate gear 182A or 182B positioned between the control knob 180A or 180B and the central gear 178. Rotation of the control knob 180A or 180B actuates the corresponding intermediate gear 182A or 182B and the central gear 178. Rotational movement of the control knob 180 is thereby converted into translational movement of the plunger rod 156, similar to the previous embodiment.

The symmetric design is designed for easy use by either the right or left hand. Further, the symmetric design allows easy rotation of the handle 18.

In use, the shaft 112 is advanced through a cannula 104. The cutting tip 120 is extended beyond the distal end of the cannula 104. A control knob 180A or 180B is rotated to deploy the cutting tip 130 to the desired angle. The physician then creates a desired void by performing a series of translational and rotational movements of the shaft 112. The physician then returns the cutting tip 120 to the non-deployed position.

If desired, the handle 18 can then be rotated 180°. The opposing control knob 180A or 180B is then manipulated to again deploy the cutting tip 120 to a desired angle and another series of translational and rotational movements may be performed.

Once the desired void is created, the physician returns the tip 120 to the non-deployed position. The tool 100 is withdrawn from the patient. The physician then completes the procedure by filling the void with a bone cement or bone substitute, removing the cannula 104, and closing the incision.

The rate and/or force of cutting may be controlled by altering the transmission ratio. The force may be varied by varying the screw thread pitch or the transmission gear ratio. The rate of motion (i.e., speed of actuation) may be varied by manually or mechanically varying the speed of actuation.

III. Alternative Embodiments of Mechanical Void Creators

A. Shape Memory Alloys

FIGS. 26–28 illustrate an embodiment of a tool 700 employing a cutting tip 720 formed of a shape memory alloy. Use of a shape memory alloy allows for a smaller instrument as the hinge mechanism is no longer needed to activate the tip. Smaller instruments are safer and can access smaller vertebral bodies located higher in the spine. Smaller instruments are also less invasive and are less traumatic to the patient, allowing for a faster recuperation time.

A malleable rod 701 formed of a shape memory alloy, e.g., Nitinol, is provided. It is contemplated that the rod 701 may be of a variety of different diameters, tip configurations, and actuation angles. The rod 701 has a malleable or straightened state (FIGS. 26 and 27) and an activated or articulated predetermined, desired state (FIG. 28). The rod 701 is sized and configured for passage in a straightened or malleable state through a cannula 104 into a vertebra or any bone surface. Once inserted into the bone, the rod 701 returns to its predetermined, desired memory shape as a result of either the body temperature of the patient or by means of an electrical impulse (e.g., cooling, heat, voltage, etc.). For example, the distal end of the rod 701 is activated to an angle, e.g., 90°, to form an elbow defining a cutting tip, as shown in FIG. 28. In a representative embodiment, the length from the distal end of the rod to the bend is approximately 0.5 cm. Cutting of the bone is accomplished by a rotating motion or a push-pull motion or a combination of both motions, as previously described. The rod 701 desirably includes a lumen 703 that permits introduction of a cooling or heating media (S), e.g., saline, to return the rod 701 to a straightened state allowing for easy withdrawal.

In another embodiment, the rod 701 is formed from a shape memory alloy with an activation temperature that is equal to room temperature, i.e., the rod 701 is fully austenitic at room temperature. Therefore, the rod 701 is fully articulated to its predetermined shape at room temperature. The rod 701 is chilled to a martensitic condition (malleable state) prior to insertion into bone, allowing for easy insertion. The rod 701 articulates to the predetermined, desired position upon returning to room temperature. This ensures that the proximal end of the cutting tip 720 attains full activation without depending on heat transfer from the distal end of the rod 701 (which is in contact with the patient) or any outside means (e.g., heat, voltage, etc.). A lumen 703 is provided in the rod 701 to facilitate the introduction of a cooling media (S), e.g., chilled saline, to deactivate the material and allow for easy withdrawal. In another alternative embodiment, the alloy is super-elastic and the cannula 104 confines the pre-bent or formed cutting tip 720 until the activation mechanism deploys the cutting tip 720 to extend beyond the cannula 104 (see FIGS. 35A and 35B).

In another alternative embodiment, the rod 701 may be used to straighten the cannula 104 which is formed of a shape memory alloy. In this embodiment, the cutting tip 720 is disposed on the shape memory cannula 104 (not shown). The cannula 104 is educated to have a curved tip the rod 701 is moveably disposed within the cannula 104 to straighten the cannula 104 by fully engaging the rod 701 within the cannula 104 (i.e. by pushing the rod 701) and to allow the cannula 104 and cutting tip 720 to curve or articulate by pulling back on the rod 701. Desirably, the rod 701 is made of a rigid material, such as stainless steel.

In another embodiment, the activation temperature of the alloy is set at a temperature higher than body temperature. In this embodiment, the rod 701 is malleable for insertion and withdrawal. The rod 701 achieves full activation to its predetermined shape only through the application of heat or voltage. This permits control of the change of the state of the rod 701 from malleable to the predetermined shape, or any percentage there between, using a potentiometer or other suitable device.

The rod 701 may be attached to a handle by a standard square drive or Hudson-style orthopedic fitting on the proximal end (not shown). A torque-regulating handle could be mated to the rod 701 to allow for torque-limiting rotational scraping.

In one embodiment, the rod 701 is fixedly attached or otherwise coupled to a handle 18 having an actuator mechanism. For example, in the illustrated embodiment, the rod 701 is coupled to a thumbscrew 152 and is driven by an actuator mechanism similar to the mechanism illustrated in FIGS. 19 and 20. The rod 701 is actuated (moved in fore and aft directions) within the cannula 104 by the actuator mechanism. This permits the cutting tip 720 to be retracted (FIG. 26) in a malleable state within the cannula 104 for easy insertion and withdrawal and then extended (FIG. 27) beyond the distal end of the cannula 104 within bone and activated for use (FIG. 28).

In a preferred embodiment, the handle 18 includes a luer fitting 705. The fitting 705 is sized and configured to mate with a complementary luer fitting 707 on a fluid introduction device, e.g., a syringe 709, to establish fluid communication between the lumen 703 and the fluid introduction device 709. Fluid, e.g., chilled or heated saline, may be introduced from the syringe 709 through the rod lumen 703 to control movement of the rod 701 between the malleable (deactivated) and activated states.

In an alternative embodiment, shown in FIGS. 29 and 30, a cutting tip 720A of a desired configuration is formed at the distal end of the malleable rod 701. The tip 720A may be a separate piece welded to the rod 701, or the tip 720A may be carved or otherwise formed in the rod 701, e.g., by conventional machining techniques. In the illustrated embodiment, the cutting tip 720A is of a conical trunk and domed disc configuration similar to the embodiment illustrated in FIGS. 17 and 18. It is apparent, however, that the configuration of the cutting tip 720A can be varied according to the procedure being performed and/or to accommodate individual anatomy. In one embodiment, the entire rod 701, including the cutting tip 720A, are formed of the shape memory alloy. The rod 701 yields from a malleable state (FIG. 29) to the activated state (FIG. 30) as previously described. The rod 701 desirably includes a lumen 703 to permit introduction of a fluid media to control movement between the deactivated and activated states, as also previously described.

In an alternative embodiment, illustrated in FIGS. 31 and 32, the tip 720A and a distal portion 711 of the rod 701 are formed of a shape memory alloy. A rod body 713 is formed of any suitable biocompatible, surgical grade material. The distal portion 711, carrying the cutting tip 720A, is welded or otherwise fixed to the rod body 713. The distal portion 711 of the rod 701 yields from a malleable state (FIG. 31) to the activated state (FIG. 32). The rod 701 desirably includes a lumen 703 to permit introduction of a fluid media to control movement between the deactivated and activated states. In an alternative embodiment, the rod 701 may include a dual lumen 714 so that fluid media can circulate through the shaft 112 and desirably through the cutting tip 720 (see FIG. 33) In another alternative embodiment, the rod 701 may include a throughbore 703A to accommodate more thermal flow (see FIG. 34).

B. Alternative Mechanical Void Creators

FIG. 36 shows an alternative embodiment of a mechanical tool 400 for creating a void in an interior body region. A shaft 412 carries a sharp, stout, metal spring 420 on the end of a shaft 412. The shaft 412 can be rotated against the direction of the spring 420 causing it to cut bone (or other tissue) in an expanding fashion. The tool 400 is sized and configured to be introduced through a cannula (not shown) with the spring 420 extending beyond the cannula and the shaft 412 rotated into the tissue a short distance at a time. The shaft 412 can then be withdrawn to remove any captured tissue. If no tissue is captured, the tool 400 is reintroduced farther into the tissue and tissue removal is again attempted. The tool 400 may also be used to loosen tissue to allow better cutting and/or removal by other mechanical tools.

FIG. 37 shows another embodiment of a mechanical tool 500 for creating a void in an interior body region. Two or more fingers 520 are carried on the distal end of a shaft 512. Preferably, the shaft 512 carries four fingers 520, two fingers 520 facing each other. The fingers 520 are introduced into the tissue through a cannula (not shown), and then mechanically closed with a pulley-type system or other similar system to grab tissue for extraction. Desirably, the fingers 520 are adapted to further expand as the size of the void increases. It is apparent that the length of the fingers 520 may be chosen to suit the intended use and particular individual anatomy.

FIGS. 38 and 39 show another embodiment of a mechanical tool 600 for creating a void in an interior body region. The tool includes a hinged void-creating device 620 carried on the distal end of the shaft 612. The void-creating device 620 may be used to create a void or to loosen tissue to allow better cutting and removal by other mechanical tools.

The void-creating device 620 provides for adjusting the height of the device 620. A positioning rod 621 is coupled to the device 620 for expanding and contracting the device 620. The height may be adjusted by drawing in the rod 621 to increase the height H and pushing out on the rod to decrease the height H of the device 620. Calibrated markings (not shown) may be provided on the rod handle to indicate the dimension of the device 620 as the rod 621 is drawn back or advanced. The height H may also be chosen to suit the intended use and particular individual anatomy.

FIG. 40 shows an embodiment similar to FIGS. 35 and 36, but additionally providing a spring blade or series of spring blades 623 for more aggressive cutting. The spring blades 623 are coupled to the last blades out of the cannula and desirably pre-bent to cut parallel to the end plates.

IV. Creation of Voids in Bone

Two or more different mechanical cutting tools of the type described may also be used in combination to form a cavity or void of a desired size and configuration in a targeted bone. In addition, one or more mechanical cutting tools may be used in combination with one or more expandable void-creating tools to form the desired void.

