A garment including an elastomeric composite laminate around one or more openings for the legs, arms, waist, neck, or the like of a wearer. The garment includes a substrate defining the one or more openings, and an elastomeric composite laminate attached to the substrate adjacent the one or more openings. The elastomeric composite laminate includes reinforcement strands incorporated into an elastomeric adhesive film. In one embodiment, the garment is a pant-like garment with the elastomeric composite laminate adjacent each of the leg openings.

Patent
   6978486
Priority
Jul 02 2002
Filed
Dec 26 2002
Issued
Dec 27 2005
Expiry
Feb 25 2023
Extension
238 days
Assg.orig
Entity
Large
109
518
all paid
21. A pant-like garment comprising:
a chassis including a substrate and defining a waist opening and two leg openings; and
an elastomeric composite attaching a facing sheet to the substrate adjacent each of the leg openings, the elastomeric composite including a plurality of extruded elastic strands adhered to an elastomeric adhesive film;
wherein the elastomeric adhesive film includes about 30% to about 65% by weight base polymer.
7. A pant-like garment comprising:
a chassis including a substrate and defining a waist opening and two leg openings; and
an elastomeric composite attaching a facing sheet to the substrate adjacent each of the leg openings, the elastomeric composite including a plurality of extruded elastic strands at least partially embedded in an elastomeric adhesive film;
wherein the plurality of extruded elastic strands have different sizes or compositions.
1. A pant-like garment comprising:
a chassis including a substrate and defining a waist opening and two leg openings; and
an elastomeric composite attaching a facing sheet to the substrate adjacent each of the leg openings, the elastomeric composite including a plurality of extruded elastic strands adhered to an elastomeric adhesive film;
wherein the plurality of extruded elastic strands make up about 5% to about 50% by weight of the elastomeric composite.
2. The garment of claim 1, wherein the facing sheet comprises at least one of a nonwoven web and a film.
3. The garment of claim 1, wherein the plurality of elastic strands comprises at least one of a group consisting of raw polymers, a mixture of polymers, and tackified polymers.
4. The garment of claim 1, wherein the plurality of elastic strands comprises at least one of a group consisting of elastomeric polymer compositions, tackified polymers, olefinic copolymers, ethylene-propylene-diene monomer, styrene-isoprene-styrene, styrene-butadiene-styrene, styrene-ethylene/butylene-styrene, styrene-ethylene/propylene-styrene, polyurethane, polyisoprene, cross-linked polybutadiene, and combinations thereof.
5. The garment of claim 1, wherein the plurality of elastic strands comprises a tackifier including at least one type of hydrocarbon selected from a group consisting of petroleum distillates, rosin, rosin esters, polyterpenes derived from wood, polyterpenes derived from synthetic chemicals, and combinations thereof.
6. The garment of claim 1, wherein the elastomeric adhesive film comprises an elastomeric, hot melt, pressure-sensitive adhesive.
8. The garment of claim 7, wherein the facing sheet comprises at least one of a nonwoven web and a film.
9. The garment of claim 7, wherein the plurality of elastic strands comprises at least one of a group consisting of raw polymers, a mixture of polymers, and tackified polymers.
10. The garment of claim 7, wherein the plurality of elastic strands comprises at least one of a group consisting of elastomeric polymer compositions, tackified polymers, olefinic copolymers, ethylene-propylene-diene monomer, styrene-isoprene-styrene, styrene-butadiene-styrene, styrene-ethylene/butylene-styrene, styrene-ethylene/propylene-styrene, polyurethane, polyisoprene, cross-linked polybutadiene, and combinations thereof.
11. The garment of claim 7, wherein the plurality of elastic strands comprises a tackifier including at least one type of hydrocarbon selected from a group consisting of petroleum distillates, rosin, rosin esters, polyterpenes derived from wood, polyterpenes derived from synthetic chemicals, and combinations thereof.
12. The garment of claim 7, wherein the elastomeric adhesive film comprises an elastomeric, hot melt, pressure-sensitive adhesive.
13. The pant-like garment of claim 1, further comprising an elastomeric composite attaching a facing sheet to the substrate adjacent to the waist opening, the elastomeric composite including a plurality of extruded elastic strands adhered to an elastomeric adhesive film.
14. The pant-like garment of claim 1, wherein the substrate comprises a leg cuff.
15. The pant-like garment of claim 1, wherein the substrate comprises a containment flap.
16. The pant-like garment of claim 7, further comprising an elastomeric composite attaching a facing sheet to the substrate adjacent to the waist opening, the elastomeric composite including a plurality of extruded elastic strands adhered to an elastomeric adhesive film.
17. The pant-like garment of claim 7, wherein the substrate comprises a leg cuff.
18. The pant-like garment of claim 7, wherein the substrate comprises a containment flap.
19. The pant-like garment of claim 7, wherein the extruded elastic strands have varying diameters.
20. The pant-like garment of claim 7, wherein the extruded elastic strands are laid out non-periodically.
22. The pant-like garment of claim 21, wherein the base polymer comprises about 15% to about 45% by weight styrene co-monomer.
23. The pant-like garment of claim 22, wherein the base polymer comprises a blend of polymers having different styrene co-monomer levels.
24. The pant-like garment of claim 22, wherein the base polymer comprises a single base polymer having a select styrene co-monomer level.
25. The pant-like garment of claim 22, wherein the base polymer is selected from the group consisting of polystyrene-polyethylene-polypropylene-polystyrene block copolymer, styrene-isoprene-styrene, styrene-butadiene-styrene block copolymer, and combinations thereof.
26. The pant-like garment of claim 21, wherein the elastomeric adhesive film further comprises about 30% to about 70% by weight tackifier.
27. The pant-like garment of claim 26, wherein the tackifier is selected from the group consisting of hydrocarbons from petroleum distillates, rosin, rosin esters, polyterpenes derived from wood, polyterpenes derived from synthetic chemicals, and combinations thereof.
28. The pant-like garment of claim 21, wherein the elastomeric adhesive film comprises an elastomeric, hot melt, pressure sensitive adhesive.
29. The pant-like garment of claim 28, wherein the elastomeric, hot melt, pressure sensitive adhesive has a bond strength of at least about 100 to about 400 grams force per inch width.
30. The pant-like garment of claim 21, wherein the elastomeric adhesive film has a thickness of about 0.001 inch to about 0.05 inch.

This application is a continuation-in-part application of U.S. patent application Ser. No. 10/187,761 filed 2 Jul. 2002.

This invention is directed to garments having a strand-reinforced elastomeric adhesive film laminate adjacent one or more openings of the garment.

Personal care garments often include elasticized portions to create a gasket-like fit around certain openings, such as waist openings and leg openings. Multiple elastic strands can be attached to the openings to provide fit and comfort and to prevent leakage. Alternatively, elastic laminates can be used in the manufacture of such garments to avoid complicated elastic attachment steps during the garment manufacturing process.

One type of elastomeric laminate is a stretch-bonded laminate that includes elastic strands produced from an extruder and bonded to a facing sheet or sheets using a hot melt adhesive. Laminates including pre-made elastic strands can be processed online but require an elastic attachment adhesive with high add-on in order to reduce strand slippage. The cost of making stretch-bonded laminates can be relatively high due to the cost of the facing sheet or sheets, plus the cost of the elastic strands, plus the cost of the adhesive.

Another type of elastomeric laminate can be made using a vertical filament laminate-stretch-bonded laminate (VFL-SBL) process. However, the VFL-SBL process must be in off-line operation due to process complexity.

One drawback associated with conventional elastic strands and elastic laminates around garment openings are leakage and fit problems, particularly around leg openings when the garment is loaded. Such problems result from weakening tension or uneven tension distribution of the leg elastics. More specifically, elastic tension is weakened during wearing because of strand relaxation and strand slippage at elevated temperatures. To prevent leakage, tension of the leg elastics can be increased by increasing the number of strands or by using a high denier of strands at a higher stretching ratio. However, an increase in leg elastic tension is likely to cause a “red mark” on a wearer's skin because tension of the garment is actually concentrated on the narrow surface of the strand instead of the whole elastic laminate. Plus, the tension on the conventional elastic laminate can not be transported or distributed uniformly during use especially when legs are moving. Also, current elastic strand-based laminates cannot be die-cut to curve and fit the body exactly. Making curved elastic strand laminates in a high-speed assembly process requires very complex and precise control which is associated with large capital investment.

Elastomeric adhesive compositions are multifunctional in the sense that they function as an elastomer in a nonwoven composite while also serving as a hot melt adhesive for bonding substrates. Elastomeric adhesive compositions in the form of elastomeric adhesive films are currently recognized as suitable for use in the manufacture of personal care articles. More particularly, elastomeric adhesive compositions can be used to bond facing materials, such as spunbond, to one another while simultaneously elasticizing the resulting laminate. The resulting laminate can be used to form an elastomeric portion of an absorbent article, such as a region surrounding a waist opening and/or a leg opening.

Non-woven elastic adhesive film laminates may require high output of adhesive add-on to achieve a tension target for product application. High add-on of the film laminate may generate a bulky, thick feel and appearance, and high cost. Furthermore, the high adhesive output requirement for the film formation would make on-line processing even more difficult due to the limitation of hot melt equipment output capacity. Also, such film lamination processes are relatively complex and need more precise control than strand lamination since a film edge thinning effect may cause the film to break during stretching.

Some elastomeric adhesive compositions lose their adhesiveness when the compositions are stretched and then bonded between two nonwoven substrates. The elasticity of these elastomeric adhesive compositions (in terms of tension decay) is negatively affected when laminates including the compositions are aged at elevated temperatures, for example around 130 degrees Fahrenheit, which is commonly experienced under hot boxcar storage conditions. It appears that the poor tension and adhesion of such elastomeric adhesive compositions results from the chosen base polymer, tackifier, and plasticizer chemistries as well as the unbalanced ratio of polymer to low molecular weight species in the formulation.

There is a need or desire for an elastomeric laminate that can be used to create elasticized portions of a personal care garment, wherein the laminate does not display high tension decay or delamination. There is a further need or desire for a personal care garment including elasticized portions that possess a soft feel and comfortable fit, while providing adjustable tension to minimize leakage.

In response to the discussed difficulties and problems encountered in the prior art, a new garment including a strand-reinforced elastomeric adhesive film laminate has been discovered.

The garment of the invention includes one or more openings for a body part such as, for example, a neck opening, a wrist opening, an arm opening, a waist opening, a leg opening, and/or an ankle opening. The garment includes a substrate that defines the opening or openings, with an elastomeric composite laminate attached to the substrate adjacent the opening or openings. The elastomeric composite laminate is used in place of conventional elastic strands or elastic laminates to provide better fit and comfort, less leakage and more tension control for disposable garment applications.

The elastomeric composite laminate is made up of a combination of extruded reinforcing strands and elastomeric adhesive film. The strands may be adhered to, and possibly even partially or wholly embedded in, the elastomeric adhesive film. One surface of the laminate can be attached to the substrate while the other surface of the laminate may include a layer of spunbond or other facing material. Alternatively, a facing material can be laminated along both surfaces of the film prior to attaching the laminate to the substrate. The combination of reinforcing strands and the elastomeric adhesive film significantly and advantageously reduces the rate and extent of tension decay during wear, as well as improving adhesion properties of the spunbond laminates compared to spunbond laminates including elastomeric adhesive film without reinforcing strands. Additionally, the tension on the elastomeric composite laminate is distributed evenly across the width of the laminate instead of being concentrated only on the strands, thus reducing or eliminating red marking and providing a better fit. Furthermore, the reinforcing strands enable the composite tension to be tunable while preserving the soft feel and aesthetic properties of the laminate. Tuning can be achieved by adjusting the output of the strand or film add-on, adjusting the stretching ratio, selection of substrates, as well as polymer formulas. Another benefit of using the elastomeric composite laminate rather than conventional elastics is that the laminate can be die-cut into any shape for better fit and comfort without losing tension.

The garment of the invention may be a personal care garment, medical garment, industrial workwear garment, or the like. In one embodiment, the garment is a pant-like garment with a chassis including a substrate. The chassis defines a waist opening and two leg openings. The elastomeric composite laminate is attached to the substrate adjacent each of the leg openings.

With the foregoing in mind, it is a feature and advantage of the invention to provide a garment having a strand-reinforced elastomeric adhesive film laminate around one or more openings of the garment.

FIG. 1 is a perspective view of a garment having an elastic composite laminate around the leg openings and waist opening.

FIG. 2 is a perspective view of a medical garment having an elastic composite laminate around the neck opening and the wrist openings.

FIG. 3 is a perspective view of an industrial workwear garment having an elastic composite laminate around the neck opening and the arm openings.

FIG. 4 is a perspective view of an industrial workwear garment having an elastic composite laminate around the waist opening and the ankle openings.

FIG. 5 is a plan view of an elastic composite as used in the garment of the invention.

FIG. 6 is a plan view of another embodiment of an elastic composite suitable for use in the garment of the invention.

FIG. 7 is a cross-sectional view, taken along line 77 of FIG. 5, of another embodiment of an elastic composite suitable for use in the garment of the invention.

FIG. 8 is a plan view of an elastic composite laminate suitable for use in the garment of the invention.

FIG. 9 is a cross-sectional view, taken along line 99 of FIG. 8, of another embodiment of an elastic composite laminate suitable for use in the garment of the invention.

FIG. 10 illustrates a representative process for making the elastic composites and elastic composite laminates applied to the garment of the invention.

FIG. 11 is a schematic view of another process for making the elastic composites and elastic composite laminates applied to the garment of the invention.

Within the context of this specification, each term or phrase below will include the following meaning or meanings.

“Bonded” refers to the joining, adhering, connecting, attaching, or the like, of at least-two elements. Two elements will be considered to be bonded together when they are bonded directly to one another or indirectly to one another, such as when each is directly bonded to intermediate elements.

“Elastic tension” refers to the amount of force per unit width required to stretch an elastic material (or a selected zone thereof) to a given percent elongation.

