A solar power plant having a plurality of receiver panels mounted in a circular fashion about a solar receiver. Each receiver panel includes a plurality of tubes that terminate at each end at a header. To eliminate the presence of gaps between the tubes of adjacent receiver panels the headers are staggered or beveled. In the staggered configuration the headers of adjacent receiver panels are located in different elevations so that the headers of adjacent receiver panels may overlap each other, thus allowing the headers and tubes of adjacent receiver panels to be positioned closer together to eliminate gaps between the tubes of adjacent panels. In the beveled configuration the headers are angled such that the terminal ends of adjacent headers are parallel and positioned in a closely abutting relationship, resulting in the absence of gaps between adjacent headers and tubes.
|
23. A method of forming a solar receiver, comprising:
using a first receiver panel having at least one header with beveled end portions to receive solar energy;
using a second receiver panel having at least one header with beveled end portions to receive solar energy, said second receiver panel being positioned adjacent said first receiver panel; and
using a third receiver panel having at least one header with beveled end portions to receive solar energy, said third receiver panel being disposed between said first and said second receiver panels to form a substantially continuous receiver panel surface for receiving solar energy comprised of said first receiver panel, said second receiver panel, and said third receiver panel.
19. A method for collecting solar energy, comprising:
mounting a first receiver panel to a solar receiver to receive solar energy;
mounting a second receiver panel to said solar receiver to receive solar energy, said second receiver panel being positioned adjacent said first receiver panel about a common radius with said first receiver panel around an axial center of said solar receiver such that a space is formed therebetween; and
mounting a third receiver panel to said solar receiver to receive solar energy positioned between said first and said second receiver panels about said common radius with said first and second receiver panels around said axial center of said solar receiver, but offset elevationally from said first and second receiver panels, to substantially occupy said space and form a substantially continuous receiver panel surface for receiving solar energy comprised of said first receiver panel, said second receiver panel, and said third receiver panel.
9. A solar power system providing a substantially uninterrupted solar absorption surface and being operable to receive solar energy from a solar energy source, said solar power system comprising:
a heliostat field comprised of at least one heliostat for reflecting said solar energy;
a solar receiver comprised of:
a first receiver panel for receiving said reflected solar energy, and being disposed in a first plane;
a second receiver panel for receiving said reflected solar energy and being disposed laterally adjacent said first receiver panel in said first plane and at a common radius with said first receiver from an axial center of said solar receiver to form a space between said first receiver panel and said second receiver panel;
a third receiver panel for receiving said solar energy disposed laterally between said first receiver panel and said second receiver panel in a second plane laterally offset from said first plane and disposed at said common radius with said first and second receiver panels from said axial center of said solar receiver to effectively occupy said space; and
a substantially continuous receiver panel surface for receiving said reflected solar energy comprised of said first receiver panel, said second receiver panel, and said third receiver panel.
1. A solar power system comprising:
a first receiver panel comprised of at least one tube for capturing solar energy;
a second receiver panel comprised of at least one tube for capturing solar energy, said second receiver panel disposed in close proximity to said first receiver panel to form a space between said first receiver panel and said second receiver panel;
a third receiver panel comprised of at least one tube for capturing solar energy disposed between said first receiver panel and said second receiver panel to effectively occupy said space;
each of said tubes extending across each of said receiver panels to form a substantially continuous tube surface across said first receiver panel, said second receiver panel, and said third receiver panel;
a first header secured to a first end of said at least one tube of each of said first, second, and third receiver panels for introducing a fluid that absorbs solar energy into said tubes; and
a second header secured to a second end of said at least one tube of each of said first, second, and third receiver panels for collecting said fluid after said fluid passes through said tube;
wherein said headers of said first receiver panel are disposed in a first plane, said headers of said third receiver panel are disposed in a second plane laterally offset from said first plane, and said headers of said second receiver panel are disposed in said first plane such that said headers of said first receiver panel and said second receiver panel at least partially overlap said headers of said third receiver panel.