Expandable structures for creating voids in bones are described in U.S. Pat. Nos. 4,969,888, 5,827,289, 5,972,015, 6,235,043, 6,248,110, and 6,607,544, all of which are herein incorporated by reference.

Fracture reduction and deformity correction is influenced by a variety of factors, including, but not limited to, acuteness of the fracture, bone quality (e.g. osteoporosis, bone cancers, steroid-induced osteoporosis), and healing. In some fractures, expansion of the expandable structure may be distorted by a region or regions of hard bone. This results in a high pressure within the expandable structure and low volume of expansion media within the expandable structure. The use of a mechanical cutting tool to selectively break up the region of hard bone will allow the expandable structure to achieve a more consistent and reliable fracture reduction. Mechanical cutting or scraping tools will break bone, but an expandable structure is required for the en-masse endplate reduction and deformity correction.

In use, an access path to bone is made using a conventional access cannula by techniques commonly known in the art. A first void creator, which may be a mechanical cutting tool or an expandable structure, is then introduced into a bone to create a void. The first void creator is then removed. A second void creator, which may be the same as or different from the first void creator, is then inserted into the bone to enlarge or further define the void to form a void of a desired size and configuration. The second void creator is then removed. If desired, a third void creator, which may be the same or different from the first and/or second void creators, may then be introduced to further enlarge and define the void and then removed. Desirably, a filling material, e.g., bone cement or bone substitute, is then injected or otherwise introduced into the void to fill the void.

In one embodiment, illustrated in FIGS. 41A–41D, a first mechanical cutting tool 800A and a second mechanical cutting tool 800B, which may be different in size and/or configuration from the first cutting tool 800A, are used to create a void 802 of a desired size and configuration. An access cannula 104 is percutaneously introduced to provide an access path into a bone, e.g., a vertebra 142 (FIG. 41A). The first mechanical cutting tool 800A is introduced through the cannula 104 into the cancellous bone 39 of the vertebra 142. The cutting tip 820A is manipulated in a series of longitudinal and/or rotational movements to create a void 802 in the cancellous bone 39 (FIG. 41B). The first cutting tool 800A is then removed. The second mechanical cutting tool 800B is then introduced and manipulated in a series of longitudinal and/or rotational movements (FIG. 41C). The second cutting tool 800B desirably has a cutting tip 820B of a different size and/or configuration to enlarge and/or otherwise further define the void 802 created by the first tool 800A. For example, in the illustrated embodiment, the second cutting tool 800B has a cutting tip 820B of a greater height than the first cutting tip 820A to enlarge the void 802, but is of a similar configuration. The second cutting tool 800B is then removed. A filler material 804, e.g., bone cement or bone substitute, may then be introduced into the void 802 to fill the void 802 (FIG. 41D).

Alternatively, as shown in FIGS. 42A–42E, after removal of the second cutting tool 800B, an expandable structure 900 may be introduced through the cannula 104 and expanded to enlarge and/or further define the void 802 created by the first and second mechanical cutting tools 802A and 802B. While in the illustrated embodiment the expandable structure 900 takes the form of a balloon adapted to expand or form a void by compression of cancellous bone, the expandable structure 900 may be any suitable device which can be expanded to enlarge and/or further define the void. For example, the expandable structure 900 may also be a mechanical jack, retractor, or spring. Desirably, the expandable structure 900 has a collapsed condition permitting insertion of the expandable structure 900 through the cannula 104 and an expanded condition in which the expandable structure 900 compacts cancellous bone 39 upon expansion within the cancellous bone 39. The expandable structure 900 is then removed. The void 802 may then be filled, as previously described.

In another embodiment, illustrated in FIGS. 43A–43D, a first expandable structure 900A and a second expandable structure 900B, which may be different in size and/or configuration from the first expandable structure 900A, are used to create a void 802 of a desired size and configuration. An access cannula 104 is percutaneously introduced to provide an access path into a vertebra 142 (FIG. 43A). The first expandable structure 900A is introduced through the cannula 104 in the collapsed condition into the cancellous bone 39 of the vertebra 142. The expandable structure 900A is then expanded to create a void 802 in cancellous bone 39 (FIG. 43B). The first expandable structure 900A is then removed. The second expandable structure 900B is then introduced and expanded (FIG. 43C). The second expandable structure 900B is desirably of a different size and/or configuration such that expansion of the second expandable structure 900B enlarges and/or otherwise further defines the void 802 created by the first expandable structure 900A. For example, in the illustrated embodiment, the second expandable structure 900B is of a larger volume, but is of a similar configuration. It is contemplated, however, that the second expandable structure 900B may be of a different configuration than the first expandable structure 900A. The second expandable structure 900B is then removed. A filler material 804, e.g., bone cement or bone substitute, may then be introduced into the void 802 to fill the void 802 (FIG. 43D).

Alternatively, as shown in FIGS. 44A–44E, after removal of the second expandable structure 900B, if desired, a mechanical cutting tool 800 may be introduced through the cannula 104 to enlarge and/or further define the void 802 created by the first and second expandable structures 900A and 900B. The cutting tool 800 is then removed. The void 802 may then be filled, as previously described.

FIGS. 45A–45E illustrate another method of creating a void 802 in bone of a desired size and configuration. An access cannula 104 is percutaneously introduced to provide an access path into a vertebra 142 (FIG. 45A). A first expandable structure 900A is introduced through the cannula 104 in the collapsed condition into the cancellous bone 39 of the vertebra 142. The expandable structure 900A is then expanded to create a void 802 in cancellous bone 39 (FIG. 45B) Because the reticulum of the cancellous bone 39 may be somewhat dense, it may be difficult for the expandable structure 900A to sufficiently compact the cancellous bone 39 to permit full expansion of the expandable body 900A. This may occur with older fractures or in normal bone that has been injured by trauma, but is not necessarily osteoporotic. In this case, the expandable structure 900A may expand preferentially in a given direction depending on the density of the reticulum, but is not able to expand to its full preformed shape, as seen in FIG. 45B. The first expandable structure 900A is then removed.

A mechanical cutting tool 800 is then introduced (FIG. 45C). The cutting tip 820 is manipulated in a series of longitudinal and/or rotational movements to enlarge and/or otherwise further define the void 802 created by the expandable structure 900A. The cutting tool 800 is then removed.

If desired, a second expandable structure 900B, which may be of a different size and/or configuration from the first expandable structure 900A, is then introduced prior to filling the void 802 (FIG. 45D). Use of the cutting tool 800 to break or cut the reticulum and expand the void 802 allows the second expandable structure 900A to fully expand. The second expandable structure 900A is then expanded to enlarge and/or otherwise further define the previously created void 802. The second expandable structure 900B is then removed. Alternatively, instead of a second expandable structure 900B, the first expandable structure 900A may be reintroduced, re-expanded, and then removed. A filler material 804 may then be introduced into the void 802 to fill the void (FIG. 45E).

In an alternative method shown in FIGS. 46A–46E, an access cannula 104 is percutaneously introduced to provide an access path into a vertebra 104 (FIG. 46A). An expandable structure 900 is introduced and expanded to create a void 802 in cancellous bone 39 (FIG. 46B) The first expandable structure 900A is then removed.

A first mechanical cutting tool 800A is then introduced (FIG. 46C). The cutting tip 820A is manipulated in a series of longitudinal and/or rotational movements to enlarge and/or otherwise further define the void 802 created by the expandable structure 900. The cutting tool 800 is then removed.

If desired, a second mechanical cutting tool 800B, which may be of a different size and/or configuration from the first mechanical cutting tool 800A, is then introduced prior to filling the void 802 (FIG. 46D). The cutting tip 820B is manipulated in a series of longitudinal and/or rotational movements to enlarge and/or otherwise further define the void 802 created by the expandable structure 900 and first cutting tool 800A. The second cutting tool 800B is then removed. A filler material 804 may then be introduced into the void 802 to fill the void 802 (FIG. 46E).

In an alternative method shown in FIGS. 47A–47E, a first mechanical cutting tool 800A is introduced and manipulated in a series of longitudinal and/or rotational movements to create a void 802. The first cutting tool 800A is then removed. An expandable structure 900 is then introduced and expanded to enlarge and/or otherwise further define the void 802 created by the first cutting tool 800A. The expandable structure 900 is then removed.

If desired, a second mechanical cutting tool 800B, which may be of a different size and/or configuration from the first mechanical cutting tool 800A, is then introduced prior to filling the void 802. The cutting tip 820B is manipulated in a series of longitudinal and/or rotational movements to enlarge and/or otherwise further define the void 802 created by the expandable structure 900A and first cutting tool 802A. The second cutting tool 802B is then removed. A filler material 804 may then be introduced into the void 802 to fill the void 802.

Alternatively, as seen in FIGS. 48A–48E, instead of a second mechanical cutting tool, a second expandable structure 900B, is introduced and expanded to enlarge and/or otherwise further define the void created by the first expandable structure 900A and first cutting tool 800A.

Reiley, Mark A., Edidin, Avram Allan, Layne, Richard W., Scholten, Arie, Phillips, Frank M., Cantu, Alberto Ruiz, Way, Bryce Anton, Rothwell, Derek S.