“Elastomeric” and “elastic” are used interchangeably to refer to a material or composite that is generally capable of recovering its shape after deformation when the deforming force is removed. Specifically, as used herein, elastic or elastomeric is meant to be that property of any material which, upon application of a biasing force, permits the material to be stretchable to a stretched biased length which is at least about 50 percent greater than its relaxed unbiased length, and that will cause the material to recover at least 40 percent of its elongation upon release of the stretching force. A hypothetical example which would satisfy this definition of an elastomeric material would be a one (1) inch sample of a material which is elongatable to at least 1.50 inches and which, upon being elongated to 1.50 inches and released, will recover to a length of less than 1.30 inches. Many elastic materials may be stretched by much more than 50 percent of their relaxed length, and many of these will recover to substantially their original relaxed length upon release of the stretching force.

“Elongation” refers to the capability of an elastic material to be stretched a certain distance, such that greater elongation refers to an elastic material capable of being stretched a greater distance than an elastic material having lower elongation.

“Extruded” refers to a material that is processed through an extrusion die or a slot coat die connected to an extruder or a melt tank.

“Film” refers to a thermoplastic film made using a film extrusion process, such as a cast film or blown film extrusion process. The term includes apertured films, slit films, and other porous films which constitute liquid transfer films, as well as films which do not transfer liquid.

“Garment” includes personal care garments, medical garments, and the like. The term “disposable garment” includes garments which are typically disposed of after 1-5 uses. The term “personal care garment” includes diapers, training pants, swim wear, absorbent underpants, adult incontinence products, feminine hygiene products, and the like. The term “medical garment” includes medical (i.e., protective and/or surgical) gowns, caps, gloves, drapes, face masks, and the like. The term “industrial workwear garment” includes laboratory coats, cover-alls, and the like.

“Layer” when used in the singular can have the dual meaning of a single element or a plurality of elements.

“Meltblown fiber” refers to fibers formed by extruding a molten thermoplastic material through a plurality of fine, usually circular, die capillaries as molten threads or filaments into converging high velocity gas (e.g., air) streams which attenuate the filaments of molten thermoplastic material to reduce their diameter, which may be to microfiber diameter. Thereafter, the meltblown fibers are carried by the high velocity gas stream and are deposited on a collecting surface to form a web of randomly dispersed meltblown fibers. Such a process is disclosed for example, in U.S. Pat. No. 3,849,241 to Butin et al. Meltblown fibers are microfibers which may be continuous or discontinuous, are generally smaller than about 0.6 denier, and are generally self bonding when deposited onto a collecting surface.

“Nonwoven” and “nonwoven web” refer to materials and webs of material having a structure of individual fibers or filaments which are interlaid, but not in an identifiable manner as in a knitted fabric. The terms “fiber” and “filament” are used herein interchangeably. Nonwoven fabrics or webs have been formed from many processes such as, for example, meltblowing processes, spunbonding processes, air laying processes, and bonded carded web processes. The basis weight of nonwoven fabrics is usually expressed in ounces of material per square yard (osy) or grams per square meter (gsm) and the fiber diameters are usually expressed in microns. (Note that to convert from osy to gsm, multiply osy by 33.91.)

“Polymers” include, but are not limited to, homopolymers, copolymers, such as for example, block, graft, random and alternating copolymers, terpolymers, etc. and blends and modifications thereof. Furthermore, unless otherwise specifically limited, the term “polymer” shall include all possible geometrical configurations of the material. These configurations include, but are not limited to isotactic, syndiotactic and atactic symmetries.

“Spunbond fiber” refers to small diameter fibers which are formed by extruding molten thermoplastic material as filaments from a plurality of fine capillaries of a spinnerette having a circular or other configuration, with the diameter of the extruded filaments then being rapidly reduced as taught, for example, in U.S. Pat. No. 4,340,563 to Appel et al., and U.S. Pat. No. 3,692,618 to Dorschner et al., U.S. Pat. No. 3,802,817 to Matsuki et al., U.S. Pat. Nos. 3,338,992 and 3,341,394 to Kinney, U.S. Pat. No. 3,502,763 to Hartmann, U.S. Pat. No. 3,502,538 to Petersen, and U.S. Pat. No. 3,542,615 to Dobo et al., each of which is incorporated herein in its entirety by reference. Spunbond fibers are quenched and generally not tacky when they are deposited onto a collecting surface. Spunbond fibers are generally continuous and often have average deniers larger than about 0.3, more particularly, between about 0.6 and 10.

“Strand” refers to an article of manufacture whose width is less than a film and is suitable for incorporating into a film, according to the present invention.

“Stretchable” means that a material can be stretched, without breaking, by at least 50% (to at least 150% of its initial (unstretched) length) in at least one direction, suitably by at least 100% (to at least 200% of its initial length), desirably by at least 150% (to at least 250% of its initial length). The term includes elastic materials as well as materials that stretch but do not significantly retract. The percentage stretch of strands and films is calculated by the percentage difference between a primary chill roll speed and a final nip roll speed. For example, in FIG. 10, if the first chill roller 42 is running at a speed of x and the nip rollers 58 and 60 are running at a speed of 6×, the strands and/or film being stretched between the first chill roller 42 and the nip rollers 58, 60 are being stretched to 500%.

“Thermoplastic” describes a material that softens and flows when exposed to heat and which substantially returns to a nonsoftened condition when cooled to room temperature.

“Thermoset” describes a material that is capable of becoming permanently cross-linked, and the physical form of the material cannot be changed by heat without the breakdown of chemical bonds.

“Vertical filament stretch-bonded laminate” or “VF SBL” refers to a stretch-bonded laminate made using a continuous vertical filament process, as described herein.

These terms may be defined with additional language in the remaining portions of the specification.

The present invention is directed to a garment 100 having one or more elasticized openings. The opening or openings may include a neck opening 102, a wrist opening 104, an arm opening 106, a waist opening 108, a leg opening 110, and/or an ankle opening 112, as shown in FIGS. 1-4. The opening or openings include an elastic composite laminate 30 attached to a substrate 34 of the garment 100 around, or adjacent, the opening. The elastic composite laminate 30 provides superior elastic and adhesion properties.

The garment 100 of the invention may be a personal care garment 114 (FIG. 1), medical garment 116 (FIG. 2), industrial workwear garment 118 (FIGS. 3 and 4), or the like. More particularly, the garment 100 may be a diaper, training pants, swim wear, absorbent underpants, adult incontinence product, feminine hygiene product, protective medical gown, surgical medical gown, cap, gloves, drape, face mask, laboratory coat, or coveralls, for example. For ease of explanation, the following description is in terms of a pant-like garment 100, such as a child's training pant, having the elastic composite laminate 30 adjacent each of the leg openings 110.

Referring to FIG. 1, a disposable absorbent garment 100, such as a child's training pant, includes a chassis 120. The chassis 120 suitably includes an outer cover 122, a body side liner 124, and an absorbent assembly (not shown) positioned between the outer cover and the body side liner. The chassis 120 defines a waist opening 108 and two leg openings 110. An elastomeric composite laminate 30 is applied to the chassis 120 adjacent each of the leg openings 110, and possibly adjacent the waist opening 108 as well, to provide elasticity. Tension in the elastomeric composite laminate 30 may be controlled, as explained in greater detail below.

An elastomeric composite 20 alone is illustrated in FIG. 5. As shown, the elastomeric composite 20 includes an elastomeric adhesive film 22 with a number of elastic reinforcing strands 24 adhered to and partially embedded therein. Tension within the elastomeric composite 20 may be controlled through percentage stretch of the strands 24 prior to adhesion to the elastomeric adhesive film 22, through percentage stretch of the film 22 prior to adhesion to the strands 24, and/or through the amount of strand add-on or thickness, with greater stretch and greater add-on or thickness each resulting in higher tension. Tension can also be controlled through selection of the film composition, selection of the strand composition, and/or by varying strand geometries and/or spacing between strands. It will be appreciated that the strands 24 may be laid out periodically, non-periodically, and in various spacings, groupings, and sizes, according to the effect desired from the composite 20 and the use to which it is put.

As shown in FIG. 6, for example, a group of strands 24 in one region of the composite 20 can be spaced apart much more closely than another group of strands 24, resulting in greater tension in the region in which the strands 24 are more closely spaced. For instance, the more closely spaced strands may be positioned closer to an edge of the garment opening while the more distantly spaced strands may be positioned inward from the edge to provide a sort of transitional elasticized area.

As another example, FIG. 7 illustrates a cross-sectional view of the composite 20 having unequally sized elastic strands 24 with some strands having a larger diameter, and thus higher tension, than others. While referred to as being of different diameter, it will be appreciated that the strands 24 need not be circular in cross-section within the context of this invention. Furthermore, the strands 24 of different size or composition may be intermingled within groupings in regular or irregular patterns.

The elastomeric adhesive film 22 is suitably made up of an elastomeric, hot melt, pressure-sensitive adhesive having an adhesive bond strength, as determined by the test method set forth below, of at least 50 grams force per inch (2.54 cm) width, suitably of at least 100 grams force per inch (2.54 cm) width, alternatively of at least 300 grams force per inch (2.54 cm) width, alternatively of at least from about 100 grams force per inch (2.54 cm) width to about 400 grams force per inch width. An example of a suitable elastomeric adhesive film 22 may be made up of 35 wt % PICOLYTE S115 and 65 wt % KRATON G2760. The elastomeric, hot melt, pressure-sensitive adhesive may be applied to a chill roll or similar device, in the form of a strand or ribbon. The strand or ribbon is then stretched and thinned to form the film 22. The film suitably has a thickness of about 0.001 inch (0.025 mm) to about 0.05 inch (1.27 mm), alternatively of from about 0.001 inch (0.025 mm) to about 0.01 inch (0.25 mm), and a width of from about 0.05 inch (1.27 mm) to about 3.0 inches (7.62 cm), alternatively of from about 0.5 inch (1.27 cm) to about 1.5 inches (3.81 cm). The elastomeric, adhesive film 22 may also be capable of imparting barrier properties in an application.

Suitable elastomeric, hot melt, pressure-sensitive adhesives from which the elastomeric adhesive film 22 may be made include elastomeric polymers, tackifying resins, plasticizers, oils and antioxidants.

One particular formulation of the elastomer adhesive film 22 includes a base polymer and a tackifier resin. The composition may also include additional additives. The choice of polymer and tackifier is important, as is the ratio of polymer or copolymers to tackifier. Another important consideration is the ratio of additives to tackifier.

The base polymer suitably has a styrene content of between about 15% and about 45%, or between about 18% and about 30%, by weight of the base polymer. The base polymer may achieve the styrene content either by blending different polymers having different styrene co-monomer levels or by including a single base polymer that has the desired styrene co-monomer level. Generally, the higher the styrene co-monomer level is, the higher the tension is.

The base polymer may include polystyrene-polyethylene-polypropylene-polystyrene (SEPS) block copolymer, styrene-isoprene-styrene (SIS), styrene-butadiene-styrene (SBS) block copolymer, as well as combinations of any of these. One example of a suitable SEPS copolymer is available from Kraton Polymers of Belpre, Ohio, under the trade designation KRATON® G 2760. One example of a suitable SIS copolymer is available from Dexco, a division of Exxon-Mobil, under the trade designation VECTOR™. Suitably, the film composition includes the base polymer in an amount between about 30% and about 65% by weight of the composition.

The tackifier may include hydrocarbons from petroleum distillates, rosin, rosin esters, polyterpenes derived from wood, polyterpenes derived from synthetic chemicals, as well as combinations of any of these. A key element of the film composition is a tackifier. An example of a suitable tackifier is available from Hercules Inc. of Wilmington, Del., under the trade designation PICOLYTE™ S115. Suitably, the composition includes the tackifier in an amount between about 30% and about 70% by weight of the composition.

Other additives may be included in the film composition as well. In addition to the adhesion provided by the tackifier, various additives may provide instantaneous surface tackiness and pressure sensitive characteristics as well as reduced melt viscosity. One example of a particularly suitable low softening point additive is PICOLYTE™ S25 tackifier, available from Hercules Inc., having a softening point in a range around 25 degrees Celsius, or paraffin wax having a melting point of about 65 degrees Celsius may also be used.

Additionally, an antioxidant may be included in the film composition, suitably in an amount between about 0.1% and about 1.0% by weight of the composition. One example of a suitable antioxidant is available from Ciba Specialty Chemicals under the trade designation IRGANOX™ 1010.

The elastomeric adhesive film 22 suitably has an elongation of at least 50 percent, alternatively of at least 150 percent, alternatively of from about 50 percent to about 200 percent, and a tension force of less than about 400 grams force per inch (2.54 cm) width, alternatively of less than about 275 grams force per inch (2.54 cm) width, alternatively of from about 100 grams force per inch (2.54 cm) width to about 250 grams force per inch (2.54 cm) width. Tension force, as used herein, is determined one minute after stretching the film to 100% elongation.

The elastomeric adhesive film 22 is capable not only of introducing a degree of elasticity to facing materials but is also capable of providing a construction adhesive function. That is, the film 22 adheres together the facing materials or other components with which it is in contact. It is also possible that the film does not constrict upon cooling but, instead, tends to retract to approximately its original dimension after being elongated during use in a product.