14. A solar power system providing a substantially uninterrupted solar absorption surface and responsive to solar energy from a solar energy source, said solar power system comprising:
a heliostat field comprised of at least one heliostat for directing said solar energy;
a solar receiver comprised of:
a first receiver panel for receiving said solar energy;
a second receiver panel for receiving said solar energy disposed laterally adjacent said first receiver panel to form a space between said first receiver panel and said second receiver panel; and
a third receiver panel, disposed laterally in-between said first and said second receiver panels for receiving said solar energy and for effectively occupying said space;
a substantially continuous receiver panel surface for receiving said solar energy comprised of said first receiver panel, said second receiver panel, and said third receiver panels;
wherein said first receiver panel, said second receiver panel, and said third receiver panel each comprise:
at least one tube for receiving a fluid for absorbing said solar energy, said at least one tube extending the length of said receiver panels in a single vertical plane;
a first beveled header secured to a first end of said at least one tube for introducing said fluid into said tube;
a second beveled header secured to a second end of said at least one tube for collecting said fluid after said fluid passes through said tube; and
wherein said tubes form a substantially uninterrupted surface of said tubes across said first receiver panel, said second receiver panel, and said third receiver panel; and
wherein said beveled headers of said first, said second, and said third receiver panels are placed at a single elevation in a common horizontal plane.
5. The solar power system of
6. The solar power system of
7. The solar power system of
8. The solar power system of
10. The solar power system of
at least one tube for receiving a fluid for absorbing said solar energy, said tube extending the length of said receiver panels in a single vertical plane;
a first header secured to a first end of said at least one tube for introducing said fluid into said tube; and
a second header secured to a second end of said at least one tube for collecting said fluid after said fluid passes through said tube;
wherein said headers of said first receiver panel are disposed in a first header plane, said headers of said second receiver panel are disposed in said first header plane, and said headers of said third receiver panel are disposed in a second header plane such that said headers of said first receiver panel and said second receiver panel overlap said headers of said third receiver panel to form a substantially uninterrupted surface of said tubes across said first receiver panel, said second receiver panel, and said third receiver panel.
12. The solar power system of
13. The solar power system of
16. The solar power system of
18. The solar power system of
20. The method of
providing a header at at least one end of each of said receiver panels, and disposing said third receiver panel such that said header thereof is elevationally offset from said headers of said first and second receiver panels and thus overlaps said headers of said first and second receiver panels.
21. The method of
positioning said header on an interior side of each of said receiver panels.
22. The method of
positioning at least one tube between two of said headers for receiving a fluid that absorbs said solar energy, said tubes extending between said headers in a single vertical plane and forming a substantially uninterrupted surface of said tubes across said first receiver panel, said second receiver panel, and said third receiver panel.
24. The method of
positioning said headers on an interior side of each of said first receiver panel, said second receiver panel, and said third receiver panel.
25. The method of
positioning at least one tube between two of said headers for receiving a fluid that absorbs said solar energy, said tubes extending between said headers in a single vertical plane and forming a substantially uninterrupted surface of said tubes across said first receiver panel, said second receiver panel, and said third receiver panel.
|
The present invention relates to a solar central receiver power tower plant. More particularly, the present invention relates to an improved header design for a solar central receiver.
Solar central receiver power plants are used to convert the sun's solar thermal energy into electrical energy for connection to a utility grid. Specifically, solar central receiver power plants intercept the sun's thermal energy using a collector system that includes a field of thousands of sun tracking mirrors called heliostats. The heliostats redirect and concentrate the solar thermal energy onto a circular, tower mounted, heat exchanger called a solar receiver. A plurality of planar receiver panels are positioned about the solar receiver for receiving the concentrated solar thermal energy.
The receiver panels each include a plurality of elongated tubes mounted to a suitable strong-back. The elongated tubes terminate at each end in a header. Molten salt coolant at a temperature of approximately 550° F. (287° C.) is pumped up to the solar receiver panels from a cold thermal storage tank located on the ground. The molten salt flows to a first header mounted at a first end of a first receiver panel. The header distributes the molten salt to each of the plurality of tubes in the first panel. As the molten salt flows along the length of the tubes it absorbs the concentrated solar energy.
After the molten salt flows the length of the tubes it is received by a second header located at a second end of the receiver panel. From the second header the salt is piped to a first header of a second receiver panel. The first header of the second panel distributes the molten salt flow to each of the tubes where additional solar energy is absorbed. Molten salt flow continues through subsequent receiver panels in this series pattern until the molten salt is heated to a temperature of approximately 1050° F. (585° C.) in a receiver panel that is last in the series of receiver panels.
From the second header of the last receiver panel the molten salt flows to a hot thermal storage tank on the ground. When the molten salt is needed to generate electricity it is pumped from the hot thermal storage tank to a steam generator where it surrenders heat to produce steam. The steam in turn is used to drive a turbine-generator to generate electricity.