Patent Priority Assignee Title
10022132, Dec 12 2013 Conventus Orthopaedics, Inc. Tissue displacement tools and methods
10022173, Nov 10 2009 Stryker Corporation Systems and methods for vertebral or other bone structure height restoration and stabilization
10024407, Dec 19 2012 Covidien LP Lower anterior resection 90 degree instrument
10028753, Sep 26 2008 Relievant Medsystems, Inc. Spine treatment kits
10028840, Aug 16 2005 IZI Medical Products, LLC Spinal tissue distraction devices
10039649, Jun 06 2008 Providence Medical Technology, Inc. Composite spinal facet implant with textured surfaces
10045788, Dec 11 2006 Arthrosurface Incorporated Retrograde resection apparatus and method
10045803, Jul 03 2014 Mayo Foundation for Medical Education and Research Sacroiliac joint fusion screw and method
10052116, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for treating tissue
10070968, Aug 24 2010 Flexmedex, LLC Support device and method for use
10076342, Dec 12 2013 Conventus Orthopaedics, Inc. Tissue displacement tools and methods
10076343, Dec 03 2002 Arthrosurface Incorporated System for articular surface replacement
10080571, Mar 06 2015 Warsaw Orthopedic, Inc. Surgical instrument and method
10085783, Mar 14 2013 IZI Medical Products, LLC Devices and methods for treating bone tissue
10085843, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10111704, Sep 30 2002 Relievant Medsystems, Inc. Intraosseous nerve treatment
10130793, Jan 09 2012 Covidien LP Surgical articulation assembly
10136934, Dec 31 2007 DFINE, INC. Bone treatment systems and methods
10149673, Jun 06 2008 Providence Medical Technology, Inc. Facet joint implants and delivery tools
10159497, Dec 14 2012 DePuy Synthes Products, Inc. Device to aid in the deployment of a shape memory instrument
10172721, Jun 06 2008 PROVIDENCE TECHNOLOGY, INC. Spinal facet cage implant
10188403, Apr 24 2013 T.A.G. Medical Devices—Agriculture Cooperative Ltd. Bone material removal devices
10201375, May 28 2014 PROVIDENCE MEDICAL TECHNOLOGY, INC Lateral mass fixation system
10206731, Jul 19 2013 Pro-Dex, Inc. Torque-limiting screwdrivers
10219910, Dec 29 2006 Providence Medical Technology, Inc. Cervical distraction method
10226285, Jun 06 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
10238501, Jun 06 2008 Providence Medical Technology, Inc. Cervical distraction/implant delivery device
10265099, Sep 26 2008 Relievant Medsystems, Inc. Systems for accessing nerves within bone
10271859, Jan 09 2014 SURGALIGN SPINE TECHNOLOGIES, INC Undercutting system for use in conjunction with sacroiliac fusion
10271883, Nov 20 2009 ZIMMER KNEE CREATIONS, INC. Method for treating joint pain and associated instruments
10285819, Nov 12 2008 Stout Medical Group, L.P. Fixation device and method
10285820, Nov 12 2008 Stout Medical Group, L.P. Fixation device and method
10285821, Jun 22 2007 SPINAL ELEMENTS, INC Devices for treating the spine
10292828, Nov 12 2008 Stout Medical Group, L.P. Fixation device and method
10307172, Jul 03 2012 Arthrosurface Incorporated System and method for joint resurfacing and repair
10314632, Oct 07 2016 MEDTRONIC HOLDING COMPANY SÀRL Surgical system and methods of use
10314633, Nov 18 2005 Stryker Corporation Shape memory device with temperature-dependent deflectable segment and methods of positioning a shape memory device within a bone structure
10335168, Jun 10 2014 MEDOS INTERNATIONAL SÀRL Retro-cutting instrument with adjustable limit setting
10357258, Nov 05 2012 Relievant Medsystems, Inc. Systems and methods for creating curved paths through bone
10376372, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10383674, Jun 07 2016 PRO-DEX, INC Torque-limiting screwdriver devices, systems, and methods
10390877, Dec 30 2011 RELIEVANT MEDSYSTEMS, INC Systems and methods for treating back pain
10405986, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10413332, Apr 05 2016 IMDS LLC Joint fusion implant and methods
10420651, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10426629, Jun 22 2007 SPINAL ELEMENTS, INC Devices for treating the spine
10433971, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10441295, Oct 15 2013 Stryker Corporation Device for creating a void space in a living tissue, the device including a handle with a control knob that can be set regardless of the orientation of the handle
10448959, Apr 09 2015 T.A.G. Medical Devices—Agriculture Cooperative Ltd. Bone material removal device and a method for use thereof
10456169, Jan 09 2012 Covidien LP Articulation control mechanisms
10456175, Jun 06 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
10456187, Aug 08 2013 Relievant Medsystems, Inc. Modulating nerves within bone using bone fasteners
10463380, Dec 09 2016 DFINE, INC. Medical devices for treating hard tissues and related methods
10463423, Mar 28 2003 Relievant Medsystems, Inc. Thermal denervation devices and methods
10470781, Dec 09 2016 DFINE, INC. Medical devices for treating hard tissues and related methods
10478200, Apr 17 2009 Arthrosurface Incorporated Glenoid resurfacing system and method
10478241, Oct 27 2016 Merit Medical Systems, Inc. Articulating osteotome with cement delivery channel
10478246, Sep 12 2012 Relievant Medsystems, Inc. Ablation of tissue within vertebral body involving internal cooling
10492918, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10517611, Nov 05 2012 Relievant Medsystems, Inc. Systems for navigation and treatment within a vertebral body
10537340, Oct 19 2014 T A G MEDICAL PRODUCTS CORPORATION LTD Kit including a guiding system and a bone material removal device
10555817, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10568666, Jun 06 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
10575957, Mar 07 2014 Arthrosurface Incoporated Anchor for an implant assembly
10575959, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10575963, Jun 22 2007 SPINAL ELEMENTS, INC Devices for treating the spine
10583013, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10588646, Jun 17 2008 Globus Medical, Inc. Devices and methods for fracture reduction
10588672, Jun 06 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
10588691, Sep 12 2012 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
10596002, Jan 04 2010 SURGALIGN SPINE TECHNOLOGIES, INC Sacroiliac fusion system
10603087, Jan 14 2008 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
10603177, Apr 25 2016 IMDS LLC Joint fusion instrumentation and methods
10610244, Apr 25 2016 IMDS LLC Joint fusion instrumentation and methods
10624652, Apr 29 2010 DFINE, INC. System for use in treatment of vertebral fractures
10624748, Mar 07 2014 Arthrosurface Incorporated System and method for repairing articular surfaces
10624749, Feb 24 2003 Arthrosurface Incorporated Trochlear resurfacing system and method
10624752, Jul 17 2006 Arthrosurface Incorporated Tibial resurfacing system and method
10624754, Mar 07 2014 Arthrosurface Incorporated System and method for repairing articular surfaces
10624762, Sep 07 2018 Orthorebirth USA Bone graft delivery device for minimally invasive surgery
10639164, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
10660656, Jan 06 2017 DFINE, INC. Osteotome with a distal portion for simultaneous advancement and articulation
10660657, Feb 11 2016 T.A.G. Medical Devices—Agriculture Cooperative Ltd. Bone material removal device and a method for use thereof
10667827, Mar 06 2015 Warsaw Orthopedic, Inc. Surgical instrument and method
10682243, Oct 13 2015 PROVIDENCE MEDICAL TECHNOLOGY, INC Spinal joint implant delivery device and system
10695073, Aug 22 2017 Arthrex, Inc. Control system for retrograde drill medical device
10695096, Apr 16 2013 Arthrosurface Incorporated Suture system and method
10751071, Apr 25 2016 IMDS LLC; Mayo Foundation for Medical Education and Research Joint fusion instrumentation and methods
10758289, May 01 2006 STOUT MEDICAL GROUP, L P Expandable support device and method of use
10786361, Feb 14 2003 DEPUY SYNTHES PRODUCTS, INC In-situ formed intervertebral fusion device and method
10813677, May 01 2006 STOUT MEDICAL GROUP, L P Expandable support device and method of use
10888433, Dec 14 2016 DEPUY SYNTHES PRODUCTS, INC Intervertebral implant inserter and related methods
10905440, Sep 26 2008 Relievant Medsystems, Inc. Nerve modulation systems
10905487, Nov 10 2009 Stryker Corporation Systems and methods for vertebral or other bone structure height restoration and stabilization
10905854, Jan 09 2012 Covidien LP Surgical articulation assembly
10918426, Jul 04 2017 CONVENTUS ORTHOPAEDICS, INC Apparatus and methods for treatment of a bone
10940014, Nov 12 2008 Stout Medical Group, L.P. Fixation device and method
10940016, Jul 05 2017 DEPUY SYNTHES PRODUCTS, INC; MEDOS INTERNATIONAL SARL Expandable intervertebral fusion cage
10945743, Apr 17 2009 Arthrosurface Incorporated Glenoid repair system and methods of use thereof
10952750, Jan 09 2014 SURGALIGN SPINE TECHNOLOGIES, INC Undercutting system for use in conjunction with sacroiliac fusion
10959740, Dec 11 2006 Arthrosurface Incorporated Retrograde resection apparatus and method
10966840, Jun 24 2010 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
10973652, Jun 26 2007 DePuy Synthes Products, Inc. Highly lordosed fusion cage
11006992, Nov 20 2009 ZIMMER KNEE CREATIONS, INC. Method for treating joint pain and associated instruments
11007010, Sep 12 2019 RELIEVANT MEDSYSTEMS, INC Curved bone access systems
11013544, Oct 07 2016 MEDTRONIC HOLDING COMPANY SÀRL Surgical system and methods of use
11020132, Apr 24 2016 T A G MEDICAL DEVICES - AGRICULTURE COOPERATIVE LTD Guiding device and method of using thereof
11026744, Nov 28 2016 DFINE, INC. Tumor ablation devices and related methods
11026806, Dec 07 2006 DePuy Synthes Products, Inc. Intervertebral implant
11033283, Oct 19 2014 T A G MEDICAL PRODUCTS CORPORATION LTD Kit including a guiding system and a bone material removal device