Materials suitable for use in preparing the elastic reinforcing strands 24 include raw polymers, a mixture of polymers, as well as tackified polymers. More specifically, the elastic reinforcing strands 24 may include diblock, triblock, tetrablock, or other multi-block elastomeric copolymers such as olefinic copolymers, including ethylene-propylene-diene monomer (EPDM), styrene-isoprene-styrene (SIS), styrene-butadiene-styrene (SBS), styrene-ethylene/butylene-styrene (SEBS), or styrene-ethylene/propylene-styrene (SEPS), which may be obtained from the Kraton Polymers of Belpre, Ohio, under the trade designation KRATON® elastomeric resin or from Dexco, a division of Exxon-Mobil, under the trade designation VECTOR® (SIS polymers); polyurethanes, including those available from E. I. Du Pont de Nemours Co., under the trade name LYCRA® polyurethane; polyamides, including polyether block amides available from Ato Chemical Company, under the trade name PEBAX® polyether block amide; polyesters, such as those available from E. I. Du Pont de Nemours Co., under the trade name HYTREL® polyester; polyisoprene; cross-linked polybutadiene; and single-site or metallocene-catalyzed polyolefins having density less than about 0.89 grams/cubic centimeter, available from Dow Chemical Co. under the trade name AFFINITY®. The elastic reinforcing strands 24 may also include a tackifier. The tackifier may include hydrocarbons from petroleum distillates, rosin, rosin esters, polyterpenes derived from wood, polyterpenes derived from synthetic chemicals, as well as combinations of any of these.

A number of block copolymers can also be used to prepare the elastic reinforcing strands 24 used in this invention. Such block copolymers generally include an elastomeric midblock portion B and a thermoplastic endblock portion A. The block copolymers may also be thermoplastic in the sense that they can be melted, formed, and resolidified several times with little or no change in physical properties (assuming a minimum of oxidative degradation). Alternatively, the elastic strands 24 can be made of a polymer that is not thermally processable, such as LYCRA® spandex, available from E. I. Du Pont de Nemours Co., or cross-linked natural rubber in film or fiber form. Thermoset polymers and polymers such as spandex, unlike the thermoplastic polymers, once cross-linked cannot be thermally processed, but can be obtained on a spool or other form and can be stretched and applied to the strands in the same manner as thermoplastic polymers. As another alternative, the elastic strands 24 can be made of a thermoset polymer, such as AFFINITY®, available from Dow Chemical Co., that can be processed like a thermoplastic, i.e. stretched and applied, and then treated with radiation, such as electron beam radiation, gamma radiation, or UV radiation to cross-link the polymer, or use polymers that have functionality built into them such that they can be moisture-cured to cross-link the polymer, thus resulting in a polymer and the enhanced mechanical properties of a thermoset.

Endblock portion A may include a poly(vinylarene), such as polystyrene. Midblock portion B may include a substantially amorphous polyolefin such as polyisoprene, ethylene/propylene polymers, ethylene/butylenes polymers, polybutadiene, and the like, or mixtures thereof.

Suitable block copolymers useful in this invention include at least two substantially polystyrene endblock portions and at least one substantially ethylene/butylenes mid-block portion. A commercially available example of such a linear block copolymer is available from Kraton Polymers under the trade designation KRATON® G1657 elastomeric resin. Another suitable elastomer is KRATON® G2760. Yet another suitable elastomer is an SIS triblock copolymer available from Dexco, a division of Exxon-Mobil, under the trade designation VECTOR®.

The elastic reinforcing strands 24 may also contain blends of elastic and inelastic polymers, or of two or more elastic polymers, provided that the blend exhibits elastic properties. The strands 24 are substantially continuous in length. The strands 24 may have a circular cross-section but, as previously mentioned, may alternatively have other cross-sectional geometries such as elliptical, rectangular, triangular or multi-lobal. In one embodiment, one or more of the elastic reinforcing strands 24 may be in the form of elongated, rectangular strips produced from a film extrusion die having a plurality of slotted openings. Suitably, the strands include make up about 5% to about 50%, or about 10% to about 35%, or about 15% to about 25% by weight of the film and the elastic strands combined.

The elastic composite laminate 30 included in the garment 100 of the invention suitably includes the above-described elastic composites 20 sandwiched between a facing sheet 32 and a substrate 34 of the garment 100, as shown in FIGS. 8 and 9. Facing materials and substrate materials may be formed using conventional processes, including the spunbond and meltblowing processes described in the DEFINITIONS. For example, the facing sheet 32 and/or substrate 34 may include a spunbonded web having a basis weight of about 0.1-4.0 ounces per square yard (osy), suitably 0.2-2.0 osy, or about 0.4-0.6 osy. As another example, the facing sheet 32 and/or substrate 34 may include a non-porous polyolefin film, such as outer cover material, or a combination of film and spunbond material. The facing sheet 32 and substrate 34 may include the same or similar materials or different materials. Examples of suitable types of facing sheet 32 and substrate 34 combinations include at least one sheet of spunbond and at least one sheet of film, or two sheets of film, or two sheets of spunbond. One or more facing sheets 32 may be present in the laminate 30. For example, the laminate may include two facing sheets 32, one on each surface of the elastic composite 20, and the laminate may then be attached to the garment with one of the facing sheets 32 bonded to the substrate 34.

The substrate 34 is suitably the outer cover 122, the body side liner 124, or any other material of the garment 100 that forms the opening to which the elastomeric composite laminate 30 is attached. The outer cover 122, for example, desirably includes a material that is substantially liquid impermeable, and can be elastic, stretchable or nonstretchable. The outer cover 122 can be a single layer of liquid impermeable material, but desirably includes a multi-layered laminate structure in which at least one of the layers is liquid impermeable. For instance, the outer cover 122 can include a liquid permeable outer layer and a liquid impermeable inner layer that are suitably joined together by a laminate adhesive (not shown). Suitable laminate adhesives, which can be applied continuously or intermittently as beads, a spray, parallel swirls, or the like, can be obtained from Findley Adhesives, Inc., of Wauwatosa, Wis., U.S.A., or from National Starch and Chemical Company, Bridgewater, N.J., U.S.A. The liquid permeable outer layer can be any suitable material and desirably one that provides a generally cloth-like texture. One example of such a material is a 20 gsm (grams per square meter) spunbond polypropylene nonwoven web. The outer layer may also be made of those materials of which the body-side liner 124 is made. While it is not a necessity for the outer layer to be liquid permeable, it is desired that it provides a relatively cloth-like texture to the wearer.

The inner layer of the outer cover 122 can be both liquid and vapor impermeable, or can be liquid impermeable and vapor permeable. The inner layer is desirably manufactured from a thin plastic film, although other flexible liquid impermeable materials may also be used. The inner layer, or the liquid impermeable outer cover 122 when a single layer, prevents waste material from wetting articles, such as bedsheets and clothing, as well as the wearer and care giver. A suitable liquid impermeable film for use as a liquid impermeable inner layer, or a single layer liquid impermeable outer cover 122, is a 0.2 millimeter polyethylene film commercially available from Huntsman Packaging of Newport News, Va., U.S.A. If the outer cover 122 is a single layer of material, it can be embossed and/or matte finished to provide a more cloth-like appearance. The liquid impermeable material can permit vapors to escape from the interior of the garment, while still preventing liquids from passing through the outer cover 122. A suitable “breathable” material is composed of a microporous polymer film or a nonwoven fabric that has been coated or otherwise treated to impart a desired level of liquid impermeability. A suitable microporous film is a PMP-1 film material commercially available from Mitsui Toatsu Chemicals, Inc., Tokyo, Japan, or an XKO-8044 polyolefin film commercially available from 3M Company, Minneapolis, Minn.

The body side liner 124 suitably overlies the outer cover 122 and absorbent assembly, and may but need not have the same dimensions as the outer cover 122. The body side liner 124 is desirably compliant, soft feeling, and non-irritating to the wearer's skin. Further, the body side liner 124 can be less hydrophilic than the absorbent assembly, to present a relatively dry surface to the wearer and permit liquid to readily penetrate through its thickness.

The body side liner 124 can be manufactured from a wide selection of web materials, such as synthetic fibers (for example, polyester or polypropylene fibers), natural fibers (for example, wood or cotton fibers), a combination of natural and synthetic fibers, porous foams, reticulated foams, apertured plastic films, or the like. Various woven and nonwoven fabrics can be used for the body side liner 124. For example, the body side liner can be composed of a meltblown or spunbonded web of polyolefin fibers. The body side liner can also be a bonded-carded web composed of natural and/or synthetic fibers. The body side liner can be composed of a substantially hydrophobic material, and the hydrophobic material can, optionally, be treated with a surfactant or otherwise processed to impart a desired level of wettability and hydrophilicity. For example, the material can be surface treated with about 0.45 weight percent of a surfactant mixture including AHCOVEL® N-62 available from Uniqema Inc., a division of ICI of New Castle, Del., U.S.A. and GLUCOPON® 220UP available from Cognis Corporation of Ambler, Pa., and produced in Cincinnati, Ohio, in an active ratio of 3:1.

A suitable liquid permeable body side liner 124 is a nonwoven bicomponent web having a basis weight of about 27 gsm. The nonwoven bicomponent can be a spunbond bicomponent web, or a bonded carded bicomponent web. Suitable bicomponent staple fibers include a polyethylene/polypropylene bicomponent fiber available from CHISSO Corporation, Osaka, Japan. In this particular bicomponent fiber, the polypropylene forms the core and the polyethylene forms the sheath of the fiber. Other fiber orientations are possible, such as multi-lobe, side-by-side, end-to-end, or the like.

Pant-like garments, such as the training pant shown in FIG. 1, may include a pair of containment flaps 126 which are configured to provide a barrier to the transverse flow of body exudates. The containment flaps 126 can serve as the substrate 34 in the garment of the invention such that the elastomeric composite 20 attaches a facing sheet 32 to each containment flap 126. The elastomeric composite laminate 30 along the edge of each containment flap 126 defines an unattached edge which assumes an upright, generally perpendicular configuration in at least the crotch region of the training pant to form a seal against the wearer's body. Suitable constructions and arrangements for the containment flaps are generally well known to those skilled in the art and are described in U.S. Pat. No. 4,704,116 issued Nov. 3, 1987, to Enloe, which is incorporated herein by reference. Additionally, the elastomeric composite 20 may attach a facing sheet 32 around each leg opening 110 to form leg cuffs 128. In certain embodiments, the elastomeric composite laminate 30 may be present in the containment flaps, the leg cuffs, or both the containment flaps and the leg cuffs.

If the facing sheets 32 and/or substrate 34 are to be applied to the composite 20 without first being stretched, the facing sheets and/or substrate may or may not be capable of being stretched in at least one direction in order to produce an elasticized area. For example, the facing sheets and/or substrate could be necked, or gathered, in order to allow them to be stretched after application of the elastic composite. Various post treatments, such as treatment with grooved rolls, which alter the mechanical properties of the material, are also suitable for use.

FIG. 10 illustrates a method and apparatus for making an elastic composite laminate 30 for incorporation into the garment 100 of the invention. While FIG. 10 illustrates a composite VF SBL process it will be appreciated that other processes consistent with the present invention may be used. A first extruder 36 produces reinforcing strands of elastic material 38 through a filament die 40. The strands 38 are fed to a first chill roller 42 and stretched while conveyed vertically towards a nip 44 by one or more first fly rollers 46 in the strand-producing line. For example, the strands may be stretched between about 300% and about 1000%; alternatively, the strands may be stretched between about 500% and about 800%. Another process parameter is the add-on rate. More specifically, the elastic strands may be adhered to, and partially embedded in, the elastomeric adhesive film at an add-on rate of between about 5 and about 50 grams per minute before stretching.

A second extruder 48 using a slotted film die 50 produces the elastomeric adhesive film 52, which is fed onto a second chill roller 54 and conveyed to one or more second fly rollers 56 towards the nip 44. The film 52 may be stretched down to a narrower width and thinned by the second fly rollers 56 during its passage to the nip 44. The nip 44 is formed by opposing first and second nip rollers 58, 60. The elastic composite 20 is formed by adhering the strands 38 to the elastomeric adhesive film 52 in the nip 44.

FIG. 11 illustrates a VF SBL process in which no fly rollers 46, 56 are used. Instead, the elastomeric adhesive film 52 is extruded onto chill roller 54. The strands 38 are extruded onto chill roller 42 where the strands 38 and the elastomeric adhesive film 52 converge. The strands 38 and the elastomeric adhesive film 52 are stretched between the chill rollers 42, 54 and the nip 44. Except for the lack of fly rollers, the processes of FIGS. 10 and 11 are similar. In either case, the strands 38 and the elastomeric adhesive film 52 together are laminated between a first facing layer 62 and a second facing layer 64 at the nip 44.

In order to form the elastic composite laminate 30, first and second rolls 66 and 68, respectively, of spunbond facing material or other suitable facing material are fed into the nip 44 on either side of the elastic composite and are bonded by the adhesive present in the elastic composite. The facing material might also be made in situ rather than unrolled from previously-made rolls of material. While illustrated as having two lightweight gatherable spunbond facings, it will be appreciated that only one facing material, or various types of facing materials, may be used. Furthermore, one, or both, of the facing materials may be used as a substrate to form the garment of the invention. The elastic composite laminate 30 can be maintained in a stretched condition by a pair of tensioning rollers 70, 72 downstream of the nip 44 and then relaxed as at Ref. No. 74 (FIG. 10).

The resulting elastic composite laminates 30 are particularly useful in providing elasticity in the garment 100 of the invention. More particularly, the elastic composite laminates provide better fit and comfort, as well as less leakage and more tension control compared to conventional elastic strands and elastic strand laminates. Also, by incorporating the strands within the film, the tension load on the resulting laminate is distributed among the entire width of the elastic composite instead of being concentrated on the individual strands. Furthermore, because the strands are incorporated within the film, the elastic composite laminate can be die-cut into virtually any shape to provide enhanced fit and comfort without losing tension.

The laminates used in the garment of this invention are less likely to undergo tension decay or delamination compared to similar laminates lacking the reinforcing strands, as demonstrated in the example below. The tension retaining capability of the laminates insures product performance and reduces or eliminates leakage during use. Furthermore, the reinforcing strands enable the composite tension to be tunable while preserving the soft feel and aesthetic properties of the laminate. Thus, elastic composite laminates can be produced with a desired fit or gasket-like quality in the garment without causing red marks on a wearer's skin due to excessive tension, while preserving the soft and gentle feel and improved adhesion of the laminate.