Conventional headers are positioned behind the strong-back to better protect the headers. Positioning the headers behind the strong-back protects the headers from, among other things, weather damage and damage caused by the misdirection of sunlight (known as spillage) upon the headers by the heliostats. Positioning the headers behind the strong-back is also advantageous as it facilitates wrapping the headers with thermal insulation to minimize heat loss from the headers. Headers that face outward toward the concentrated solar flux are difficult to directly insulate due to the high temperature and damage imposed by the solar flux spillage that contacts these headers.
While there are numerous advantages associated with positioning the headers behind the strong-back, this configuration also presents some drawbacks. For example, because the headers are cylinders having opposing ends that each have a 90° surface relative to the main longitudinal length of the header, and the receiver panels are mounted on a cylindrical solar receiver, gaps are created between the headers, tubes, and strong-backs of neighboring receiver panels. Passage of solar energy through these gaps results in a loss of absorbed solar energy and possible damage to the interior components of the solar receiver.
Conventionally, the gaps between the tubes of neighboring receiver panels have been eliminated by bending the tubes in three dimensions such that the tubes extend beyond the width of the headers to fill the gaps. However, bending the tubes in this manner to fill the gaps is undesirable because it is complicated, time consuming, and costly. Thus, there is a need for an improved receiver panel design that eliminates the existence of gaps between the headers, tubes, and strong-backs of neighboring receiver panels and utilizes simplified tube bend designs and techniques.
The present invention overcomes the deficiencies of the prior art by providing a solar receiver free of gaps between adjacent receiver panels. Specifically, the present invention eliminates gaps between the headers, tubes, and strong-backs of adjacent receiver panels by staggering or beveling the receiver panel headers, thus permitting the adjacent receiver panels to be placed closer together to fill any gaps between them. In the staggered configuration the headers of adjacent receiver panels are located at different elevations so that the headers overlap but do not contact each other, thus permitting the tubes and strong-backs of adjacent receiver panels to be positioned closer together to eliminate any gaps between the tubes and strong-backs of the adjacent panels. In the beveled configuration the headers are angled such that the terminal ends of adjacent headers are disposed parallel to one another when assembled onto a support structure of the solar receiver. The terminal ends are further positioned in closely abutting relationship, thus eliminating any gaps between adjacent headers, tubes, and strong-backs. The use of a staggered or beveled header configuration is also advantageous as it eliminates any need to use complicated, expensive, and time consuming tube bending techniques and designs to fill gaps between the tubes of adjacent receiver panels.
Further areas of applicability of the present invention will become apparent from the detailed description provided hereinafter. It should be understood that the detailed description and specific examples are intended for purposes of illustration only and are not intended to limit the scope of the invention.
The present invention will become more fully understood from the detailed description and the accompanying drawings, wherein:
The following description of the preferred embodiments is merely exemplary in nature and is in no way intended to limit the invention, its application, or uses.
Referring to
The solar receiver 20 is preferably cylindrical and positioned atop a tower 22. The tower 22 is preferably located at the approximate center of the heliostat field 14. Mounted about the solar receiver 20 are a plurality of solar receiver panels 24. As seen in
As seen in
The headers 26 are preferably cylindrical and include two terminal ends 34. In order to eliminate any gaps between the tubes 28 of adjacent receiver panels 24 and produce an uninterrupted wall of tubes 28 about the solar receiver 20, the headers 26 are either staggered (
Headers 26 positioned in the staggered configuration are illustrated in
With reference to
The operation of the solar power plant 10 will now be described. In operation, molten salt at a temperature of approximately 550° F. is pumped from a cold thermal storage tank (not shown), preferably located on the ground, to the solar receiver panels 24. The molten salt is pumped into a first header 26 of a first receiver panel 24 and distributed through the tubes 28 connected to the first header 26. As the molten salt travels the length of the tubes 28 the molten salt absorbs the solar energy rays 16 directed at the tubes 28 and upon exiting the tubes 28 is collected by a second header 26 located at an end of the first panel 24 opposite the first header 26. The molten salt is next piped to the first header 26 of a second receiver panel 24 adjacent to the first receiver panel 24 and the process of solar heat absorption into the molten salt continues through the remaining receiver panels 24 until the molten salt temperature is heated to approximately 1050° F. Subsequently, the molten salt flows to a hot thermal storage tank (not shown) preferably located in the ground of the heliostat field 14. When the molten salt is needed to generate electricity it is pumped from the hot thermal storage tank to a steam generator (not shown) where the molten salt surrenders heat to produce steam. The steam in turn is used to drive a turbine generator (not shown) to make electricity.