11033306, Dec 18 2009 Charles River Engineering Solutions and Technologies, LLC Articulating tool and methods of using
11051862, Nov 03 2001 DePuy Synthes Products, Inc. Device for straightening and stabilizing the vertebral column
11051954, Sep 21 2004 Stout Medical Group, L.P. Expandable support device and method of use
11058466, May 28 2014 Providence Medical Technology, Inc. Lateral mass fixation system
11058553, Jun 06 2008 Providence Medical Technology, Inc. Spinal facet cage implant
11065039, Jun 28 2016 PROVIDENCE MEDICAL TECHNOLOGY, INC Spinal implant and methods of using the same
11065046, Aug 08 2013 Relievant Medsystems, Inc. Modulating nerves within bone
11071575, Jun 07 2016 Pro-Dex, Inc. Torque-limiting screwdriver devices, systems, and methods
11083445, Mar 31 2016 Medartis AG Knife and retractor system
11083587, Mar 07 2014 Arthrosurface Incorporated Implant and anchor assembly
11090128, Aug 20 2018 PRO-DEX, INC Torque-limiting devices, systems, and methods
11096794, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
11116570, Nov 28 2016 DFINE, INC Tumor ablation devices and related methods
11123103, Sep 12 2019 RELIEVANT MEDSYSTEMS, INC Introducer systems for bone access
11129649, Apr 25 2016 IMDS LLC; Mayo Foundation for Medical Education and Research Joint fusion implant and methods
11129728, Oct 03 2018 Surgically implantable joint spacer
11141144, Jun 06 2008 Providence Medical Technology, Inc. Facet joint implants and delivery tools
11141208, May 01 2006 STOUT MEDICAL GROUP, L P Expandable support device and method of use
11160563, Nov 05 2012 Relievant Medsystems, Inc. Systems for navigation and treatment within a vertebral body
11160663, Aug 04 2017 Arthrosurface Incorporated Multicomponent articular surface implant
11173036, Jan 04 2010 SURGALIGN SPINE TECHNOLOGIES, INC Sacroiliac fusion system
11191552, Jul 03 2012 ARTHROSURFACE, INCORPORATED System and method for joint resurfacing and repair
11197681, May 20 2009 Merit Medical Systems, Inc. Steerable curvable vertebroplasty drill
11202641, Aug 01 2018 T A G MEDICAL DEVICES - AGRICULTURE COOPERATIVE LTD Adjustable drilling device and a method for use thereof
11202655, Sep 12 2019 Relievant Medsystems, Inc. Accessing and treating tissue within a vertebral body
11207100, Sep 12 2019 Relievant Medsystems, Inc. Methods of detecting and treating back pain
11207187, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
11224521, Jun 06 2008 Providence Medical Technology, Inc. Cervical distraction/implant delivery device
11234716, Feb 22 2019 Globus Medical, Inc.; Globus Medical, Inc Methods and apparatus for performing discectomy
11234764, Nov 05 2012 Relievant Medsystems, Inc. Systems for navigation and treatment within a vertebral body
11259818, Oct 15 2013 Stryker Corporation Methods for creating a void within a bone
11272964, Jun 06 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
11273050, Dec 07 2006 DePuy Synthes Products, Inc. Intervertebral implant
11284907, Jun 10 2014 MEDOS INTERNATIONAL SARL Retro-cutting instrument with adjustable limit setting
11285010, Dec 29 2006 Providence Medical Technology, Inc. Cervical distraction method
11291502, Nov 05 2012 Relievant Medsystems, Inc. Methods of navigation and treatment within a vertebral body
11337819, Feb 24 2003 Arthrosurface Incorporated Trochlear resurfacing system and method
11344339, Jun 06 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
11344350, Oct 27 2016 DFINE, INC. Articulating osteotome with cement delivery channel and method of use
11344424, Jun 14 2017 MEDOS INTERNATIONAL SARL Expandable intervertebral implant and related methods
11357557, Jul 03 2014 Mayo Foundation for Medical Education and Research Bone joint reaming tool
11382647, Oct 15 2004 Spinal Elements, Inc. Devices and methods for treating tissue
11399878, Jan 14 2008 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
11426199, Sep 12 2019 Relievant Medsystems, Inc. Methods of treating a vertebral body
11426286, Mar 06 2020 EIT Emerging Implant Technologies GmbH Expandable intervertebral implant
11426290, Mar 06 2015 SYNTHES USA PRODUCTS, LLC; DEPUY SYNTHES PRODUCTS, INC Expandable intervertebral implant, system, kit and method
11432938, Feb 14 2003 DEPUY SYNTHES PRODUCTS, INC In-situ intervertebral fusion device and method
11432942, Dec 07 2006 DEPUY SYNTHES PRODUCTS, INC Intervertebral implant
11446042, Feb 11 2016 T A G MEDICAL PRODUCTS CORPORATION LTD Bone material removal device and a method for use thereof
11446155, May 08 2017 MEDOS INTERNATIONAL SARL Expandable cage
11446156, Oct 25 2018 MEDOS INTERNATIONAL SARL Expandable intervertebral implant, inserter instrument, and related methods
11452607, Oct 11 2010 DePuy Synthes Products, Inc. Expandable interspinous process spacer implant
11452609, Mar 30 2009 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
11471171, Sep 26 2008 Relievant Medsystems, Inc. Bipolar radiofrequency ablation systems for treatment within bone
11471210, Dec 30 2011 Relievant Medsystems, Inc. Methods of denervating vertebral body using external energy source
11471289, Jul 17 2006 Arthrosurface Incorporated Tibial resurfacing system and method
11478259, Apr 17 2009 ARTHROSURFACE, INCORPORATED Glenoid resurfacing system and method
11478358, Mar 12 2019 Arthrosurface Incorporated Humeral and glenoid articular surface implant systems and methods
11497618, Dec 07 2006 DePuy Synthes Products, Inc. Intervertebral implant
11497619, Mar 07 2013 DePuy Synthes Products, Inc. Intervertebral implant
11510723, Nov 08 2018 DFINE, INC. Tumor ablation device and related systems and methods
11510788, Jun 28 2016 EIT Emerging Implant Technologies GmbH Expandable, angularly adjustable intervertebral cages
11540842, Dec 09 2016 DFINE, INC. Medical devices for treating hard tissues and related methods
11559408, Jan 09 2008 Providence Medical Technology, Inc. Methods and apparatus for accessing and treating the facet joint
11596419, Mar 09 2017 FLOWER ORTHOPEDICS CORPORATION Plating depth gauge and countersink instrument
11596468, Sep 12 2012 Relievant Medsystems, Inc. Intraosseous nerve treatment
11596522, Jun 28 2016 EIT Emerging Implant Technologies GmbH Expandable and angularly adjustable intervertebral cages with articulating joint
11596523, Jun 28 2016 EIT Emerging Implant Technologies GmbH Expandable and angularly adjustable articulating intervertebral cages
11602438, Apr 05 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant
11607230, Jan 06 2017 DFINE, INC. Osteotome with a distal portion for simultaneous advancement and articulation
11607319, Mar 07 2014 Arthrosurface Incorporated System and method for repairing articular surfaces
11607321, Dec 10 2009 DePuy Synthes Products, Inc. Bellows-like expandable interbody fusion cage
11612491, Mar 30 2009 DePuy Synthes Products, Inc. Zero profile spinal fusion cage
11617655, Apr 05 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant
11622868, Jun 26 2007 DePuy Synthes Products, Inc. Highly lordosed fusion cage
11642229, Dec 07 2006 DePuy Synthes Products, Inc. Intervertebral implant
11648036, Apr 16 2013 Arthrosurface Incorporated Suture system and method
11648128, Jan 04 2018 Providence Medical Technology, Inc.; PROVIDENCE MEDICAL TECHNOLOGY, INC Facet screw and delivery device
11653934, Mar 06 2015 Warsaw Orthopedic, Inc. Surgical instrument and method
11654033, Jun 29 2010 DePuy Synthes Products, Inc. Distractible intervertebral implant
11660206, Dec 07 2006 DePuy Synthes Products, Inc. Intervertebral implant
11666366, Nov 10 2009 Stryker Corporation Systems and methods for vertebral or other bone structure height restoration and stabilization
11672579, Dec 31 2007 DFine Inc. Bone treatment systems and methods
11684485, Feb 04 2020 Surgically implantable joint spacer
11690635, Aug 01 2018 T A G MEDICAL PRODUCTS CORPORATION LTD Adjustable drilling device and a method for use thereof
11690667, Sep 12 2012 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
11701168, Sep 12 2012 Relievant Medsystems, Inc. Radiofrequency ablation of tissue within a vertebral body
11701234, Apr 05 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant
11707285, Jan 09 2014 Surgalign Spine Technologies, Inc. Undercutting system for use in conjunction with sacroiliac fusion
11707359, Apr 05 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant
11712276, Dec 22 2011 Arthrosurface Incorporated System and method for bone fixation
11712341, Apr 05 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant
11712342, Apr 05 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant
11712345, Dec 07 2006 DePuy Synthes Products, Inc. Intervertebral implant
11730493, Feb 22 2019 Globus Medical Inc. Methods and apparatus for performing discectomy
11737814, Sep 12 2012 Relievant Medsystems, Inc. Cryotherapy treatment for back pain
11737881, Jan 17 2008 DePuy Synthes Products, Inc. Expandable intervertebral implant and associated method of manufacturing the same
11737882, Jan 04 2010 SURGALIGN SPINE TECHNOLOGIES, INC Sacroiliac fusion system
11752009, Apr 06 2021 MEDOS INTERNATIONAL SARL Expandable intervertebral fusion cage
11766334, Mar 07 2014 Arthrosurface Incorporated System and method for repairing articular surfaces
11779353, Apr 09 2015 T A G MEDICAL PRODUCTS CORPORATION LTD Bone material removal device and a method for use thereof
11806245, Mar 06 2020 EIT Emerging Implant Technologies GmbH Expandable intervertebral implant
11813172, Jan 04 2018 Providence Medical Technology, Inc. Facet screw and delivery device
11844536, Mar 06 2018 MEDOS INTERNATIONAL SARL Methods, systems, and devices for instability repair
11844537, Apr 24 2016 T A G MEDICAL PRODUCTS CORPORATION LTD Guiding device and method of using thereof
11849986, Apr 24 2019 Stryker Corporation Systems and methods for off-axis augmentation of a vertebral body
11850160, Mar 26 2021 MEDOS INTERNATIONAL SARL Expandable lordotic intervertebral fusion cage