Adhesive Bond Strength

The adhesive bond strength of the elastomeric adhesive film of the present invention is determined as follows. A test sample of the elastic composite laminate having dimensions of about 2.0 inches (5.08 cm) wide by about 4.0 inches (10.16 cm) long, or as large as possible tip to this size, is used for testing. The adhesive bond strength is determined through the use of a tensile tester, such as a SINTECH tensile tester commercially available from the Sintech Co., Carry, N.C., Model No. II. A 90 degree peel adhesion test is run in order to determine the grams of force needed to pull apart the first and second layers of facing sheet of the laminate. Specifically, 1.25 inches (3.175 cm) or more of the 4-inch length of the test sample has the first and second layers of facing sheet peeled apart. The first facing sheet is then clamped in the upper jaw of the tensile tester, and the second facing sheet is clamped in the lower jaw of the tensile tester.

The tensile tester is set to the following conditions:

The elongation of an elastic composite laminate according to the present invention is suitably determined as follows. A 1-inch wide by 4-inch long sample of the laminate is provided. The central 3-inch (7.62 cm) area of the sample is marked. The test sample is then stretched to its maximum length, and the distance between the marks is measured and recorded as the “stretched to stop length.” The percent elongation is determined according to the following formula:
{(stretched to stop length(in inches))−3}/3×100
If a 1-inch by 4-inch area is not available, the largest sample possible (but less than 1-inch by 4-inches) is used for testing with the method being adjusted accordingly.
Tension Force

The tension force of an elastic composite laminate according to the present invention is determined on a test sample of the laminate having a width of 1 inch (2.54 cm) and a length of 3 inches (7.62 cm). A test apparatus having a fixed clamp and an adjustable clamp is provided. The adjustable clamp is equipped with a strain gauge commercially available from S. A. Mieier Co. under the trade designation Chatillon DFIS2 digital force gauge. The test apparatus can elongate the test sample to a given length. One longitudinal end of the test sample is clamped in the fixed clamp of the test apparatus with the opposite longitudinal end being clamped in the adjustable clamp fitted with the strain gauge. The test sample is elongated to 90 percent of its elongation (as determined by the test method set forth above). The tension force is read from the digital force gauge after 1 minute. At least three samples of the elasticized area are tested in this manner with the results being averaged and reported as grams force per inch width.

In this example, a strand-reinforced laminate material (sample B) was made in accordance with the invention and the tension decay properties were compared to a control (sample A) having the same elastomeric adhesive film composition without the elastic strands. In each case, the film add-on before stretching to 800% was 80 gsm and the elastomeric adhesive film composition was a mixture of 35 wt % PICOLYTE S115 and 65% KRATON G2760, to which 10% Hercules PICOLYTE S25 was added. More particularly, the elastic adhesive film underwent process elongation of between 500% and 800%, resulting in an output basis weight of between 70 and 120 grams per square meter (gsm) before stretching onto a chill roll having a temperature of 10 to 15 degrees Celsius, from a melt tank having a temperature of up to 400 degrees Fahrenheit.

The control spunbond/film/spunbond laminate sample (sample A) was made without any reinforcing strands. The test sample (sample B) was reinforced with VFL extruded strands of tackified SBL styrenic block copolymer available under the trade designation KRATON® G 2760 from Kraton Polymers, adhered to the elastic adhesive film. The test sample was prepared by extruding the strands and the elastomeric adhesive film on separate chill rolls. The die configuration through which the strands were extruded had 12 holes per inch with a 0.030 inch diameter opening. The output of the strands in terms of grams per minute (gpm) was 29.5 gpm for 120 strands per 10-inch die width, extruded on a chill roll at a speed of 6-8 feet per minute. Following the chill rolls, the strands and film were independently stretched to 700%. Thereafter, the film and strands were combined with spunbond webs on each side and laminated continuously to produce a material with tunable elastic properties.

Key process conditions versus physical properties (tension decay and adhesion) are summarized in Table 1. The tension decay was measured by first measuring the “green” tension at 100% elongation of a 2-inch wide, 5-inch long sample containing 24 strands (no strands in the case of the control sample). The tension reading was recorded from an electronic gauge one minute after clamping. After aging the samples at 130 degrees Fahrenheit for 1 day, the “aged” tension was then measured in the, same manner as the green tension and the resulting aged tension was compared to the green tension to determine whether, or to what extent, tension decay occurred. The tension decay value is calculated by the percent difference between green and aged tension readings. A lower value of tension decay is indicative of improved elastic material performance. The tension decay of the strand-reinforced composite is much lower (12.8%) than in the case of no strands (62%). In either case the formulation has excellent adhesion properties with no indications of delamination after continued aging at 130 degrees Fahrenheit for 2 weeks. By exhibiting no delamination, it is meant that the laminates cannot be peeled apart without facing material failure. In this Example, delamination was visually determined as opposed to carrying out a peel test. Visual observations focused on the presence of any air pockets detected between layers of the laminate.

Tension of the elastic composite is tunable by varying the strand add-on and stretch percentage, with greater add-on and greater stretch both resulting in greater tension. Sample observations further reveal that soft feel and aesthetic properties of the laminates are preserved with the addition of the strands.

TABLE 1
Comparison of Tension Decay and Adhesion Properties
of Novel Elastic Composite Laminates
Green
tension Aged
Output of Strand (grams), tension Ten-
extruded process 2-inch (grams) sion
strands stretch wide 1 day at decay Aged sample
Sample (gpm) (%) sample 130° F. (%) observations
A None 340 130 62.0 No
(control) delamination
B 29.5 700 350 305 12.8 No
(stranded delamination
com-
posite)

In this example, the strand-reinforced laminate material (sample B) of Example 1 was incorporated into the leg cuff portion of a personal care garment, as indicated by the reference number 30 in FIG. 1. The “in-product” tension properties were evaluated and compared to conventional spunbonded laminates (SBL) and Lycra laminates (including Lycra strands adhered with elastic attachment adhesive). The “in-product” tension values of the elasticized laminate composite portion of the personal care garment are shown in Table 2 and were measured as follows.

The garment was extended flat on a lightbox and clamped at one end while a 1000 gram weight in the form of a bar was attached at the other end, resulting in stretching of the material in the machine direction. Two marks corresponding to a discrete gauge length value in the range of 4-7 inches were placed on the stretched elastic portion. The weight was removed and the retracted elastic laminate composite was cut out from the product, normally as a 1-inch wide strip. The cut elastic strip was mounted in a Chantillon tension gauge and stretched to 90% of gauge length. The tension in grams was recorded after a one-minute waiting period. The elasticized strips were evaluated for tension before and after the product was worn at body temperature in order to evaluate the degree of tension decay as a result of wearing the article. A lower degree of tension decay (as measured by the percentage difference between post-wear and pre-wear) is indicative of a better performing elastic material. Tension measurements before and after wear show a significant drop for conventional SBL laminate control (−22%). The tension drop for the other control of conventional Lycra laminate was significant as well (−10%). However, the laminate made from the strand-reinforced elastomeric adhesive film of the invention had no tension loss and actually gained some tension as a result of wearing at body temperature. The elastic adhesive laminate of the invention with no tension loss provides superior gasketing performance compared to conventional materials.

TABLE 2
Comparative Tension of Laminates
Tension (grams), Tension (grams),
Material before wear after wear % difference
SBL laminate 127.5 104.5 −22.0
Lycra laminate 120.8 109.4 −10.0
Strand-reinforced 141.5 144.6 +2.1
laminate

It will be appreciated that details of the foregoing embodiments, given for purposes of illustration, are not to be construed as limiting the scope of this invention. Although only a few exemplary embodiments of this invention have been described in detail above, those skilled in the art will readily appreciate that many modifications are possible in the exemplary embodiments without materially departing from the novel teachings and advantages of this invention. Accordingly, all such modifications are intended to be included within the scope of this invention, which is defined in the following claims and all equivalents thereto. Further, it is recognized that many embodiments may be conceived that do not achieve all of the advantages of some embodiments, particularly of the preferred embodiments, yet the absence of a particular advantage shall not be construed to necessarily mean that such an embodiment is outside the scope of the present invention.

Zhou, Peiguang, Neculescu, Cristian M., Garrett, Jr., Lance J.