Thus, the present invention provides for a solar power plant 10 having a plurality of receiver panels 24 mounted in a circular fashion about a cylindrical solar receiver 20. Each receiver panel 24 includes a plurality of tubes 28 that terminate at each end at a header 26. To eliminate the presence of gaps between the tubes 28. headers 26, and strong-backs 30 of adjacent receiver panels 24, the headers 26 are either staggered (
The description of the invention is merely exemplary in nature and, thus, variations that do not depart from the gist of the invention are intended to be within the scope of the invention. Such variations are not to be regarded as a departure from the spirit and scope of the invention.
Patent | Priority | Assignee | Title |
10054335, | Dec 24 2009 | MITSUBISHI HEAVY INUDSTRIES, LTD | Solar light heat receiver, and solar light collecting and heat receiving system |
10280903, | Sep 16 2010 | Wilson 247Solar, Inc. | Concentrated solar power generation using solar receivers |
10539339, | Jun 15 2016 | GENERAL ELECTRIC TECHNOLOGY GMBH | Solar receiver having improved heliostat field performance |
10876521, | Mar 21 2012 | 247SOLAR INC | Multi-thermal storage unit systems, fluid flow control devices, and low pressure solar receivers for solar power systems, and related components and uses thereof |
11242843, | Sep 16 2010 | 247SOLAR INC | Concentrated solar power generation using solar receivers |
7552727, | Aug 31 2007 | Stationary, solar-powered boiler for generating steam | |
7690377, | May 11 2006 | BRIGHTSOURCE ENERGY | High temperature solar receiver |
7766007, | Jan 31 2007 | Solar energy collector | |
8266819, | Jan 07 2009 | SOLARRESERVE TECHNOLOGY, LLC | Air drying system for concentrated solar power generation systems |
8316843, | Feb 12 2009 | Babcock Power Services Inc.; BABCOCK POWER SERVICES INC | Arrangement of tubing in solar boiler panels |
8327839, | Jan 07 2009 | SOLARRESERVE TECHNOLOGY, LLC | Air instrumentation system for concentrated solar power generation systems |
8356591, | Feb 12 2009 | Babcock Power Services, Inc.; BABCOCK POWER SERVICES INC | Corner structure for walls of panels in solar boilers |
8360053, | Mar 30 2009 | MITSUBISHI HEAVY INDUSTRIES, LTD | Sunlight collecting heat receiver |
8397710, | Feb 12 2009 | Babcock Power Services Inc. | Solar receiver panels |
8430092, | Feb 12 2009 | Babcock Power Services, Inc.; BABCOCK POWER SERVICES, INC | Panel support system for solar boilers |
8490618, | Jul 26 2007 | BRIGHTSOURCE INDUSTRIES ISRAEL LTD | Solar receiver |
8517008, | Feb 12 2009 | Babcock Power Services, Inc. | Modular solar receiver panels and solar boilers with modular receiver panels |
8573196, | Aug 05 2010 | BABCOCK POWER SERVICES INC | Startup/shutdown systems and methods for a solar thermal power generating facility |
8733340, | Feb 12 2009 | Babcock Power Services, Inc. | Arrangement of tubing in solar boiler panels |
8863516, | Aug 23 2011 | CHEVRON U S A INC | System for collecting concentrated solar radiation |
8893714, | Feb 12 2009 | Babcock Power Services, Inc.; BABCOCK POWER SERVICES, INC | Expansion joints for panels in solar boilers |
8960184, | Aug 31 2008 | YEDA RESEARCH AND DEVELOPMENT CO LTD | Solar receiver system |
8984882, | Feb 13 2009 | NEM ENERGY B V | Solar receiver having back positioned header |
9038624, | Jun 08 2011 | Babcock Power Services, Inc. | Solar boiler tube panel supports |
9134043, | Feb 12 2009 | Babcock Power Services Inc. | Heat transfer passes for solar boilers |
9151518, | Jun 03 2009 | ABENGOA SOLAR NEW TECHNOLOGIES, S A | Solar concentrator plant using natural-draught tower technology and operating method |
9163857, | Feb 12 2009 | Babcock Power Services, Inc.; BABCOCK POWER SERVICES INC | Spray stations for temperature control in solar boilers |
9347685, | Aug 05 2010 | BABCOCK POWER SERVICES INC | Startup systems and methods for solar boilers |
9644865, | Mar 23 2010 | SOLARRESERVE TECHNOLOGY, LLC | Thermal shield for solar receiver |