11850164, Mar 07 2013 DePuy Synthes Products, Inc. Intervertebral implant
11871968, May 19 2017 PROVIDENCE MEDICAL TECHNOLOGY, INC Spinal fixation access and delivery system
11872139, Jun 24 2010 DePuy Synthes Products, Inc. Enhanced cage insertion assembly
11882991, Aug 20 2018 Pro-Dex, Inc. Torque-limiting devices, systems, and methods
11890038, Oct 30 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
11890144, Jun 07 2016 Pro-Dex, Inc. Torque-limiting screwdriver devices, systems, and methods
11896242, Oct 19 2014 T A G MEDICAL PRODUCTS CORPORATION LTD Kit including a guiding system and a bone material removal device
11911287, Jun 24 2010 DePuy Synthes Products, Inc. Lateral spondylolisthesis reduction cage
7442195, Sep 12 2005 Apparatus and method for the reduction of bone fractures
7510558, May 01 2000 ARTHROSURFACE INC System and method for joint resurface repair
7553307, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for tissue modification
7555343, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for selective surgical removal of tissue
7578819, May 16 2005 SPINAL ELEMENTS, INC Spinal access and neural localization
7601152, Oct 26 1998 Expanding Orthopedics, Inc. Expandable orthopedic device
7604641, May 01 2000 Arthrosurface Incorporated System and method for joint resurface repair
7618462, May 01 2000 Arthrosurface Incorporated System and method for joint resurface repair
7654735, Nov 03 2005 CARDINAL HEALTH IRELAND UNLIMITED COMPANY Electronic thermometer
7666226, Aug 16 2005 IZI Medical Products, LLC Spinal tissue distraction devices
7666227, Aug 16 2005 IZI Medical Products, LLC Devices for limiting the movement of material introduced between layers of spinal tissue
7670339, Oct 26 1998 Expanding Orthopedics, Inc. Expandable orthopedic device
7670374, Aug 16 2005 IZI Medical Products, LLC Methods of distracting tissue layers of the human spine
7670375, Aug 16 2005 IZI Medical Products, LLC Methods for limiting the movement of material introduced between layers of spinal tissue
7678151, May 01 2000 Arthrosurface, Inc System and method for joint resurface repair
7682378, Nov 10 2004 DFINE, INC Bone treatment systems and methods for introducing an abrading structure to abrade bone
7713273, Nov 18 2005 Stryker Corporation Device, system and method for delivering a curable material into bone
7713305, May 01 2000 Arthrosurface, Inc Articular surface implant
7731692, Jul 11 2005 CARDINAL HEALTH IRELAND UNLIMITED COMPANY Device for shielding a sharp tip of a cannula and method of using the same
7738968, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for selective surgical removal of tissue
7738969, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for selective surgical removal of tissue
7740631, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for tissue modification
7749230, Sep 02 2004 CROSSTREES MEDICAL, INC ; CROSSTREES MEDICAL INC Device and method for distraction of the spinal disc space
7785368, Aug 16 2005 IZI Medical Products, LLC Spinal tissue distraction devices
7799035, Nov 18 2005 Stryker Corporation Device, system and method for delivering a curable material into bone
7811291, Nov 16 2007 Merit Medical Systems, Inc Closed vertebroplasty bone cement injection system
7824431, Dec 29 2006 PROVIDENCE MEDICAL TECHNOLOGY, INC Cervical distraction method
7828773, Jul 11 2005 KPR U S , LLC Safety reset key and needle assembly
7828802, Jan 16 2004 EXPANDING ORTHOPEDICS, INC Bone fracture treatment devices and methods of their use
7828804, Nov 08 2002 SDGI Holdings, Inc Transpedicular intervertebral disk access methods and devices
7828853, Feb 22 2005 Arthrosurface, Inc Articular surface implant and delivery system
7842041, Nov 16 2007 Merit Medical Systems, Inc Steerable vertebroplasty system
7850650, Jul 11 2005 KPR U S , LLC Needle safety shield with reset
7857813, Aug 29 2006 SPINAL ELEMENTS, INC Tissue access guidewire system and method
7857817, May 01 2000 Arthrosurface Inc. System and method for joint resurface repair
7867233, Nov 08 2002 Warsaw Orthopedic, Inc Transpedicular intervertebral disk access methods and devices
7887538, Oct 15 2005 SPINAL ELEMENTS, INC Methods and apparatus for tissue modification
7896883, May 01 2000 ARTHROSURFACE INC Bone resurfacing system and method
7896885, Dec 03 2002 Arthrosurface, Inc Retrograde delivery of resurfacing devices
7901408, Dec 03 2002 Arthrosurface, Inc System and method for retrograde procedure
7905857, Jul 11 2005 KPR U S , LLC Needle assembly including obturator with safety reset
7909873, Dec 15 2006 Globus Medical, Inc Delivery apparatus and methods for vertebrostenting
7914545, Dec 03 2002 Arthrosurface, Inc System and method for retrograde procedure
7918849, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for tissue access
7931689, Feb 27 2001 SPINEOLOGY, INC Method and apparatus for treating a vertebral body
7938830, Oct 15 2004 SPINAL ELEMENTS, INC Powered tissue modification devices and methods
7951163, Nov 20 2003 Arthrosurface, Inc Retrograde excision system and apparatus
7955391, Aug 16 2005 IZI Medical Products, LLC Methods for limiting the movement of material introduced between layers of spinal tissue
7959577, Sep 06 2007 SPINAL ELEMENTS, INC Method, system, and apparatus for neural localization
7963915, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for tissue access
7963993, Aug 16 2005 IZI Medical Products, LLC Methods of distracting tissue layers of the human spine
7967864, Aug 16 2005 IZI Medical Products, LLC Spinal tissue distraction devices
7967865, Aug 16 2005 IZI Medical Products, LLC Devices for limiting the movement of material introduced between layers of spinal tissue
7976498, Jul 11 2005 KPR U S , LLC Needle assembly including obturator with safety reset
7976549, Mar 23 2006 Theken Spine, LLC Instruments for delivering spinal implants
7988695, Dec 21 2005 Theken Spine, LLC Articulated delivery instrument
7993343, Sep 29 2003 Crosstrees Medical, Inc. Extractable filler for inserting medicine into vertebral body
7993345, Sep 02 2004 Crosstress Medical, Inc. Device and method for distraction of the spinal disc space
8007500, May 21 2003 Crosstrees Medical, Inc. Extractable filler for inserting medicine into animal tissue
8021366, Jul 11 2005 Kyphon SARL Axial load limiting system and methods
8048080, Oct 15 2004 SPINAL ELEMENTS, INC Flexible tissue rasp
8057544, Aug 16 2005 IZI Medical Products, LLC Methods of distracting tissue layers of the human spine
8062298, May 04 2006 SPINAL ELEMENTS, INC Flexible tissue removal devices and methods
8062300, May 04 2006 SPINAL ELEMENTS, INC Tissue removal with at least partially flexible devices
8092456, Oct 15 2005 SPINAL ELEMENTS, INC Multiple pathways for spinal nerve root decompression from a single access point
8109933, Apr 03 2007 DFINE, INC Bone treatment systems and methods
8128633, Nov 18 2005 Stryker Corporation Device, system, and method for forming a cavity in and delivering a curable material into bone
8137352, Oct 16 2006 Depuy Synthes Products, LLC Expandable intervertebral tool system and method
8142462, May 28 2004 Cavitech, LLC Instruments and methods for reducing and stabilizing bone fractures
8147559, May 01 2000 Arthrosurface Incorporated System and method for joint resurface repair
8162889, Jul 11 2005 KPR U S , LLC Safety reset key and needle assembly
8163018, Feb 14 2006 Warsaw Orthopedic, Inc Treatment of the vertebral column
8172848, Apr 27 2007 MIMEDX PROCESSING SERVICES, LLC Surgical instruments for spinal disc implants and related methods
8177841, May 01 2000 ARTHROSURFACE INC System and method for joint resurface repair
8192435, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for tissue modification
8192436, Dec 07 2007 SPINAL ELEMENTS, INC Tissue modification devices
8197545, Oct 27 2005 DEPUY SYNTHES PRODUCTS, INC Nucleus augmentation delivery device and technique
8221397, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for tissue modification
8221420, Feb 16 2009 AOI MEDICAL, INC Trauma nail accumulator
8226657, Nov 10 2009 Carefusion 2200, Inc Systems and methods for vertebral or other bone structure height restoration and stabilization
8241335, Nov 10 2004 DFINE, INC. Bone treatment systems and methods for introducing an abrading structure to abrade bone
8257356, Oct 15 2004 SPINAL ELEMENTS, INC Guidewire exchange systems to treat spinal stenosis
8267966, Jun 06 2008 PROVIDENCE MEDICAL TECHNOLOGY, INC Facet joint implants and delivery tools
8277437, Apr 02 2008 Laurimed, LLC Method of accessing two lateral recesses
8277506, Jun 24 2008 Stryker Corporation Method and structure for stabilizing a vertebral body
8287538, Jan 14 2008 CONVENTUS ORTHOPAEDICS; CONVENTUS ORTHOPAEDICS, INC Apparatus and methods for fracture repair
8292909, Jun 30 2010 Myromed, LLC Devices and methods for cutting tissue
8298254, Jun 30 2010 Myromed, LLC Devices and methods for cutting and evacuating tissue
8303516, Sep 06 2007 SPINAL ELEMENTS, INC Method, system and apparatus for neural localization
8303594, Dec 30 2008 HOWMEDICA OSTEONICS CORP Method and apparatus for removal of tissue
8317791, Jul 11 2005 Kyphon SARL Torque limiting device and methods
8343158, Feb 15 2007 Depuy International Limited Tool for forming a cavity within a bone
8348894, Jul 11 2005 KPR U S , LLC Needle assembly including obturator with safety reset
8348950, Jan 04 2010 SURGALIGN SPINE TECHNOLOGIES, INC Sacroiliac fusion system
8348979, Dec 29 2006 Providence Medical Technology, Inc. Cervical distraction method
8353911, May 21 2007 AOI MEDICAL, INC Extendable cutting member
8357104, Nov 01 2007 KPR U S , LLC Active stylet safety shield
8357199, Oct 27 2005 Depuy Synthes Products, LLC Nucleus augmentation delivery device and technique
8361067, Sep 30 2002 Relievant Medsystems, Inc. Methods of therapeutically heating a vertebral body to treat back pain
8361152, Jun 06 2008 PROVIDENCE MEDICAL TECHNOLOGY, INC Facet joint implants and delivery tools