Patent Priority Assignee Title
10058460, Jun 21 2011 The Procter & Gamble Company Absorbent article with waistband having contraction
10167156, Jul 24 2015 CURT G JOA, INC Vacuum commutation apparatus and methods
10206825, Apr 29 2011 The Procter & Gamble Company Absorbent article with leg gasketing cuff
10266362, Feb 21 2007 Curt G. Joa, Inc. Single transfer insert placement method and apparatus
10456302, May 18 2006 CURT G JOA, INC Methods and apparatus for application of nested zero waste ear to traveling web
10485710, Mar 18 2015 The Procter & Gamble Company Absorbent article with leg cuffs
10494216, Jul 24 2015 Curt G. Joa, Inc. Vacuum communication apparatus and methods
10524962, Mar 18 2015 THE PROCTER & GAMBLE OMPANY Absorbent article with waist gasketing element and leg cuffs
10524963, Mar 18 2015 The Procter & Gamble Company Absorbent article with waist gasketing element and leg cuffs
10531990, Mar 18 2015 The Procter & Gamble Company Absorbent article with leg cuffs
10531991, Mar 18 2015 The Procter & Gamble Company Absorbent article with waist gasketing element and leg cuffs
10537481, Mar 18 2015 Procter & Gamble Company Absorbent article with waist gasketing element and leg cuffs
10543130, Mar 18 2015 The Procter & Gamble Company Absorbent article with leg cuffs
10543131, Mar 18 2015 The Procter & Gamble Company Absorbent article with leg cuffs
10583049, Mar 18 2015 The Procter & Gamble Company Absorbent article with waist gasketing element and leg cuffs
10588789, Mar 18 2015 The Procter & Gamble Company Absorbent article with leg cuffs
10588790, Mar 18 2015 The Procter & Gamble Company Absorbent article with leg cuffs
10588791, Mar 18 2015 The Procter & Gamble Company Absorbent article with waist gasketing element and leg cuffs
10603226, Mar 18 2015 The Procter & Gamble Company Absorbent article with leg cuffs
10633207, Jul 24 2015 Curt G. Joa, Inc. Vacuum commutation apparatus and methods
10675190, Mar 22 2013 The Procter and Gamble Company Disposable absorbent articles
10702428, Apr 06 2009 Curt G. Joa, Inc. Methods and apparatus for application of nested zero waste ear to traveling web
10716716, Mar 18 2015 The Procter & Gamble Company Absorbent article with leg cuffs
10751220, Feb 20 2012 CURT G JOA, INC Method of forming bonds between discrete components of disposable articles
10792198, Mar 18 2015 The Procter & Gamble Company Absorbent article with leg cuffs
10806638, Jun 21 2011 The Procter & Gamble Company Absorbent article with a waistband and leg cuff having gathers
10918534, Apr 29 2011 The Procter & Gamble Company Absorbent article with leg gasketing cuff
11013642, May 15 2012 The Procter & Gamble Company Disposable absorbent pants with advantageous stretch and manufacturability features, and methods for manufacturing the same
11034543, Apr 24 2012 CURT G JOA, INC Apparatus and method for applying parallel flared elastics to disposable products and disposable products containing parallel flared elastics
11458045, Mar 18 2015 The Procter & Gamble Company Absorbent article with leg cuffs
11478385, Mar 18 2015 The Procter & Gamble Company Absorbent article with waist gasketing element and leg cuffs
11504282, Mar 18 2015 The Procter & Gamble Company Absorbent article with leg cuffs
11504283, Mar 18 2015 The Procter & Gamble Company Absorbent article with waist gasketing element and leg cuffs
11571343, Apr 29 2011 The Procter & Gamble Company Absorbent article with leg gasketing cuff
11737930, Feb 27 2020 Curt G. Joa, Inc. Configurable single transfer insert placement method and apparatus
11752044, Mar 18 2015 The Procter & Gamble Company Absorbent article with leg cuffs
11833012, Mar 18 2015 The Procter & Gamble Company Absorbent article with waist gasketing element and leg cuffs
11844669, Mar 18 2015 The Procter & Gamble Company Absorbent article with waist gasketing element and leg cuffs
7316840, Jul 02 2002 Kimberly-Clark Worldwide, Inc Strand-reinforced composite material
7452436, Mar 09 2005 CURT G JOA, INC Transverse tape application method and apparatus
7533709, May 31 2005 CURT G JOA, INC High speed vacuum porting
7537215, Jun 15 2004 CURT G JOA, INC Method and apparatus for securing stretchable film using vacuum
7618513, May 31 2005 CURT G JOA, INC Web stabilization on a slip and cut applicator
7638014, May 21 2004 CURT G JOA, INC Method of producing a pants-type diaper
7640962, Apr 20 2004 CURT G JOA, INC Multiple tape application method and apparatus
7703599, Apr 19 2004 CURT G JOA, INC Method and apparatus for reversing direction of an article
7708849, Apr 20 2004 CURT C JOA, INC Apparatus and method for cutting elastic strands between layers of carrier webs
7717893, Jun 04 2004 The Procter & Gamble Company Absorbent articles comprising a slow recovery elastomer
7770712, Feb 17 2006 CURT G JOA, INC Article transfer and placement apparatus with active puck
7780052, May 18 2006 CURT G JOA, INC Trim removal system
7811403, Mar 09 2005 CURT G JOA, INC Transverse tab application method and apparatus
7861756, Apr 20 2004 Curt G. Joa, Inc. Staggered cutting knife
7905872, Jun 04 2004 The Procter & Gamble Company; Procter & Gamble Company, The Absorbent articles comprising a slow recovery stretch laminate
7909956, May 21 2004 Curt G. Joa, Inc. Method of producing a pants-type diaper
7975584, Feb 21 2007 CURT G JOA, INC Single transfer insert placement method and apparatus
8016972, May 09 2007 CURT G JOA, INC Methods and apparatus for application of nested zero waste ear to traveling web
8029488, Jan 26 2005 The Procter & Gamble Company Disposable pull-on diaper having a low force, slow recovery elastic waist
8172977, Apr 06 2009 CURT G JOA, INC Methods and apparatus for application of nested zero waste ear to traveling web
8182624, Mar 12 2008 CURT G JOA, INC Registered stretch laminate and methods for forming a registered stretch laminate
8226625, Apr 08 2009 Procter & Gamble Company, The Stretchable laminates of nonwoven web(s) and elastic film
8226626, Apr 08 2009 Procter & Gamble Company, The Stretchable laminates of nonwoven web(s) and elastic film
8231595, Apr 08 2009 Procter & Gamble Company, The Stretchable laminates of nonwoven web(s) and elastic film
8293056, May 18 2006 Curt G. Joa, Inc. Trim removal system
8323257, Nov 21 2007 The Procter & Gamble Company Absorbent articles comprising a slow recovery stretch laminate and method for making the same
8388594, Apr 08 2009 Procter & Gamble Company, The Stretchable laminates of nonwoven web(s) and elastic film
8398793, Jul 20 2007 CURT G JOA, INC Apparatus and method for minimizing waste and improving quality and production in web processing operations
8417374, Apr 19 2004 CURT G JOA, INC Method and apparatus for changing speed or direction of an article
8419701, Jan 10 2005 The Procter & Gamble Company Absorbent articles with stretch zones comprising slow recovery elastic materials
8460495, Dec 30 2009 CURT G JOA, INC Method for producing absorbent article with stretch film side panel and application of intermittent discrete components of an absorbent article
8506544, Jun 21 2010 Procter & Gamble Company, The Disposable absorbent pant with efficient design and convenient single-section side stretch panels
8557077, May 21 2004 Curt G. Joa, Inc. Method of producing a pants-type diaper
8656817, Mar 09 2011 CURT G JOA, INC Multi-profile die cutting assembly
8663411, Jun 07 2010 CURT G JOA, INC Apparatus and method for forming a pant-type diaper with refastenable side seams
8673098, Oct 28 2009 CURT G JOA, INC Method and apparatus for stretching segmented stretchable film and application of the segmented film to a moving web
8709191, May 15 2008 Kimberly-Clark Worldwide, Inc Latent elastic composite formed from a multi-layered film
8794115, Feb 21 2007 Curt G. Joa, Inc. Single transfer insert placement method and apparatus
8820380, Jul 21 2011 CURT G JOA, INC Differential speed shafted machines and uses therefor, including discontinuous and continuous side by side bonding
8939957, Apr 29 2011 Procter & Gamble Company, The Absorbent article with leg gasketing cuff
9017305, Nov 12 2010 Procter & Gamble Company, The Elastomeric compositions that resist force loss and disintegration
9089453, Dec 30 2009 CURT G JOA, INC Method for producing absorbent article with stretch film side panel and application of intermittent discrete components of an absorbent article
9089455, Apr 29 2011 The Procter & Gamble Company Absorbent article with leg gasketing cuff
9283683, Jul 24 2013 CURT G JOA, INC Ventilated vacuum commutation structures
9289329, Dec 05 2013 CURT G JOA, INC Method for producing pant type diapers
9327477, Jan 24 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Elastomeric materials
9358161, Jun 21 2011 The Procter & Gamble Company Absorbent article with waistband having contraction
9387131, Jul 20 2007 CURT G JOA, INC Apparatus and method for minimizing waste and improving quality and production in web processing operations by automated threading and re-threading of web materials
9433538, May 18 2006 CURT G JOA, INC Methods and apparatus for application of nested zero waste ear to traveling web and formation of articles using a dual cut slip unit
9498392, Apr 29 2011 The Proctor and Gamble Company Absorbent article with leg gasketing cuff
9550306, Feb 21 2007 CURT G JOA, INC Single transfer insert placement and apparatus with cross-direction insert placement control
9566193, Feb 25 2011 CURT G JOA, INC Methods and apparatus for forming disposable products at high speeds with small machine footprint
9566195, Jun 21 2011 The Procter & Gamble Company Absorbent article with waistband having contraction
9603752, Aug 05 2010 CURT G JOA, INC Apparatus and method for minimizing waste and improving quality and production in web processing operations by automatic cuff defect correction
9610203, Mar 22 2013 The Procter & Gamble Company Disposable absorbent articles
9622918, Apr 06 2009 CURT G JOA, INC Methods and apparatus for application of nested zero waste ear to traveling web
9669606, Jan 24 2008 U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT Elastomeric materials
9724248, May 15 2008 Kimberly-Clark Worldwide, Inc Latent elastic composite formed from a multi-layered film
9737444, Jun 21 2011 The Procter & Gamble Company Absorbent article with a waistband and leg cuffs having gathers
9809414, Apr 24 2012 CURT G JOA, INC Elastic break brake apparatus and method for minimizing broken elastic rethreading
9907706, Feb 25 2011 Curt G. Joa, Inc. Methods and apparatus for forming disposable products at high speeds with small machine footprint
9908739, Apr 24 2012 CURT G JOA, INC Apparatus and method for applying parallel flared elastics to disposable products and disposable products containing parallel flared elastics
9944487, Feb 21 2007 CURT G JOA, INC Single transfer insert placement method and apparatus
9950439, Feb 21 2007 Curt G. Joa, Inc. Single transfer insert placement method and apparatus with cross-direction insert placement control
D684613, Apr 14 2011 CURT G JOA, INC Sliding guard structure
D703247, Aug 23 2013 CURT G JOA, INC Ventilated vacuum commutation structure
D703248, Aug 23 2013 CURT G JOA, INC Ventilated vacuum commutation structure
D703711, Aug 23 2013 CURT G JOA, INC Ventilated vacuum communication structure
D703712, Aug 23 2013 CURT G JOA, INC Ventilated vacuum commutation structure
D704237, Aug 23 2013 CURT G JOA, INC Ventilated vacuum commutation structure
RE48182, Aug 02 2011 Curt G. Joa, Inc. Apparatus and method for minimizing waste and improving quality and production in web processing operations by automatic cuff defect correction
Patent Priority Assignee Title
2206761,
2266761,
2357392,
2464301,
2483405,
2957512,
2957852,
3186893,
3338992,
3341394,
3371668,
3391048,
3439085,
3449187,
3468748,
3489148,
3502538,
3502763,
3542615,
3575782,
3616129,
3629047,
3669823,
3673026,
3676242,
3689342,
3692618,
3752613,
3773590,
3802817,
3806289,
3836416,
3838692,
3849241,
3855046,
3857144,
3860003,
3890184,
3904465,
3912567,
3917448,
3932328, Nov 02 1971 AVERY INTERNATIONAL CORPORATION, A DE CORP Hot melt adhesive composition and tape
3949128, Aug 22 1972 Kimberly-Clark Corporation Product and process for producing a stretchable nonwoven material from a spot bonded continuous filament web
3949130, Jan 04 1974 TUFF SPUN PRODUCTS, INC Spun bonded fabric, and articles made therefrom
3973063, Nov 21 1974 Mobil Oil Corporation Spot blocked thermoplastic film laminate
3978185, Dec 23 1968 Exxon Research and Engineering Company Melt blowing process
3979050, Sep 21 1973 VISKASE CORPORATION, A CORP OF PA Multi-ply film articles
4013816, Nov 20 1975 Draper Products, Inc. Stretchable spun-bonded polyolefin web
4028292, May 23 1974 PERMACEL, ROUTE #1, NORTH BRUNSWICK, NEW JERSEY 08902, A NEW JERSEY CORP ; PERMACEL, A NJ CORP Hot melt adhesive
4038346, Mar 31 1975 The Goodyear Tire & Rubber Company Tackifier composition and rubber mixture
4041203, Sep 06 1972 Kimberly-Clark Corporation Nonwoven thermoplastic fabric
4080348, May 18 1976 Johnson & Johnson Tacky adhesive
4090385, Jan 26 1977 MICREX CORPORATION, A CORP OF MA; MICREX CORPORATION, WALPOLE, MA A CORP OF MA Material treating apparatus
4100324, Mar 26 1974 Kimberly-Clark Corporation Nonwoven fabric and method of producing same
4107364, Jun 06 1975 The Procter & Gamble Company Random laid bonded continuous filament cloth
4135037, Jun 15 1977 Phillips Petroleum Company Adhesives and laminates
4148676, Nov 12 1969 Bjorksten Research Laboratories, Inc. Non-woven articles made from continuous filaments coated in high density fog with high turbulence
4209563, Jun 06 1975 The Procter & Gamble Company Method for making random laid bonded continuous filament cloth
4211807, Aug 08 1975 Polymer Processing Research Institute Ltd.; Sekisui Kagaku Kogyo Kabushiki Kaisha Reinforced non-woven fabrics and method of making same
4239578, Oct 16 1979 PARAGON TRADE BRANDS, INC Apparatus for inserting elastic strips during the manufacture of elastic leg disposable diapers
4241123, Nov 14 1978 Non-woven netting