9719696, | Jun 12 2014 | GENERAL ELECTRIC TECHNOLOGY GMBH | Solar receiver configuration |
9726155, | Sep 16 2010 | WILSON 247SOLAR, INC | Concentrated solar power generation using solar receivers |
Patent | Priority | Assignee | Title |
4136674, | Jul 28 1977 | A. L. Korr Associates, Inc. | System for solar radiation energy collection and conversion |
4245618, | Oct 10 1978 | McDermott Technology, Inc | Vapor generator |
4289114, | Sep 12 1978 | McDermott Technology, Inc | Control system for a solar steam generator |
4485803, | Oct 14 1982 | The Babcock & Wilcox Company | Solar receiver with interspersed panels |
4947825, | Sep 11 1989 | Rockwell International Corporation | Solar concentrator - radiator assembly |
5660644, | Jun 19 1995 | Aerojet Rocketdyne of DE, Inc | Photovoltaic concentrator system |
5850831, | Sep 27 1996 | SOLARRESERVE TECHNOLOGY, LLC | Loose-tight-loose twist, twisted-tape insert solar central receiver |
5862800, | Sep 27 1996 | SOLARRESERVE TECHNOLOGY, LLC | Molten nitrate salt solar central receiver of low cycle fatigue 625 alloy |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 09 2002 | LITWIN, ROBERT Z | The Boeing Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013580 | /0905 | |
Dec 13 2002 | The Boeing Company | (assignment on the face of the patent) | / | |||
Aug 02 2005 | BOEING C OMPANY AND BOEING MANAGEMENT COMPANY, THE | United Technologies Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017882 | /0126 | |
Aug 02 2005 | BOEING COMPANY AND BOEING MANAGEMENT COMPANY, THE | United Technologies Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017681 | /0537 | |
Aug 02 2005 | RUBY ACQUISITION ENTERPRISES CO | PRATT & WHITNEY ROCKETDYNE, INC | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 030593 | /0055 | |
Aug 02 2005 | THE BOEING COMPANY AND BOEING MANAGEMENT COMPANY | RUBY ACQUISITION ENTERPRISES CO | CORRECTIVE ASSIGNMENT TO CORRECT THE ASSIGNEE S NAME ON ORIGINAL COVER SHEET PREVIOUSLY RECORDED ON REEL 017882 FRAME 0126 ASSIGNOR S HEREBY CONFIRMS THE ASSIGNEE WAS INCORRECTLY RECORDED AS UNITED TECHNOLOGIES CORPORATION ASSIGNEE SHOULD BE RUBY ACQUISITION ENTERPRISES CO | 030592 | /0954 | |
May 24 2007 | United Technologies Corporation | PRATT & WHITNEY ROCKETDYNE, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 019458 | /0247 | |
Jun 14 2013 | PRATT & WHITNEY ROCKETDYNE, INC | Wells Fargo Bank, National Association | SECURITY AGREEMENT | 030628 | /0408 | |
Jun 14 2013 | PRATT & WHITNEY ROCKETDYNE, INC | U S BANK NATIONAL ASSOCIATION | SECURITY AGREEMENT | 030656 | /0615 | |
Jun 17 2013 | PRATT & WHITNEY ROCKETDYNE, INC | Aerojet Rocketdyne of DE, Inc | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 033474 | /0766 | |
Oct 09 2014 | AEROJET ROCKETDYNE OF DE | SOLARRESERVE TECHNOLOGY, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 034530 | /0978 | |
Oct 21 2014 | U S BANK NATIONAL ASSOCIATION | Aerojet Rocketdyne of DE, Inc | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 036666 | /0103 | |
Jul 15 2016 | U S BANK NATIONAL ASSOCIATION | AEROJET ROCKETDYNE OF DE, INC F K A PRATT & WHITNEY ROCKETDYNE, INC | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 039597 | /0890 |
Date | Maintenance Fee Events |
Dec 29 2008 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 23 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 11 2016 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Aug 23 2008 | 4 years fee payment window open |
Feb 23 2009 | 6 months grace period start (w surcharge) |
Aug 23 2009 | patent expiry (for year 4) |
Aug 23 2011 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 23 2012 | 8 years fee payment window open |
Feb 23 2013 | 6 months grace period start (w surcharge) |
Aug 23 2013 | patent expiry (for year 8) |
Aug 23 2015 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 23 2016 | 12 years fee payment window open |
Feb 23 2017 | 6 months grace period start (w surcharge) |
Aug 23 2017 | patent expiry (for year 12) |
Aug 23 2019 | 2 years to revive unintentionally abandoned end. (for year 12) |