8361159, Dec 03 2002 Arthrosurface, Inc System for articular surface replacement
8366712, Oct 15 2005 SPINAL ELEMENTS, INC Multiple pathways for spinal nerve root decompression from a single access point
8366773, Aug 16 2005 IZI Medical Products, LLC Apparatus and method for treating bone
8388624, Feb 24 2003 Arthrosurface Incorporated Trochlear resurfacing system and method
8394101, Feb 23 2009 Globus Medical, Inc. Discectomy instrument
8394102, Jun 25 2009 SPINAL ELEMENTS, INC Surgical tools for treatment of spinal stenosis
8398641, Jul 01 2008 SPINAL ELEMENTS, INC Tissue modification devices and methods
8409206, Jul 01 2008 SPINAL ELEMENTS, INC Tissue modification devices and methods
8414571, Jan 07 2010 RELIEVANT MEDSYSTEMS, INC Vertebral bone navigation systems
8414587, Jan 26 2007 LAURIMED LLC Styli used to position device for carrying out selective discetomy
8419653, May 16 2005 SPINAL ELEMENTS, INC Spinal access and neural localization
8419687, Jul 11 2005 CARDINAL HEALTH IRELAND UNLIMITED COMPANY Device for shielding a sharp tip of a cannula and method of using the same
8419730, Sep 26 2008 RELIEVANT MEDSYSTEMS, INC Systems and methods for navigating an instrument through bone
8419731, Sep 30 2002 Relievant Medsystems, Inc. Methods of treating back pain
8425507, Sep 30 2002 Relievant Medsystems, Inc. Basivertebral nerve denervation
8425558, Jun 06 2008 SPECK PRODUCT DESIGN, INC ; PROVIDENCE MEDICAL TECHNOLOGY, INC Vertebral joint implants and delivery tools
8430881, Oct 15 2004 SPINAL ELEMENTS, INC Mechanical tissue modification devices and methods
8454617, Jun 22 2007 SPINAL ELEMENTS, INC Devices for treating the spine
8506636, Sep 08 2006 Theken Spine, LLC Offset radius lordosis
8512347, Jun 06 2008 PROVIDENCE MEDICAL TECHNOLOGY, INC Cervical distraction/implant delivery device
8523809, Jul 11 2005 CARDINAL HEALTH IRELAND UNLIMITED COMPANY Device for shielding a sharp tip of a cannula and method of using the same
8523871, Apr 03 2007 DFINE, INC Bone treatment systems and methods
8523872, Dec 03 2002 Arthrosurface Incorporated Tibial resurfacing system
8529576, Nov 18 2005 Stryker Corporation Device, system and method for delivering a curable material into bone
8535309, Jan 07 2010 RELIEVANT MEDSYSTEMS, INC Vertebral bone channeling systems
8535327, Mar 17 2009 IZI Medical Products, LLC Delivery apparatus for use with implantable medical devices
8540717, May 01 2000 Arthrosurface Incorporated System and method for joint resurface repair
8551097, Aug 29 2006 SPINAL ELEMENTS, INC Tissue access guidewire system and method
8556902, Dec 03 2002 Arthrosurface Incorporated System and method for retrograde procedure
8556910, Apr 03 2007 DFINE, INC Bone treatment systems and methods
8556978, Aug 16 2005 IZI Medical Products, LLC Devices and methods for treating the vertebral body
8562607, Nov 19 2004 DFINE, INC Bone treatment systems and methods
8562634, May 28 2004 Cavitech, LLC Instruments and methods for reducing and stabilizing bone fractures
8568416, Oct 15 2004 SPINAL ELEMENTS, INC Access and tissue modification systems and methods
8568417, Dec 18 2009 Charles River Engineering Solutions and Technologies, LLC Articulating tool and methods of using
8579902, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for tissue modification
8585704, May 04 2006 SPINAL ELEMENTS, INC Flexible tissue removal devices and methods
8591583, Aug 16 2005 IZI Medical Products, LLC Devices for treating the spine
8613744, Sep 30 2002 RELIEVANT MEDSYSTEMS, INC Systems and methods for navigating an instrument through bone
8613745, Oct 15 2004 SPINAL ELEMENTS, INC Methods, systems and devices for carpal tunnel release
8617163, Oct 15 2004 SPINAL ELEMENTS, INC Methods, systems and devices for carpal tunnel release
8623014, Sep 26 2008 Relievant Medsystems, Inc. Systems for denervation of basivertebral nerves
8623025, Dec 15 2006 Globus Medical, Inc Delivery apparatus and methods for vertebrostenting
8623054, Jun 06 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
8628528, Sep 26 2008 Relievant Medsystems, Inc. Vertebral denervation
8647346, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for tissue modification
8652138, Oct 15 2004 SPINAL ELEMENTS, INC Flexible tissue rasp
8657842, Jun 30 2010 Myromed, LLC Devices and methods for cutting tissue
8663228, Dec 07 2007 SPINAL ELEMENTS, INC Tissue modification devices
8663230, Dec 03 2002 Arthrosurface Incorporated Retrograde delivery of resurfacing devices
8685052, Jun 30 2010 Myromed, LLC Devices and methods for cutting tissue
8690884, Nov 18 2005 Stryker Corporation Multistate-curvature device and method for delivering a curable material into bone
8753345, Jun 06 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
8753347, Jun 06 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
8753377, Jun 06 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
8771276, Dec 01 2010 Stryker Corporation Systems and methods for forming a cavity in, and delivering curable material into, bone
8771278, Nov 10 2009 Stryker Corporation Systems and methods for vertebral or other bone structure height restoration and stabilization
8801626, Oct 15 2005 SPINAL ELEMENTS, INC Flexible neural localization devices and methods
8801787, Aug 16 2005 IZI Medical Products, LLC Methods of distracting tissue layers of the human spine
8801800, Nov 20 2009 ZIMMER KNEE CREATIONS, INC Bone-derived implantable devices and tool for subchondral treatment of joint pain
8808284, Sep 26 2008 Relievant Medsystems, Inc. Systems for navigating an instrument through bone
8808376, Aug 16 2005 IZI Medical Products, LLC Intravertebral implants
8814873, Jun 24 2011 IZI Medical Products, LLC Devices and methods for treating bone tissue
8815099, Jan 21 2014 Myromed, LLC Devices and methods for filtering and/or collecting tissue
8821504, Nov 20 2009 ZIMMER KNEE CREATIONS, INC Method for treating joint pain and associated instruments
8827981, Nov 16 2007 Merit Medical Systems, Inc Steerable vertebroplasty system with cavity creation element
8828062, Jun 06 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
8834417, Jun 06 2005 CARDINAL HEALTH IRELAND UNLIMITED COMPANY Needle assembly with removable depth stop
8834472, Jun 06 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
8834530, Dec 29 2006 Providence Medical Technology, Inc. Cervical distraction method
8840632, Jun 30 2010 Myromed, LLC Devices and methods for cutting tissue
8845637, Aug 29 2006 SPINAL ELEMENTS, INC Tissue access guidewire system and method
8845638, May 12 2011 SEASPINE, INC Tissue disruption device and corresponding methods
8845639, Jul 14 2008 SPINAL ELEMENTS, INC Tissue modification devices
8864768, Nov 20 2009 ZIMMER KNEE CREATIONS, INC Coordinate mapping system for joint treatment
8864827, May 01 2000 Arthrosurface Inc. System and method for joint resurface repair
8882764, Mar 28 2003 Relievant Medsystems, Inc. Thermal denervation devices
8882771, Oct 16 2006 Depuy Synthes Products, LLC Method for manipulating intervertebral tissue
8882793, Jun 30 2010 Myromed, LLC Devices and methods for cutting tissue
8882836, Aug 16 2005 IZI Medical Products, LLC Apparatus and method for treating bone
8894658, Nov 10 2009 Stryker Corporation Apparatus and method for stylet-guided vertebral augmentation
8900235, Jan 05 2005 SEASPINE, INC Devices for introduction into a body via a substantially straight conduit to form a predefined curved configuration, and methods employing such devices
8900251, May 28 2010 SURGALIGN SPINE TECHNOLOGIES, INC Radial deployment surgical tool
8900279, Jun 09 2011 SURGALIGN SPINE TECHNOLOGIES, INC Bone screw
8906022, Mar 08 2010 CONVENTUS ORTHOPAEDICS, INC ; CONVENTUS ORTHOPAEDICS Apparatus and methods for securing a bone implant
8906032, Nov 20 2009 ZIMMER KNEE CREATIONS, INC Instruments for a variable angle approach to a joint
8926615, Dec 03 2002 ARTHROSURFACE, INC. System and method for retrograde procedure
8961518, Jan 20 2010 CONVENTUS ORTHOPAEDICS, INC ; CONVENTUS ORTHOPAEDICS Apparatus and methods for bone access and cavity preparation
8961553, Sep 14 2007 CROSSTREES MEDICAL, INC Material control device for inserting material into a targeted anatomical region
8961609, Aug 16 2005 IZI Medical Products, LLC Devices for distracting tissue layers of the human spine
8961614, Nov 22 2004 ARTHROSURFACE, INC. Articular surface implant and delivery system
8968408, Jun 22 2007 SPINAL ELEMENTS, INC Devices for treating the spine
8979929, Aug 16 2005 IZI Medical Products, LLC Spinal tissue distraction devices
8992522, Sep 26 2008 RELIEVANT MEDSYSTEMS, INC Back pain treatment methods
8992523, Sep 30 2002 Relievant Medsystems, Inc. Vertebral treatment
9005288, Jan 09 2008 PROVIDENCE MEDICAL TECHNOLOGY, INC Methods and apparatus for accessing and treating the facet joint
9011492, Jun 06 2008 Providence Medical Technology, Inc. Facet joint implants and delivery tools
9017314, Jun 01 2011 Covidien LP Surgical articulation assembly
9017325, Sep 26 2008 Relievant Medsystems, Inc. Nerve modulation systems
9023038, Sep 30 2002 Relievant Medsystems, Inc. Denervation methods
9033987, Nov 20 2009 ZIMMER KNEE CREATIONS, INC. Navigation and positioning instruments for joint repair
9039701, Sep 26 2008 Relievant Medsystems, Inc. Channeling paths into bone
9044338, Aug 16 2005 IZI Medical Products, LLC Spinal tissue distraction devices
9044343, Dec 03 2002 Arthrosurface Incorporated System for articular surface replacement
9050112, Aug 23 2011 Flexmedex, LLC Tissue removal device and method
9055955, May 01 2000 Arthrosurface Inc. Bone resurfacing system and method
9066716, Mar 30 2011 Arthrosurface Incorporated Suture coil and suture sheath for tissue repair
9066808, Aug 16 2005 IZI Medical Products, LLC Method of interdigitating flowable material with bone tissue
9095393, May 30 2012 Stryker Corporation Method for balloon-aided vertebral augmentation
9101371, Nov 03 2010 SURGALIGN SPINE TECHNOLOGIES, INC Method of repairing sacroiliac fusion