4248652, Mar 30 1978 INOMONT CORPORATION Method of making leatherlike materials (A)
4259220, Dec 06 1978 H B FULLER LICENSING & FINANCING, INC A CORPORATION OF DE Hot melt adhesive for elastic banding
4285998, Jul 26 1976 LEUCADIA, INC , A CORP OF NY ; LEUCADIA, INC , A CORP OF NEW YORK Reinforced thermoplastic film sheet
4300562, Feb 11 1980 JOHNSON & JOHNSON CONSUMER PRODUCTS, INC , A NJ CORP Laminated structures having gathered marginal portions
4302495, Aug 14 1980 PROVIDENT NATIONAL BANK, A CORP OF DE Nonwoven fabric of netting and thermoplastic polymeric microfibers
4303571, Jan 17 1980 ADVANCED ELASTOMER SYSTEMS, L P AES Film-forming thermoplastic elastomeric polymer compositions
4304234, Jun 19 1979 CARL FREUDENBERG,A BUSINESS ORGANIZATION OF GERMANY Non-woven fabrics of polyolefin filament and processes of production thereof
4310594, Jul 01 1980 Teijin Limited Composite sheet structure
4319572, Jul 02 1979 Molnlycke AB Disposable diaper
4323534, Dec 17 1979 The Procter & Gamble Company Extrusion process for thermoplastic resin composition for fabric fibers with exceptional strength and good elasticity
4333782, Feb 11 1980 JOHNSON & JOHNSON CONSUMER PRODUCTS, INC , A NJ CORP Method of making laminated structures having gathered and ungathered marginal portions
4340558, May 05 1976 Colgate-Palmolive Company Scrim reinforced plastic film
4340563, May 05 1980 Kimberly-Clark Worldwide, Inc Method for forming nonwoven webs
4374888, Sep 25 1981 Kimberly-Clark Worldwide, Inc Nonwoven laminate for recreation fabric
4375446, May 01 1978 TOA NENRYO KOGYO K K A CORP OF JAPAN Process for the production of a nonwoven fabric
4402688, Oct 27 1981 Colgate-Palmolive Disposable diaper with contoured elastic
4405397, Oct 16 1979 PARAGON TRADE BRANDS, INC Process for manufacturing elastic leg disposable diapers
4413623, Feb 17 1981 JOHNSON & JOHNSON CONSUMER PRODUCTS, INC , A NJ CORP Laminated structures having gathered and ungathered marginal portions and method of manufacturing the same
4417935, Oct 13 1981 Paper Converting Machine Company Method of diaper manufacture
4418123, Sep 22 1978 H B FULLER LICENSING & FINANCING, INC A CORPORATION OF DE Extrudable self-adhering elastic and method of employing same
4438167, Oct 15 1979 Biax Fiberfilm Corporation Novel porous fabric
4440819, Dec 27 1982 Hughes Aircraft Company Interconnection of unidirectional fiber arrays with random fiber networks
4490427, Jun 14 1982 Firma Carl Freudenberg Adhesive webs and their production
4496417, Nov 12 1982 Graphic Packaging Corporation Control stretch laminating device
4507163, Aug 27 1981 JOHNSON & JOHNSON CONSUMER PRODUCTS, INC , A NJ CORP Imparting an inelastic and elastic character to predetermined portions of an elastic web for use in making disposable diapers
4522863, Jun 21 1984 Kimberly-Clark Worldwide, Inc Soft nonwoven laminate bonded by adhesive on reinforcing scrim
4525407, Aug 27 1982 CHASE MANHATTAN BANK, THE, THE Elastic composites
4543099, Mar 26 1981 H B FULLER LICENSING & FINANCING, INC A CORPORATION OF DE Method for imparting elastic properties to a flexible substrate
4548859, Oct 12 1984 The Boeing Company; Boeing Company, the Breather material and method of coating fabric with silicone rubber
4552795, Dec 27 1983 Minnesota Mining and Manufacturing Co. Inelastic, heat-elasticizable sheet material
4555811, Jun 13 1984 CHASE MANHATTAN BANK, THE, THE Extensible microfine fiber laminate
4572752, Nov 12 1982 Graphic Packaging International, Inc Control stretch laminating device
4586199, Dec 21 1982 Molnlycke AB Elastic pants
4606964, Nov 22 1985 Kimberly-Clark Worldwide, Inc Bulked web composite and method of making the same
4618384, Sep 09 1983 Method for applying an elastic band to diapers
4626305, Apr 14 1982 PARAGON TRADE BRANDS,INC Disposable diaper and method for incorporation of elastic member into such diaper
4636419, Aug 13 1973 KAYSERSBERG PACKAGING, S A Net and method of producing same
4640859, Dec 27 1983 Minnesota Mining and Manufacturing Company Inelastic, heat-elasticizable sheet material for diapers
4644045, Mar 14 1986 FIBERWEB NORTH AMERICA, INC , 545 NORTH PLEASANTBURG DRIVE, GREENVILLE, SC 29607, A CORP OF DE Method of making spunbonded webs from linear low density polyethylene
4652487, Jul 30 1985 Kimberly-Clark Worldwide, Inc Gathered fibrous nonwoven elastic web
4656081, Apr 25 1983 Toray Industries, Inc. Smooth nonwoven sheet
4657793, Jul 16 1984 Ethicon, Inc Fibrous structures
4657802, Jul 30 1985 Kimberly-Clark Worldwide, Inc Composite nonwoven elastic web
4661389, Mar 27 1984 LEUCADIA, INC , A CORP OF NY ; LEUCADIA, INC , A CORP OF NEW YORK Multiple-layer reinforced laminate
4663220, Jul 30 1985 Kimberly-Clark Worldwide, Inc Polyolefin-containing extrudable compositions and methods for their formation into elastomeric products including microfibers
4666543, Aug 06 1982 Kasasumi Laboratories, Inc. Hollow fiber device for removing waste material in the blood and a process of manufacture thereof
4675068, Nov 28 1984 FIBRE CONVERTING MACHINERY AB Arrangement for bonding an elastic ribbon to a plastics web with the aid of an adhesive
4683877, Oct 04 1985 Minnesota Mining and Manufacturing Company Orthopedic casting article and method
4687477, Apr 14 1982 PARAGON TRADE BRANDS,INC Disposable diaper and method for incorporation of elastic member into such diaper
4692368, Oct 15 1986 Kimberly-Clark Worldwide, Inc Elastic spunlaced polyester-meltblown polyetherurethane laminate
4692371, Jul 30 1985 Kimberly-Clark Worldwide, Inc High temperature method of making elastomeric materials and materials obtained thereby
4698242, Aug 12 1985 National Starch and Chemical Corporation Thermoplastic elastic adhesive containing polyether block amides
4704116, Jul 02 1984 Kimberly-Clark Worldwide, Inc Diapers with elasticized side pockets
4718901, Oct 24 1984 NORDSAN HYGIEN AB, A CORP OF SWEDEN Incontinence diaper
4719261, Sep 22 1978 H B FULLER LICENSING & FINANCING, INC A CORPORATION OF DE Hot melt adhesive for elastic banding and method for utlizing the same
4720415, Jul 30 1985 Kimberly-Clark Worldwide, Inc Composite elastomeric material and process for making the same
4725468, Feb 06 1986 MAY COATING TECHNOLOGIES, INC Method of co-extrusion of different coating materials, including adhesive coating with intermittent non-adhering sections, and products produced thereby
4726874, Mar 31 1987 PARAGON TRADE BRANDS,INC Waist elastic applicator for diaper or similar article
4734311, Jan 16 1985 Kimberly-Clark Worldwide, Inc Elasticized non-woven fabric and method of making the same
4734320, Apr 24 1986 Nitto Electric Industrial Co., Ltd. Stretchable cloth adhesive tape
4734447, Sep 24 1985 Sunstar Giken Kabushiki Kaisha Hot-melt adhesive
4735673, Feb 19 1987 COLGATE-PALMOLIVE COMPANY, A CORP OF DE Machine for fastening stretched pieces of elastic band traversely to a continuously moving sheet
4756942, Sep 18 1986 Vitapharm Basel AG Elastic fabric
4761198, Aug 12 1985 National Starch and Chemical Corporation Use of a thermoplastic elastic adhesive for elastic banding
4762582, Mar 25 1983 P E A U D O U C E, A FRENCH SOCIETE ANONYME Continuous process for the manufacture of disposable diapers
4775579, Nov 05 1987 FIBERWEB NORTH AMERICA, INC , Hydroentangled elastic and nonelastic filaments
4777080, Oct 15 1986 Kimberly-Clark Worldwide, Inc Elastic abrasion resistant laminate
4781966, Oct 15 1986 UNIVERSITY OF TENNESSEE RESEARCH CORPORATION, THE Spunlaced polyester-meltblown polyetherester laminate
4787699, Sep 01 1987 HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company Fiber optic terminus
4789699, Oct 15 1986 Kimberly-Clark Worldwide, Inc Ambient temperature bondable elastomeric nonwoven web
4795668, Oct 11 1983 Minnesota Mining and Manufacturing Company Bicomponent fibers and webs made therefrom
4798603, Oct 16 1987 Kimberly-Clark Worldwide, Inc Absorbent article having a hydrophobic transport layer
4801345, Sep 15 1980 PEAUDOUCE SOCIETE ANONYME Process for manufacturing disposable diapers and diaper briefs, and disposable diapers and diaper briefs obtained by application of this process
4801482, Oct 15 1986 Kimberly-Clark Worldwide, Inc Elastic nonwoven pad
4803117, Mar 24 1986 Kimberly-Clark Worldwide, Inc Coformed ethylene-vinyl copolymer elastomeric fibrous webs
4804577, Jan 27 1987 Exxon Chemical Patents Inc. Melt blown nonwoven web from fiber comprising an elastomer
4818464, Aug 30 1984 Kimberly-Clark Worldwide, Inc Extrusion process using a central air jet
4818597, Jan 27 1988 Kimberly-Clark Worldwide, Inc Health care laminate
4826415, Oct 21 1986 Mitsui Chemicals, Inc Melt blow die
4842666, Mar 07 1987 H B FULLER LICENSING & FINANCING, INC A CORPORATION OF DE Process for the permanent joining of stretchable threadlike or small ribbonlike elastic elements to a flat substrate, as well as use thereof for producing frilled sections of film or foil strip
4854985, Nov 24 1986 PARAGON TRADE BRANDS,INC Method for manufacture of an elastic leg diaper
4854989, Oct 24 1984 NORDSAN HYGIEN AB Method of afixing elastic bands in an incontinence diaper
4863779, Mar 24 1986 Kimberly-Clark Worldwide, Inc Composite elastomeric material
4867735, Oct 01 1987 First Brands Corporation Method and apparatus for continuous production of bags from thermoplastic film
4874447, Jan 27 1987 TENNESSEE RESEARCH CORPORATION, THE UNIVERSITY OF Melt blown nonwoven web from fiber comprising an elastomer
4879170, Mar 18 1988 Kimberly-Clark Worldwide, Inc Nonwoven fibrous hydraulically entangled elastic coform material and method of formation thereof
4883482, Dec 11 1984 COLGATE-PALMOLIVE COMPANY, A CORP OF DE Napkin-knickers provided with an improved elastic arrangement
4883549, Dec 06 1988 Kimberly-Clark Worldwide, Inc Method of attaching a composite elastic material to an article
4891258, Dec 22 1987 Kimberly-Clark Worldwide, Inc Stretchable absorbent composite
4892536, Sep 02 1988 The Procter & Gamble Company; Procter & Gamble Company, The Absorbent article having elastic strands
4892903, Jul 07 1986 SHELL ELASTOMERS LLC Elastomeric fibers, structures fashioned therefrom and elastomeric films
4900619, Oct 17 1988 BBA NONWOVENS SIMPSONVILLE, INC Translucent housewrap
4906507, Mar 13 1987 Freudenberg Nonwovens Limited Partnership Composite adhesive webs and their production
4908247, Apr 15 1986 PROCTER & GAMBLE COMPANY, THE, Article including segment which is elastically shirrable after manufacture
4908253, Dec 11 1974 High strength laminate with barrier layer
4910064, May 25 1988 TUFF SPUN FABRICS, INC Stabilized continuous filament web
4917696, Jan 19 1983 PEAUDOUCE, A FRENCH SOCIETY ANONYME Disposable diaper pantie
4917746, Jun 21 1982 Kimberly-Clark Worldwide, Inc Apparatus and method for contouring elastic ribbon on disposable garments
4929492, Jul 24 1987 Minnesota Mining and Manufacturing Company Stretchable insulating fabric
4935021, Oct 27 1988 Paragon Trade Brands, LLC Disposal diaper with center gathers
4938821, Apr 10 1986 PARAGON TRADE BRANDS,INC Method and apparatus for manufacture of a diaper with elastic margins
4939016, Mar 18 1988 Kimberly-Clark Worldwide, Inc Hydraulically entangled nonwoven elastomeric web and method of forming the same
4940464, Dec 16 1987 Kimberly-Clark Worldwide, Inc Disposable incontinence garment or training pant
4949668, Jun 16 1988 Kimberly-Clark Worldwide, Inc Apparatus for sprayed adhesive diaper construction
4965122, Sep 23 1988 Kimberly-Clark Worldwide, Inc Reversibly necked material
4968313, Apr 27 1987 Procter & Gamble Company, The Diaper with waist band elastic
4970259, Aug 16 1989 SHELL ELASTOMERS LLC Elastomeric film composition
4977011, Sep 19 1988 Paragon Trade Brands, LLC Disposable elastic structure
4981747, Sep 23 1988 Kimberly-Clark Worldwide, Inc Composite elastic material including a reversibly necked material
4984584, Jan 16 1987 Riker Laboratories, Inc. High elastic modulus bandage
4994508, Jul 16 1987 Asahi Kasei Kogyo Kabushiki Kaisha Specific hydrogenated block copolymer composition and process for producing the same
4995928, Oct 31 1988 Method and apparatus for forming and transporting elastic ribbons
4998929, Jul 17 1986 Molnlycke AB Disposable diaper
5000806, Apr 19 1988 Paper Converting Machine Company Method and apparatus for applying an elastic strand to a disposable diaper
5002815, Feb 02 1988 Chisso Corporation Bulky and reinforced non-woven fabric
5005215, Nov 09 1989 Protective article of clothing
5013785, Oct 08 1986 Mitsui Chemicals, Inc Pressure-sensitive adhesive composition comprising poly-4-methyl-1-pentene as tackifier
5028646, Aug 04 1988 Minnesota Mining and Manufacturing Company Pressure-sensitive adhesive composition, tape and diaper closure system
5032120, Mar 09 1989 The Procter & Gamble Company Disposable absorbent article having improved leg cuffs
5034008, Nov 07 1989 Chicopee Elasticized absorbent article
5045133, Jan 27 1988 Kimberly-Clark Worldwide, Inc Health care laminate
5057368, Dec 21 1989 Allied-Signal Filaments having trilobal or quadrilobal cross-sections
5060349, Apr 02 1987 WALTON, RICHARD C Compressive treatment of webs
5069970, Jan 23 1989 Allied-Signal Inc. Fibers and filters containing said fibers
5073436, Sep 25 1989 Propex Operating Company, LLC Multi-layer composite nonwoven fabrics
5093422, Apr 23 1990 SHELL ELASTOMERS LLC Low stress relaxation extrudable elastomeric composition
5096532, Nov 17 1987 Kimberly-Clark Worldwide, Inc Ultrasonic rotary horn
5100435, Dec 04 1990 Kimberly-Clark Worldwide, Inc Meltblown nonwoven webs made from epoxy/pcl blends
5108820, Apr 25 1989 Mitsui Chemicals, Inc Soft nonwoven fabric of filaments
5110403, May 18 1990 Kimberly-Clark Worldwide, Inc High efficiency ultrasonic rotary horn
5112889, Aug 31 1987 Minnesota Mining and Manufacturing Company Pressure-sensitive adhesive composition, tape and diaper closure system
5114087, Sep 21 1990 SHIMABUN CO , LTD Fiber combiner for aligning filaments in a planar filament array
5116662, Dec 15 1989 Kimberly-Clark Worldwide, Inc Multi-direction stretch composite elastic material
5145727, Nov 26 1990 Kimberly-Clark Worldwide, Inc Multilayer nonwoven composite structure
5147487, Jun 29 1989 Uni-Charm Corporation Method of manufacturing disposable underpants by applying annular adhesive zones to the backsheet and top sheet for retaining elastic for leg holes
5149741, Jul 21 1989 Findley Adhesives, Inc. Hot melt construction adhesives for disposable soft goods
5169706, Jan 10 1990 Kimberly-Clark Worldwide, Inc Low stress relaxation composite elastic material
5169712, Aug 23 1991 RKW SE Porous film composites
5176668, Apr 13 1984 Kimberly-Clark Worldwide, Inc Absorbent structure designed for absorbing body fluids
5176672, Nov 13 1990 Kimberly-Clark Worldwide, Inc Pocket-like diaper or absorbent article
5178931, Nov 26 1990 Kimberly-Clark Worldwide, Inc Three-layer nonwoven laminiferous structure
5186779, Aug 21 1989 ELASTIC CORPORATION OF AMERICA, INC Method of making an elastic waistband with releasably secured drawstring
5188885, Sep 08 1989 Kimberly-Clark Worldwide, Inc Nonwoven fabric laminates
5192606, Sep 11 1991 Kimberly-Clark Worldwide, Inc Absorbent article having a liner which exhibits improved softness and dryness, and provides for rapid uptake of liquid
5198281, Apr 17 1989 Georgia Tech Research Corporation Non-woven flexible multiply towpreg fabric
5200246, Mar 20 1991 TUFF SPUN FABRICS, INC , APPLETON, WI Composite fabrics comprising continuous filaments locked in place by intermingled melt blown fibers and methods and apparatus for making
5204429, Aug 07 1987 Ticona GmbH Process for the preparation of an olefin polymer
5209801, Sep 19 1988 Paragon Trade Brands, LLC Method of forming a disposable elastic structure
5219633, Mar 20 1991 Tuff Spun Fabrics, Inc. Composite fabrics comprising continuous filaments locked in place by intermingled melt blown fibers and methods and apparatus for making
5226992, Sep 23 1988 Kimberly-Clark Worldwide, Inc Process for forming a composite elastic necked-bonded material
5229191, Nov 20 1991 BBA NONWOVENS SIMPSONVILLE, INC Composite nonwoven fabrics and method of making same
5232777, Dec 23 1987 Minnesota Mining and Manufacturing Company Elastic strand construction
5236430, Nov 21 1991 The Procter & Gamble Company Disposable training pant having fusion-slit side seams
5236770, Jul 30 1991 Carl Freudenberg KG Nonwoven laminate
5238733, Sep 30 1991 Minnesota Mining and Manufacturing Company Stretchable nonwoven webs based on multi-layer blown microfibers
5246433, Nov 21 1991 The Procter & Gamble Company Elasticized disposable training pant and method of making the same
5252170, Jul 11 1991 Shibuya International, Inc. Web splicing apparatus
5259902, Sep 04 1992 PROCETER & GAMBLE COMPANY, THE Method for continuously attaching tensioned elastic material to an absorbent article
5260126, Jan 10 1990 Kimberly-Clark Worldwide, Inc Low stress relaxation elastomeric nonwoven webs and fibers
5272236, Oct 15 1991 DOW CHEMICAL COMPANY, THE Elastic substantially linear olefin polymers
5277976, Oct 07 1991 Minnesota Mining and Manufacturing Company; MINNESOTA MINING AND MANUFACTURING COMPANY A CORPORATION OF DE Oriented profile fibers
5278272, Oct 15 1991 DOW CHEMICAL COMPANY, THE Elastic substantialy linear olefin polymers
5288791, Jan 10 1990 Kimberly-Clark Worldwide, Inc Low stress relaxation elastomeric fibers
5290842, Sep 03 1991 Avery Dennison Corporation Pressure-sensitive adhesives based on preferentially tackified immiscible elastomers
5296080, Apr 19 1988 Paper Converting Machine Company Apparatus for applying an elastic waistband to a disposable diaper
5304599, Apr 23 1990 KRATON POLYMERS U S LLC Low stress relaxation extrudable elastomeric composition
5308345, Nov 28 1989 GDM SPA System and method for manufacturing disposable diapers having elastic waistband
5312500, Feb 21 1989 Nippon Petrochemicals Co., Ltd.; Polymer Processing Research Inst., Ltd. Non-woven fabric and method and apparatus for making the same
5324580, Sep 30 1991 Fiberweb Holdings Limited Elastomeric meltblown webs
5332613, Jun 09 1993 Kimberly-Clark Worldwide, Inc High performance elastomeric nonwoven fibrous webs
5334437, Sep 23 1992 XYMID LLC Spunlaced fabric comprising a nonwoven Batt hydraulically entangled with a warp-like array of composite elastic yarns
5334446, Jan 24 1992 FIBERWEB NORTH AMERICA, INC A CORP OF DELAWARE Composite elastic nonwoven fabric
5336545, Sep 23 1988 Kimberly-Clark Worldwide, Inc Composite elastic necked-bonded material
5336552, Aug 26 1992 Kimberly-Clark Worldwide, Inc Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and ethylene alkyl acrylate copolymer
5342469, Jan 08 1993 STATE STREET BANK AND TRUST COMPANY OF CONNECTICUT, NATIONAL ASSOCIATION; STATE STREET BANK AND TRSUT COMPANY OF CONNECTICUT, NATIONAL ASSOCIATION Method of making a composite with discontinuous adhesive structure
5360854, Dec 05 1988 Adhesive Technology, Inc. Hot melt pressure sensitive adhesive composition and applications
5364382, May 08 1989 Kimberly-Clark Worldwide, Inc Absorbent structure having improved fluid surge management and product incorporating same
5366793, Apr 07 1992 Kimberly-Clark Worldwide, Inc Anisotropic nonwoven fibrous web
5376198, Dec 22 1987 Kimberly-Clark Worldwide, Inc Method for making a stretchable absorbent article
5376430, Jun 19 1992 Minnesota Mining and Manufacturing Company; MINNESOTA MINING AND MANUFACTURING COMPANY A CORP OF DELAWARE Elastic film laminate
5382400, Aug 21 1992 Kimberly-Clark Worldwide, Inc Nonwoven multicomponent polymeric fabric and method for making same
5385775, Dec 09 1991 Kimberly-Clark Worldwide, Inc Composite elastic material including an anisotropic elastic fibrous web and process to make the same
5389173, Dec 02 1992 Paper Converting Machine Company Apparatus and process for making disposable diaper type products
5389438, Feb 22 1990 Minnesota Mining and Manufacturing Company Repositionable adhesive tape
5393599, Jan 24 1992 BBA NONWOVENS SIMPSONVILLE, INC Composite nonwoven fabrics
5399219, Feb 23 1994 Kimberly-Clark Worldwide, Inc Method for making a fastening system for a dynamic fitting diaper
5405682, Aug 26 1992 Kimberly-Clark Worldwide, Inc Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and elastomeric thermoplastic material
5407507, Oct 25 1993 The Procter & Gamble Company; Procter & Gamble Company, The Method and apparatus for combining a tensioned elastic member with a moving substrate web
5411618, Nov 24 1993 Paper Converting Machine Company Method and apparatus for producing waistband-equipped disposable diapers
5413654, Sep 13 1990 Uni-Charm Corporation Disposable garments and method for attachment of elastic members around leg-holes thereof
5413849, Jun 07 1994 BBA NONWOVENS SIMPSONVILLE, INC Composite elastic nonwoven fabric
5415644, Jul 02 1984 Kimberly-Clark Worldwide, Inc Diapers with elasticized side pockets
5415649, Oct 31 1990 Kao Corporation Disposable diapers
5415925, Jun 10 1992 BBA NONWOVENS SIMPSONVILLE, INC Gamma structure composite nonwoven fabric comprising at least two nonwoven webs adhesively bonded by a lightweight adhesive web
5422172, Aug 11 1993 Clopay Plastic Products Company, Inc.; CLOPAY PLASTIC PRODUCTS COMPANY, INC Elastic laminated sheet of an incrementally stretched nonwoven fibrous web and elastomeric film and method
5425987, Aug 26 1992 Kimberly-Clark Worldwide, Inc Nonwoven fabric made with multicomponent polymeric strands including a blend of polyolefin and elastomeric thermoplastic material
5429629, May 08 1989 Kimberly-Clark Worldwide, Inc Absorbent structure having improved fluid surge management and product incorporating same
5429694, Apr 05 1994 Paragon Trade Brands, LLC Apparatus and method for applying tensioned elastic to material
5429856, Mar 30 1990 Minnesota Mining and Manufacturing Company Composite materials and process
5431644, Dec 23 1987 Minnesota Mining and Manufacturing Company Elastic strand construction
5431991, Jan 24 1992 BBA NONWOVENS SIMPSONVILLE, INC Process stable nonwoven fabric
5447462, Apr 13 1993 HBI Branded Apparel Enterprises, LLC Fabric laminate and garments incorporating same
5447508, Mar 30 1993 Uni-Charm Corporation Disposable diapers
5449353, Oct 31 1990 Kao Corporation Disposable diaper
5464401, Nov 21 1991 The Procter & Gamble Company Elasticized disposable training pant having differential extensibility
5466410, Oct 02 1987 SHAW INDUSTRIES GROUP, INC Process of making multiple mono-component fiber
5472775, Aug 17 1993 DOW CHEMICAL COMPANY, THE Elastic materials and articles therefrom
5476458, Dec 22 1993 Kimberly-Clark Worldwide, Inc Liquid-retaining absorbent garment and method of manufacture
5476563, Feb 07 1992 Yugengaisya Towa Process of making a door mat
5484645, Jun 10 1992 Fiberweb Holdings Limited Composite nonwoven fabric and articles produced therefrom
5486166, Mar 04 1994 Kimberly-Clark Worldwide, Inc Fibrous nonwoven web surge layer for personal care absorbent articles and the like
5490846, Mar 04 1994 Kimberly-Clark Worldwide, Inc Surge management fibrous nonwoven web for personal care absorbent articles and the like
5496298, Dec 28 1993 Kimberly-Clark Worldwide, Inc Elastomeric ears for disposable absorbent article
5498468, Sep 23 1994 Kimberly-Clark Worldwide, Inc Fabrics composed of ribbon-like fibrous material and method to make the same
5500075, Apr 26 1994 Paragon Trade Brands, LLC Leg elastic applicator which maintains the spacing between the elastics substantially constant
5501679, Nov 17 1989 3M Innovative Properties Company Elastomeric laminates with microtextured skin layers
5509915, Sep 11 1991 Kimberly-Clark Worldwide, Inc Thin absorbent article having rapid uptake of liquid
5514470, Sep 23 1988 Kimberly-Clark Worldwide, Inc Composite elastic necked-bonded material
5516476, Nov 08 1994 Hills, Inc, Process for making a fiber containing an additive
5523146, Jan 08 1993 Poly-Bond, Inc. Composite with discontinuous adhesive structure
5527300, Aug 31 1994 Kimberly-Clark Worldwide, Inc Absorbent article with high capacity surge management component
5531850, Jun 21 1994 Paragon Trade Brands, LLC Apparatus and method for applying transverse tensioned elastic
5534330, Oct 11 1993 Lainiere de Picardie S.A. Thermobonding interlining comprising a layer of fibers intermingled with textured weft yarns and its production method
5536563, Dec 01 1994 Kimberly-Clark Worldwide, Inc Nonwoven elastomeric material
5540796, Aug 03 1994 Kimberly-Clark Worldwide, Inc Process for assembling elasticized ear portions
5540976, Jan 11 1995 Kimberly-Clark Worldwide, Inc Nonwoven laminate with cross directional stretch
5543206, Nov 23 1994 Fiberweb Holdings Limited Nonwoven composite fabrics
5545158, Jun 23 1994 Kimberly-Clark Worldwide, Inc Disposable absorbent garment and a continuous, selectively elasticized band joined there to
5545285, Mar 07 1988 Paragon Trade Brands, LLC Waist elastic applicator for diaper or similar article
5549964, Dec 27 1988 Asahi Kasei Kogyo Kabushiki Kaisha Stretchable nonwoven fabric and method of manufacturing the same
5569232, Feb 28 1994 The Procter and Gamble Company Absorbent article with multiple zone structural elastic-like film web extensible waist feature
5575783, Sep 28 1992 The Procter & Gamble Company Absorbent article with dynamic elastic feature comprising elasticized hip panels
5576090, Feb 13 1992 Daio Paper Corporation Sheet elastic complex used in sanitary products its manufacturing process, and its usages
5582668, Sep 15 1992 Molnlycke AB Method and arrangement for mounting elastic elements onto an elongated, moving material web
5591152, Jun 13 1991 The Procter & Gamble Company Absorbent article with dynamic elastic waist feature having a predisposed resilient flexural hinge
5591792, Jan 25 1994 Mitsubishi Chemical Corporation Adhesive resin composition
5595618, Apr 03 1995 Kimberly-Clark Worldwide, Inc Assembly process for a laminated tape
5597430, Mar 09 1994 Mannesmann Aktiengesellschaft Process and apparatus for manufacturing a body reinforced with fiber-composite material
5612118, Dec 20 1994 Kimberly-Clark Corporation Elongate, semi-tone printing process and substrates printed thereby
5614276, Sep 20 1991 Hellenic Plastics and Rubber Industry Memelaos Petsetakis, S.A. Extrusion of materials
5620780, Mar 30 1990 Minnesota Mining and Manufacturing Company Composite materials and process
5624740, Jul 27 1993 TOWA, YUGENGAISYA Doormats manufacturing apparatus
5626573, Sep 20 1994 Uni-Charm Corporation Pants type disposable diaper
5628856, Apr 29 1996 The Procter & Gamble Company; Procter & Gamble Company, The Method for forming a composite elastic material
5645672, Jun 24 1996 The Proctor & Gamble Company; Procter & Gamble Company, The Method for forming a composite elastic material
5652041, Sep 01 1993 FREUDENBERG PERFORMANCE MATERIALS LP Nonwoven composite material and method for making same
5660664, Apr 26 1994 Paragon Trade Brands, LLC Method of applying leg elastic
5663228, Mar 14 1990 Avery Dennison Corporation Pressure-sensitive adhesives based on preferentially tackified immiscible elastomers
5669897, Jun 03 1993 The Procter & Gamble Company Absorbent articles providing sustained dynamic fit
5680653, Dec 02 1994 Kimberly-Clark Worldwide, Inc Surgical gown cuff and method for making the same
5681302, Jun 14 1994 Minnesota Mining and Manufacturing Company Elastic sheet-like composite
5683787, Dec 18 1992 Fiberweb Corovin GmbH Multilayered elastic sheet structure and process for producing a multilayered elastic sheet structure
5690626, Sep 30 1993 Japan Absorbent Technology Institute Sanitary article with improved fitness
5691034, Nov 17 1989 Elastomeric laminates with microtextured skin layers
5693038, Sep 30 1993 Japan Absorbent Technology Institute Sanitary article with improved fitness
5695849, Feb 20 1996 Kimberly-Clark Worldwide, Inc Elastic, breathable, barrier fabric
5702378, Jul 06 1989 Molnlycke AB Resilient material and disposable, absorbent article comprising such a material
5707709, Apr 27 1993 Twin ply fabric, uses and manufacture thereof
5709921, Nov 13 1995 Kimberly-Clark Worldwide, Inc Controlled hysteresis nonwoven laminates