9101386, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for treating tissue
9113919, Jan 04 2010 SURGALIGN SPINE TECHNOLOGIES, INC Sacroiliac fusion system
9113988, May 21 2003 Crosstrees Medical, Inc. Method for inserting medicine into animal tissue
9119639, Aug 09 2011 DEPUY SYNTHES PRODUCTS, INC Articulated cavity creator
9119721, Nov 20 2009 ZIMMER KNEE CREATIONS, INC. Method for treating joint pain and associated instruments
9125682, Oct 15 2005 SPINAL ELEMENTS, INC Multiple pathways for spinal nerve root decompression from a single access point
9149283, Nov 03 2010 SURGALIGN SPINE TECHNOLOGIES, INC Sacroiliac fusion system
9149286, Nov 12 2010 Flexmedex, LLC Guidance tool and method for use
9161763, Jan 04 2010 SURGALIGN SPINE TECHNOLOGIES, INC Sacroiliac fusion system
9162041, Oct 27 2005 DePuy Synthes Products, Inc. Nucleus augmentation delivery device and technique
9168078, May 30 2012 Stryker Corporation Apparatus and method for stylet-guided vertebral augmentation
9173676, Sep 26 2008 Relievant Medsystems, Inc. Nerve modulation methods
9192397, Jun 17 2008 Globus Medical, Inc Devices and methods for fracture reduction
9204869, Jan 09 2012 Covidien LP Articulation control mechanisms
9204873, May 01 2000 Arthrosurface Incorporated System and method for joint resurface repair
9220554, Feb 18 2010 Globus Medical, Inc Methods and apparatus for treating vertebral fractures
9237916, Dec 15 2006 Globus Medical, Inc Devices and methods for vertebrostenting
9241729, Dec 14 2012 DEPUY SYNTHES PRODUCTS, INC Device to aid in the deployment of a shape memory instrument
9247952, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for tissue access
9254138, May 12 2011 SEASPINE, INC Tissue disruption device and corresponding methods
9259241, Sep 26 2008 Relievant Medsystems, Inc. Methods of treating nerves within bone using fluid
9259257, Nov 20 2009 ZIMMER KNEE CREATIONS, INC Instruments for targeting a joint defect
9259326, Aug 16 2005 IZI Medical Products, LLC Spinal tissue distraction devices
9259329, Sep 21 2004 Stout Medical Group, L.P. Expandable support device and method of use
9265522, Sep 26 2008 Relievant Medsystems, Inc. Methods for navigating an instrument through bone
9265551, Jul 19 2013 PRO-DEX, INC Torque-limiting screwdrivers
9271701, Jan 09 2012 Covidien LP Surgical articulation assembly
9271835, Nov 20 2009 ZIMMER KNEE CREATIONS, INC. Implantable devices for subchondral treatment of joint pain
9282980, Oct 16 2006 DePuy Synthes Products, Inc. Device and method for manipulating intervertebral tissue
9283076, Apr 17 2009 Arthrosurface Incorporated Glenoid resurfacing system and method
9308001, Mar 18 2011 RODRIGUEZ, CARLOS ANDRES Vertebral cavitation surgical tool
9314252, Jun 24 2011 IZI Medical Products, LLC Devices and methods for treating bone tissue
9314253, Jul 01 2008 SPINAL ELEMENTS, INC Tissue modification devices and methods
9314349, Sep 21 2004 STOUT MEDICAL GROUP, L P Expandable support device and method of use
9320618, Oct 15 2004 SPINAL ELEMENTS, INC Access and tissue modification systems and methods
9326806, Sep 02 2003 CROSSTREES MEDICAL, INC Devices and methods for the treatment of bone fracture
9326866, Aug 16 2005 IZI Medical Products, LLC Devices for treating the spine
9333086, Jun 06 2008 Providence Medical Technology, Inc. Spinal facet cage implant
9345491, Oct 15 2004 SPINAL ELEMENTS, INC Flexible tissue rasp
9351741, May 04 2006 SPINAL ELEMENTS, INC Flexible tissue removal devices and methods
9351745, Feb 24 2003 Arthrosurface Incorporated Trochlear resurfacing system and method
9351746, Nov 20 2009 ZIMMER KNEE CREATIONS, INC. Coordinate mapping system for joint treatment
9351835, Nov 20 2009 ZIMMER KNEE CREATIONS, INC. Method for treating joint pain and associated instruments
9357989, May 01 2000 Arthrosurface Incorporated System and method for joint resurface repair
9358029, Dec 11 2006 ARTHROSURFACE INC Retrograde resection apparatus and method
9358059, Nov 18 2005 Stryker Corporation Device and method for delivering a curable material into bone
9381049, Jun 06 2008 Providence Medical Technology, Inc. Composite spinal facet implant with textured surfaces
9386996, Nov 20 2009 ZIMMER KNEE CREATIONS, INC. Navigation and positioning instruments for joint repair
9421064, Sep 26 2008 Relievant Medsystems, Inc. Nerve modulation systems
9439693, Feb 01 2013 DEPUY SYNTHES PRODUCTS, INC Steerable needle assembly for use in vertebral body augmentation
9439765, Nov 20 2009 ZIMMER KNEE CREATIONS, INC. Method for subchondral treatment of joint pain using implantable devices
9456829, Oct 15 2004 SPINAL ELEMENTS, INC Powered tissue modification devices and methods
9463029, Dec 07 2007 SPINAL ELEMENTS, INC Tissue modification devices
9463041, Oct 15 2004 SPINAL ELEMENTS, INC Devices and methods for tissue access
9468448, Jul 03 2012 Arthrosurface Incorporated System and method for joint resurfacing and repair
9470297, Dec 19 2012 Covidien LP Lower anterior resection 90 degree instrument
9480485, Mar 23 2009 Globus Medical, Inc Devices and methods for vertebrostenting
9486279, Sep 30 2002 Relievant Medsystems, Inc. Intraosseous nerve treatment
9492151, Oct 15 2005 SPINAL ELEMENTS, INC Multiple pathways for spinal nerve root decompression from a single access point
9492200, Apr 16 2013 Arthrosurface Incorporated Suture system and method
9510885, Nov 16 2007 Merit Medical Systems, Inc Steerable and curvable cavity creation system
9517093, Jan 14 2008 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
9526551, Nov 10 2009 Stryker Corporation Apparatus and method for stylet-guided vertebral augmentation
9532796, Jun 30 2010 Myromed, LLC Devices and methods for cutting tissue
9549745, Jul 12 2011 ECA Medical Instruments Delivery devices and systems for tools used in medical procedures
9610083, Aug 09 2011 DePuy Synthes Products, Inc. Articulated cavity creator
9622791, Jun 06 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
9622873, Dec 29 2006 PROVIDENCE MEDICAL TECHNOLOGY, INC Cervical distraction method
9622874, Jun 06 2008 Providence Medical Technology, Inc. Cervical distraction/implant delivery device
9629665, Jun 06 2008 Providence Medical Technology, Inc. Vertebral joint implants and delivery tools
9642712, Jun 22 2007 SPINAL ELEMENTS, INC Methods for treating the spine
9662126, Apr 17 2009 Arthrosurface Incorporated Glenoid resurfacing system and method
9668750, Apr 24 2013 T.A.G. Medical Devices—Agriculture Cooperative Ltd. Bone material removal devices
9687255, Jun 17 2008 Globus Medical, Inc Device and methods for fracture reduction
9713478, Jan 04 2010 SURGALIGN SPINE TECHNOLOGIES, INC Method of performing sacroiliac fusion
9717544, Nov 20 2009 ZIMMER KNEE CREATIONS, INC. Subchondral treatment of joint pain
9724107, Sep 26 2008 Relievant Medsystems, Inc. Nerve modulation systems
9724151, Aug 08 2013 RELIEVANT MEDSYSTEMS, INC Modulating nerves within bone using bone fasteners
9730739, Jan 15 2010 Conventus Orthopaedics, Inc. Rotary-rigid orthopaedic rod
9730744, Nov 20 2009 ZIMMER KNEE CREATIONS, INC. Method for treating joint pain and associated instruments
9763731, Feb 10 2012 Myromed, LLC Vacuum powered rotary devices and methods
9770289, Feb 10 2012 Myromed, LLC Vacuum powered rotary devices and methods
9770339, Jul 14 2005 Stout Medical Group, L.P. Expandable support device and method of use
9775627, Nov 05 2012 Relievant Medsystems, Inc. Systems and methods for creating curved paths through bone and modulating nerves within the bone
9788870, Jan 14 2008 Conventus Orthopaedics, Inc. Apparatus and methods for fracture repair
9788963, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9788974, Aug 16 2005 IZI Medical Products, LLC Spinal tissue distraction devices
9795395, Jun 10 2014 MEDOS INTERNATIONAL SÀRL Retro-cutting instrument with adjustable limit setting
9795429, Nov 18 2005 Stryker Corporation Device and method for removing bodily material
9795430, Mar 08 2010 Conventus Orthopaedics, Inc. Apparatus and methods for securing a bone implant
9801729, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9808351, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9814589, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9814590, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9833321, Apr 25 2016 IMDS LLC; Mayo Foundation for Medical Education and Research Joint fusion instrumentation and methods
9848889, Jan 20 2010 Conventus Orthopaedics, Inc. Apparatus and methods for bone access and cavity preparation
9848944, Mar 28 2003 Relievant Medsystems, Inc. Thermal denervation devices and methods
9861492, Mar 07 2014 Arthrosurface Incorporated Anchor for an implant assembly
9901371, Jan 09 2012 Covidien LP Articulation control mechanisms
9907595, Nov 10 2009 Stryker Corporation Systems and methods for vertebral or other bone structure height restoration and stabilization
9924986, Dec 18 2009 Charles River Engineering Solutions and Technologies, LLC Articulating tool and methods of using
9924990, Mar 08 2010 Conventus Orthopaedics, Inc. Apparatus and methods for securing a bone implant
9925060, Feb 14 2003 DePuy Synthes Products, Inc. In-situ formed intervertebral fusion device and method
9931211, Feb 24 2003 Arthrosurface Incorporated Trochlear resurfacing system and method
9931219, Mar 07 2014 Arthrosurface Incorporated Implant and anchor assembly
9962265, Mar 07 2014 Arthrosurface Incorporated System and method for repairing articular surfaces
9980715, Feb 05 2014 Trinity Orthopedics, LLC Anchor devices and methods of use
9993277, Mar 08 2010 Conventus Orthopaedics, Inc. Apparatus and methods for securing a bone implant
D669168, Nov 18 2005 Stryker Corporation Vertebral augmentation needle
D732667, Oct 23 2012 PROVIDENCE MEDICAL TECHNOLOGY, INC Cage spinal implant
D745156, Oct 23 2012 PROVIDENCE MEDICAL TECHNOLOGY, INC Spinal implant
D841165, Oct 13 2015 PROVIDENCE MEDICAL TECHNOLOGY, INC Cervical cage
D884895, Oct 13 2015 Providence Medical Technology, Inc. Cervical cage
D887552, Jul 01 2016 PROVIDENCE MEDICALTECHNOLOGY, INC ; PROVIDENCE MEDICAL TECHNOLOGY, INC Cervical cage
D911525, Jun 21 2019 PROVIDENCE MEDICAL TECHNOLOGY, INC Spinal cage
D933230, Apr 15 2019 PROVIDENCE MEDICAL TECHNOLOGY, INC Cervical cage
D945621, Feb 27 2020 PROVIDENCE MEDICAL TECHNOLOGY, INC Spinal cage
RE46356, Sep 30 2002 Relievant Medsystems, Inc. Method of treating an intraosseous nerve
RE48460, Sep 30 2002 Relievant Medsystems, Inc. Method of treating an intraosseous nerve
RE48501, Oct 23 2012 Providence Medical Technology, Inc. Cage spinal implant
Patent Priority Assignee Title
3181533,
3640280,
3828790,
4203444, Nov 07 1977 Smith & Nephew, Inc Surgical instrument suitable for closed surgery such as of the knee
4573448, Oct 05 1983 HOWMEDICA OSTEONICS CORP Method for decompressing herniated intervertebral discs
4601290, Oct 11 1983 Cabot Technology Corporation Surgical instrument for cutting body tissue from a body area having a restricted space
4644951, Sep 16 1985 Concept, Inc. Vacuum sleeve for a surgical appliance
4969888, Feb 09 1989 Kyphon SARL Surgical protocol for fixation of osteoporotic bone using inflatable device
5015255, May 10 1989 ZIMMER SPINE, INC Spinal stabilization method
5062845, May 10 1989 ZIMMER SPINE, INC Method of making an intervertebral reamer
5100423, Aug 21 1990 Medical Engineering & Development Institute, Inc.; MED INSTITUTE MEDICAL ENGINEERING AND DEVELOPMENT INSTITUTE, INC , A CORP OF IN Ablation catheter
5108404, Feb 09 1989 Kyphon SARL Surgical protocol for fixation of bone using inflatable device
5242461, Jul 22 1991 DOW CORNING ENTERPRISES Variable diameter rotating recanalization catheter and surgical method
5269785, Jun 28 1990 Bonutti Skeletal Innovations LLC Apparatus and method for tissue removal
5397320, Mar 03 1994 Dissecting surgical device and associated method
5437665, Oct 12 1993 Electrosurgical loop electrode instrument for laparoscopic surgery
5439464, Mar 09 1993 Shapiro Partners Limited Method and instruments for performing arthroscopic spinal surgery
5445639, May 10 1989 ZIMMER SPINE, INC Intervertebral reamer construction
5496330, Feb 19 1993 Boston Scientific Corporation Surgical extractor with closely angularly spaced individual filaments
5499981, Mar 16 1993 EP Technologies, Inc Flexible interlaced multiple electrode assemblies
5509919, Sep 24 1993 Apparatus for guiding a reaming instrument
5536267, Nov 08 1993 AngioDynamics, Inc Multiple electrode ablation apparatus
5540693, Feb 12 1992 Sierra Surgical, Inc. Surgical instrument for cutting hard tissue and method of use
5571098, Nov 01 1994 General Hospital Corporation, The Laser surgical devices
5582618, Jan 12 1993 PJ SURGICAL, INC Surgical cutting instrument
5658280, May 22 1995 Neomend, Inc Resectoscope electrode assembly with simultaneous cutting and coagulation
5730704, Feb 24 1992 Loop electrode array mapping and ablation catheter for cardiac chambers
5814044, Feb 10 1995 Atricure, Inc Apparatus and method for morselating and removing tissue from a patient
5827289, Jan 26 1994 ORTHOPHOENIX, LLC Inflatable device for use in surgical protocols relating to treatment of fractured or diseased bones
5827312, Jun 09 1995 Instratek Incorporated Marked cannula
5876399, May 28 1997 Irvine Biomedical, Inc. Catheter system and methods thereof
5879353, Jan 17 1995 W L GORE & ASSOCIATES, INC Guided bone rasp
5891147, Jun 25 1996 SDGI Holdings, Inc. Minimally invasive spinal surgical methods & instruments
5925039, Jun 12 1996 KENTUCKY PACKAGING SERVICE LP Electrosurgical instrument with conductive ceramic or cermet and method of making same
5928239, Mar 16 1998 Washington, University of Percutaneous surgical cavitation device and method
5957884, Feb 10 1995 Atricure, Inc System for morselating and removing tissue from a patient
5972015, Aug 15 1997 ORTHOPHOENIX, LLC Expandable, asymetric structures for deployment in interior body regions
5984937, Mar 31 1997 MAQUET CARDIOVASCULAR LLC Orbital dissection cannula and method
6015406, Jan 09 1996 Gyrus Medical Limited Electrosurgical instrument
6048346, Aug 13 1997 ORTHOPHOENIX, LLC Systems and methods for injecting flowable materials into bones
6066154, Jan 26 1994 ORTHOPHOENIX, LLC Inflatable device for use in surgical protocol relating to fixation of bone
6241734, Aug 14 1998 ORTHOPHOENIX, LLC Systems and methods for placing materials into bone
6248110, Jan 26 1994 ORTHOPHOENIX, LLC Systems and methods for treating fractured or diseased bone using expandable bodies
6425887, Dec 09 1998 Cook Medical Technologies LLC Multi-directional needle medical device
6440138, Apr 06 1998 ORTHOPHOENIX, LLC Structures and methods for creating cavities in interior body regions
6468279, Jan 27 1998 Kyphon SARL Slip-fit handle for hand-held instruments that access interior body regions
6575919, Oct 19 1999 ORTHOPHOENIX, LLC Hand-held instruments that access interior body regions
6607544, Jan 26 1994 ORTHOPHOENIX, LLC Expandable preformed structures for deployment in interior body regions
6641587, Aug 14 1998 ORTHOPHOENIX, LLC Systems and methods for treating vertebral bodies
6645213, Aug 13 1997 ORTHOPHOENIX, LLC Systems and methods for injecting flowable materials into bones
6679886, Sep 01 2000 Synthes USA, LLC Tools and methods for creating cavities in bone
6716216, Aug 14 1998 ORTHOPHOENIX, LLC Systems and methods for treating vertebral bodies
6719773, Jun 01 1998 ORTHOPHOENIX, LLC Expandable structures for deployment in interior body regions
6726691, Aug 14 1998 ORTHOPHOENIX, LLC Methods for treating fractured and/or diseased bone
6746451, Jun 01 2001 Cavitech, LLC Tissue cavitation device and method
20010041896,
20020026195,
20020082608,
20020099385,
20020156482,
20020169471,
20020191487,
20030032929,
20030032963,
20030050644,
20030233096,
20040092948,
DE88001970,
FR9915288,
WO128439,
WO9639970,
////////////////////////////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 16 2004Kyphon Inc.(assignment on the face of the patent)
Nov 14 2004PHILLIPS FRANK M Kyphon IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0161080942 pdf
Dec 06 2004LAYNE, RICHARD W Kyphon IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0161080942 pdf
Dec 06 2004WAY, BRYCE ANTONKyphon IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0161080942 pdf
Dec 06 2004ROTHWELL, DEREK S Kyphon IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0161080942 pdf
Dec 06 2004EDIDIN, AVRAM ALLANKyphon IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0161080942 pdf
Dec 07 2004CANTU, ALBERTO RUIZKyphon IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0161080942 pdf
Dec 08 2004REILEY, MARK A Kyphon IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0161080942 pdf
Dec 20 2004SCHOLTEN, ARIEKyphon IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0161080942 pdf
Jan 18 2007Kyphon IncBANK OF AMERICA, N A , AS ADMINISTRATIVE AGENTSECURITY AGREEMENT0188750574 pdf
Nov 01 2007BANK OF AMERICA, N A KYPHON, INC TERMINATION RELEASE OF SECURITY INTEREST0206660869 pdf
Jan 18 2008Kyphon IncMedtronic Spine LLCCHANGE OF NAME SEE DOCUMENT FOR DETAILS 0209930042 pdf
Mar 25 2008Medtronic Spine LLCKyphon SARLASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0210700278 pdf
Apr 25 2013Kyphon SARLORTHOPHOENIX, LLCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0305290001 pdf
Jan 10 2017ORTHOPHOENIX, LLCDBD CREDIT FUNDING LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0413330001 pdf
Jan 10 2017MOTHEYE TECHNOLOGIES, LLCDBD CREDIT FUNDING LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0413330001 pdf
Jan 10 2017SYNCHRONICITY IP LLCDBD CREDIT FUNDING LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0413330001 pdf
Jan 10 2017TRAVERSE TECHNOLOGIES CORP DBD CREDIT FUNDING LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0413330001 pdf
Jan 10 20173D NANOCOLOR CORP DBD CREDIT FUNDING LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0413330001 pdf
Jan 10 2017BISMARCK IP INC DBD CREDIT FUNDING LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0413330001 pdf
Jan 10 2017MAGNUS IP GMBHDBD CREDIT FUNDING LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0413330001 pdf
Jan 10 2017MUNITECH IP S À R L DBD CREDIT FUNDING LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0413330001 pdf
Jan 10 2017VERMILION PARTICIPATIONSDBD CREDIT FUNDING LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0413330001 pdf
Jan 10 2017MARATHON VENTURES S À R LDBD CREDIT FUNDING LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0413330001 pdf
Jan 10 2017NYANZA PROPERTIESDBD CREDIT FUNDING LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0413330001 pdf
Jan 10 2017TLI COMMUNICATIONS GMBHDBD CREDIT FUNDING LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0413330001 pdf
Jan 10 2017MARATHON IP GMBHDBD CREDIT FUNDING LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0413330001 pdf
Jan 10 2017MEDTECH DEVELOPMENT DEUTSCHLAND GMBHDBD CREDIT FUNDING LLC, AS COLLATERAL AGENTSECURITY INTEREST SEE DOCUMENT FOR DETAILS 0413330001 pdf
Date Maintenance Fee Events
Feb 02 2009M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Oct 02 2012M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Mar 10 2017REM: Maintenance Fee Reminder Mailed.
Aug 28 2017EXP: Patent Expired for Failure to Pay Maintenance Fees.


Date Maintenance Schedule
Aug 02 20084 years fee payment window open
Feb 02 20096 months grace period start (w surcharge)
Aug 02 2009patent expiry (for year 4)
Aug 02 20112 years to revive unintentionally abandoned end. (for year 4)
Aug 02 20128 years fee payment window open
Feb 02 20136 months grace period start (w surcharge)
Aug 02 2013patent expiry (for year 8)
Aug 02 20152 years to revive unintentionally abandoned end. (for year 8)
Aug 02 201612 years fee payment window open
Feb 02 20176 months grace period start (w surcharge)
Aug 02 2017patent expiry (for year 12)
Aug 02 20192 years to revive unintentionally abandoned end. (for year 12)