5720838, Jul 27 1993 Yugengaisya, Towa Method of manufacturing colored doormats
5733635, Nov 21 1995 JNC Corporation Laminated non-woven fabric and process for producing the same
5733822, Aug 11 1995 FIBERWEB NORTH AMERICA, INC Composite nonwoven fabrics
5735839, Oct 14 1994 Kao Corporation Shorts type disposable diaper
5736219, Aug 30 1993 PGI POLYMER, INC Absorbent nonwoven fabric
5746731, Apr 26 1995 Uni-Charm Corporation Disposable undergarment
5749865, Aug 02 1995 Uni-Charm Corporation Absorbent article of pants type
5749866, Feb 28 1994 The Procter & Gamble Company Absorbent article with multiple zone structural elastic-like film web extensible waist feature
5766389, Dec 29 1995 Kimberly-Clark Worldwide, Inc Disposable absorbent article having a registered graphic and process for making
5766737, Jul 23 1996 BBA NONWOVENS SIMPSONVILLE, INC Nonwoven fabrics having differential aesthetic properties and processes for producing the same
5769838, Sep 12 1996 The Procter & Gamble Company Disposable pull-on pant
5769993, Nov 14 1992 Amoco Corporation Process for producing an elastic multilayer web of material
5772649, Feb 27 1995 Panel attachment for absorbent undergarments
5773373, Jun 18 1996 REEF INDUSTRIES, INC Reinforced laminate with elastomeric tie layer
5773374, May 21 1996 Minnesota Mining and Manufacturing Company Composite materials and process
5788804, Jul 17 1995 Liba Maschinenfabrik GmbH Machine for the production of pre-ready made reinforcement formations
5789065, Oct 11 1996 Kimberly-Clark Worldwide, Inc Laminated fabric having cross-directional elasticity and method for producing same
5789328, Jun 18 1996 Nippon Petrochemicals Company, Limited; Polymer Processing Research Inst., Ltd. Bulky nonwoven fabric and method for producing the same
5789474, Sep 28 1995 BANK OF AMERICA, N A Additive composition and method for increasing the upper service temperature of adhesives
5790983, May 16 1995 Kimberly-Clark Worldwide, Inc Elasticized top garment
5800903, Mar 30 1990 Minnesota Mining and Manufacturing Company Composite materials and process
5804021, Apr 29 1994 Kimberly-Clark Worldwide, Inc Slit elastic fibrous nonwoven laminates and process for forming
5804286, Nov 22 1995 FITESA NONWOVEN, INC Extensible composite nonwoven fabrics
5814176, Feb 06 1996 Proulx Manufacturing, Inc. Process for forming double-strand monofilament line for use in flexible line trimmers
5817087, Oct 14 1994 Kao Corporation Shorts type disposable diaper
5818719, Dec 29 1995 Kimberly-Clark Worldwide, Inc Apparatus for controlling the registration of two continuously moving layers of material
5830203, May 24 1994 Paragon Trade Brands, LLC Absorbent article and method of manufacturing the same
5834089, Mar 03 1997 Honeywell International Inc Additive-containing synthetic filaments, and yarns and carpets including such filaments
5836931, Apr 19 1993 Kao Corporation Shorts type disposable diaper
5836932, Apr 03 1995 The Procter & Gamble Company Disposable breathable garment
5840412, Mar 26 1990 Minnesota Mining and Manufacturing Company Composite materials and process
5840633, Nov 25 1994 Polymer Processing Research Inst., Ltd.; Nippon Petrochemicals Company, Ltd. Nonwoven fabric and method of making the same
5846232, Dec 20 1995 Kimberly-Clark Worldwide, Inc Absorbent article containing extensible zones
5849001, Feb 02 1995 Kao Corporation Porous sheet and absorbent article using the same
5856387, Sep 03 1991 Avery Dennison Corporation Pressure-sensitive adhesives based on preferentially tackified immiscible elastomers
5858515, Dec 17 1996 Kimberly-Clark Worldwide, Inc Pattern-unbonded nonwoven web and process for making the same
5860945, Dec 31 1996 Wyeth Disposable elastic thermal knee wrap
5865933, Nov 12 1996 Milliken Research Corporation Method for selectively carving color contrasting patterns in textile fabric
5876392, Jan 31 1996 Uni-Charm Corporation Disposable absorbent pants type undergarment with improved heat sealed edges
5879776, Jul 27 1993 Yugengaisya Towa Colored doormats, method of manufacturing and manufacturing device
5882573, Sep 29 1997 Illinois Tool Works Inc. Adhesive dispensing nozzles for producing partial spray patterns and method therefor
5885656, Apr 25 1994 Avgol Nonwoven Industries Coating selective zones of thin webs to change the pervious character thereof, using a shutter
5885686, Aug 26 1994 Conwed Plastics LLC Bicomponent elastomeric netting
5897546, Aug 02 1995 Uni-Charm Corporation Disposable diaper having a fastening system
5899895, Nov 19 1993 The Procter & Gamble Company; Procter & Gamble Company, The Disposable absorbent article with extensible side panels
5902540, Oct 10 1996 Illinois Tool Works Inc Meltblowing method and apparatus
5904298, Oct 10 1996 Illinois Tool Works Inc Meltblowing method and system
5916206, Jul 14 1995 Uni-Charm Corporation Absorbent pants type undergarment having differently tensioned elastic elements for improved leakage prevention and comfort
5921973, Nov 23 1994 Fiberweb Holdings Limited Nonwoven fabric useful for preparing elastic composite fabrics
5930139, Nov 13 1996 Kimberly-Clark Worldwide, Inc Process and apparatus for registration control of material printed at machine product length
5931581, May 19 1997 LASALLE BANK NATIONAL ASSOCIATION Self-sealable packaging for enclosing articles
5932039, Oct 14 1997 Kimberly-Clark Worldwide, Inc Process and apparatus for registering a continuously moving, treatable layer with another
5938648, Dec 03 1997 Procter & Gamble Company, The Absorbent articles exhibiting improved internal environmental conditions
5941865, May 07 1996 Uni-Charm Corporation Disposable absorbent garment of pants type
5952252, Feb 20 1996 Kimberly-Clark Worldwide, Inc Fully elastic nonwoven fabric laminate
5964970, Oct 14 1997 Kimberly-Clark Worldwide, Inc Registration process and apparatus for continuously moving elasticized layers having multiple components
5964973, Jan 21 1998 Kimberly-Clark Worldwide, Inc.; Kimberly-Clark Worldwide, Inc Method and apparatus for making an elastomeric laminate web
5990377, Mar 21 1997 Kimberly-Clark Worldwide, Inc Dual-zoned absorbent webs
5993433, Oct 20 1997 Kimberly-Clark Worldwide, Inc Absorbent article with enhanced elastic design for improved aesthetics and containment
5997521, Nov 19 1993 Procter & Gamble Company, The Disposable absorbent article with extensible side panels
6004306, Nov 19 1993 The Procter & Gamble Company Absorbent article with multi-directional extensible side panels
6033502, Nov 13 1996 Kimberly-Clark Worldwide, Inc Process and apparatus for registering continuously moving stretchable layers
6045543, Nov 05 1997 Kimberly-Clark Worldwide, Inc. Alignment indicators for use with personal care articles
6048326, Dec 31 1996 Wyeth Disposable elastic thermal knee wrap
6057024, Oct 31 1997 Kimberly-Clark Worldwide, Inc Composite elastic material with ribbon-shaped filaments
6066369, Jan 27 1998 REIFENHAUSER GMBH & CO MASCHINENFABRIK Method of and apparatus for producing a composite web
6087550, Nov 09 1995 H B FULLER COMPANY Non-woven application for water dispersable copolyester
6090234, Jul 15 1996 Wyeth Elastic laminates and methods for making the same
6092002, Nov 13 1996 Kimberly-Clark Worldwide, Inc Variable tension process and apparatus for continuously moving layers
6093663, Jul 15 1996 Wyeth Structure and method of forming a laminate structure
6096668, Sep 15 1997 Kimberly-Clark Worldwide, Inc. Elastic film laminates
6123694, May 09 1997 Paragon Trade Brands, LLC Disposable absorbent article with unitary leg gathers
6132410, Feb 12 1999 Kimberly-Clark Worldwide, Inc Disposable garment having dryness barriers with expandable attachment to an absorbent
6149637, Jan 03 1994 Procter & Gamble Company, The Elastomeric disposable absorbent article and method of making same
6152904, Nov 22 1996 Kimberly-Clark Worldwide, Inc Absorbent articles with controllable fill patterns
6169848, Jan 06 2000 Impact Systems, Inc. Cross-direction dryer for a machine producing sheet material moving in a machine direction having both gas powered and electric heating portions
6183587, Nov 26 1997 Procter & Gamble Company, The Method of making sanitary napkin comprising three dimensionally shaped tube of absorbent material
6183847, Apr 25 1994 Avgol Ltd., Nonwoven Industries Coating selective zones of thin webs to change the pervious character thereof
6197845, Jun 15 1998 H B FULLER COMPANY Hot melt adhesive compositions for adherence to skin and articles constructed therefrom
6214476, Feb 10 1997 Mitsubishi Chemical Corporation Adhesive resin compositions, laminates, production method thereof and oriented films
6217690, Jan 31 1995 Kimberly-Clark Worldwide, Inc Disposable garment manufacture including feeding elastic into a nip
6231557, Sep 01 1999 Kimberly-Clark Worldwide, Inc Absorbent product containing an elastic absorbent component
6238379, Aug 25 1998 Kimberly-Clark Worldwide, Inc Absorbent article with increased wet breathability
6245050, Nov 09 1995 Kimberly-Clark Worldwide, Inc Disposable absorbent article including an elasticized area
6245168, Nov 13 1996 Kimberly-Clark Worldwide, Inc Process and apparatus for registering continuously moving stretchable layers
6260211, Jan 31 1995 Kimberly-Clark Worldwide, Inc Disposable garment and related manufacturing equipment and methods
6279807, Nov 04 1994 Roll Systems, Inc. Method and apparatus for pinless feeding of web to a utilization device
6290979, Oct 31 1997 The Procter & Gamble Company Web materials with two or more skin care compositions disposed thereon and articles made therefrom
6310164, Jul 18 1997 Mitsu Chemicals INC Unsaturated copolymers, processes for preparing the same, and compositions containing the same
6316013, Aug 23 1999 Kimberly-Clark Worldwide, Inc Absorbent article which maintains or improves skin health
6316687, Oct 04 1989 Kimberly-Clark Worldwide, Inc Disposable diaper having a humidity transfer region, Breathable zone panel and separation layer
6316688, Apr 27 1998 Procter & Gamble Company, The Sanitary napkin comprising three dimensionally shaped tube of absorbent material
6320096, Feb 28 1997 Uni-Charm Corporation Disposable training pants for infants with wetness indicator
6323389, Oct 03 1997 Kimberly-Clark Worldwide, Inc High performance elastic composite materials made from high molecular weight thermoplastic triblock elastomers
6329459, Sep 23 1996 Bridgestone Corporation Extended syndiotactic polystyrene-elastomeric block copolymers
6364863, Aug 25 1995 Uni-Charm Corporation Disposable absorbent undergarment
6365659, Jun 08 2000 Toray Industries, Inc. Polyester composition and film, and production method
6367089, Aug 31 1993 Kimberly-Clark Worldwide, Inc. Disposable menstrual panty
6475600, Dec 23 1998 Kimberly-Clark Worldwide, Inc Composite material having stretch and recovery including a layer of an elastic material and a transversely extensible and retractable necked laminate of non-elastic sheet layers
6537935, Jan 29 1999 3M Innovative Properties Company High strength nonwoven fabric and process for making
6645190, Nov 22 1999 Kimberly-Clark Worldwide, Inc Absorbent article with non-irritating refastenable seams
6657009, Dec 29 2000 Kimberly-Clark Worldwide, Inc. Hot-melt adhesive having improved bonding strength
6767852, Dec 28 2000 Kimberly-Clark Worldwide, Inc Stretch edge elastic laminate
20020002021,
20020009940,
20020019616,
20020072561,
20020081423,
20020104608,
20020122953,
20020123538,
20020123726,
20020138063,
20020164465,
20030232928,
20040127128,
CA2165486,
D284036, Mar 01 1983 Molnlycke Aktiebolag Diaper pants
D331627, Dec 13 1990 Uni-Charm Corporation Diaper pants
D335707, Jan 17 1990 Uni-Charm Corporation Diaper pants
D340283, Aug 31 1990 Uni-Charm Corporation Diaper pants
D414262, Apr 30 1998 Procter & Gamble Company, The Pull-on garment
DE3423644,
DE3734963,
EP155636,
EP172037,
EP217032,
EP239080,
EP330716,
EP380781,
EP396800,
EP456885,
EP547497,
EP582569,
EP604731,
EP617939,
EP688550,
EP689815,
EP713546,
EP743052,
EP753292,
EP761193,
EP761194,
EP763353,
EP787474,
EP802251,
EP806196,
EP814189,
EP901780,
EP1013251,
GB2244422,
GB2250921,
GB2253131,
GB2267024,
GB2268389,
IS92891,
JP367646,
WO10500,
WO29199,
WO37003,
WO37005,
WO37009,
WO37723,
WO100053,
WO132116,
WO149907,
WO187214,
WO2053667,
WO2053668,
WO2060690,
WO2085624,
WO234184,
WO2004039907,
WO8000676,
WO9003464,
WO9107277,
WO9216371,
WO9315247,
WO9317648,
WO9409736,
WO9503443,
WO9504182,
WO9516425,
WO9516562,
WO9534264,
WO9613989,
WO9623466,
WO9635402,
WO9717046,
WO9814156,
WO9849988,
WO9855062,
WO9917926,
WO9924519,
WO9947590,
WO9960969,
WO9960970,
WO9960971,
/////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Dec 26 2002Kimberly-Clark Worldwide, Inc.(assignment on the face of the patent)
Jan 28 2003ZHOU, PEIGUANGKimberly-Clark Worldwide, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0139260428 pdf
Jan 28 2003NECULESCU, CRISTIAN M Kimberly-Clark Worldwide, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0139260428 pdf
Jan 28 2003GARRETT, LANCE J , JR Kimberly-Clark Worldwide, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0139260428 pdf
Jan 01 2015Kimberly-Clark Worldwide, IncKimberly-Clark Worldwide, IncNAME CHANGE0348800742 pdf
Date Maintenance Fee Events
Jan 06 2006ASPN: Payor Number Assigned.
Jun 29 2009M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 14 2013M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jun 27 2017M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Dec 27 20084 years fee payment window open
Jun 27 20096 months grace period start (w surcharge)
Dec 27 2009patent expiry (for year 4)
Dec 27 20112 years to revive unintentionally abandoned end. (for year 4)
Dec 27 20128 years fee payment window open
Jun 27 20136 months grace period start (w surcharge)
Dec 27 2013patent expiry (for year 8)
Dec 27 20152 years to revive unintentionally abandoned end. (for year 8)
Dec 27 201612 years fee payment window open
Jun 27 20176 months grace period start (w surcharge)
Dec 27 2017patent expiry (for year 12)
Dec 27 20192 years to revive unintentionally abandoned end. (for year 12)