Low cost moldable antennas and methods of forming the antennas are described. elements of the antennas are conductive loaded resin-based material having a conducting wire center. The conducting wire center can be single strand, multi-strand, insulated, or non-insulated wire. The conductive loaded resin-based material comprises micron conductor fibers, micron conductor powders, or in combination thereof homogenized within a base resin host wherein the ratio of the weight of the conductor fibers, conductor powders, or combination thereof to the weight of the base resin host is typically between about 0.20 and 0.40. The micron conductive fibers or powders can be stainless steel, nickel, copper, silver, carbon, graphite, or plated particles or fibers, or the like. The conducting metal wire can be copper, nickel, stainless steel, silver, or the like. Antennas can be fabricated using methods such as injection molding, over-molding, thermo-set, protrusion, extrusion, co-extrusion, compression, or the like to achieve desired electrical characteristics. The elements of the antennas can be virtually any shape or size desired. The conductive loaded resin-based material having a conducting wire center provides very efficient antenna operation.
|
1. An antenna comprising:
a number of antenna elements, wherein said antenna elements comprise a conducting metal wire having an outer jacket of conductive loaded resin-based material around said conducting metal wire, and wherein said conductive loaded resin-based material comprises micron conductor powders, micron conductor fibers, or a combination of said micron conductor powders and said micron conductor fibers homogenized within a base resin host and wherein the ratio of the weight of said micron conductor powders, said micron conductor fibers, or said combination of said micron conductor powders and said micron conductor fibers to the weight of said base resin host is between about 0.20 and 0.40; and
electrical continuity to and among said antenna elements.
17. A method of fabricating an antenna, comprising:
fabricating a number of antenna elements, wherein said antenna elements comprise a conducting metal wire having an outer jacket of conductive loaded resin-based material around said conducting metal wire, and wherein said conductive loaded resin-based material comprises micron conductor powders, micron conductor fibers, or a combination of said micron conductor powders and said micron conductor fibers homogenized within a base resin host, and wherein the ratio of the weight of said micron conductor powders, said micron conductor fibers, or said combination of said micron conductor powders and said micron conductor fibers to the weight of said base resin host is between about 0.20 and 0.40; and
making electrical connections to and among said antenna elements.
2. The antenna of
3. The antenna of
5. The antenna of
6. The antenna of
7. The antenna of
8. The antenna of
9. The antenna of
10. The antenna of
11. The antenna of
12. The antenna of
13. The antenna of
14. The antenna of
15. The antenna of
16. The antenna of
18. The method of
19. The method of
20. The method of
21. The method of
22. The method of
23. The method of
24. The method of
25. The method of
26. The method of
27. The method if
28. The method of
29. The method of
30. The method of
31. The method of
32. The method of
33. The method of
34. The method of
35. The method of
|
This Patent Application claims priority to U.S. Provisional Patent Application 60/456,970, filed Mar. 24, 2003.
This Patent Application is a Continuation-in-Part of INT01-002CIP, filed as U.S. patent application Ser. No. 10/309,429, filed on Dec. 4, 2002, now U.S. Pat. No. 6,870,516 also incorporated by reference in its entirety, which is a Continuation-in-Part Application of docket number INT01-002, filed as U.S. patent application Ser. No. 10/075,778, filed on Feb. 14, 2002, now U.S. Pat. No. 6,741,221 which claimed priority to U.S. Provisional Patent Applications Ser. No. 60/317,808, filed on Sep. 7, 2001, Ser. No. 60/269,414, filed on Feb. 16, 2001, and Ser. No. 60/268,822, filed on Feb. 15, 2001.
(1) Field of the Invention
This invention relates to antennas molded of conductive loaded resin-based materials comprising micron conductive powders or micron conductive fibers or in combination thereof, homogenized within a base resin when molded and having a conducting wire center or core. This yields a conductive part or material usable within the EMF or electronic spectrum(s).
(2) Description of the Related Art
Antennas are an essential part of electronic communication systems that contain wireless links. Low cost antennas offer significant advantages for these systems.
U.S. Pat. No. 5,771,027 to Marks et al. describes a composite antenna having a grid comprised of electrical conductors woven into the warp of a resin reinforced cloth forming one layer of a multi-layer laminate structure of an antenna.
U.S. Pat. No. 6,249,261 B1 to Solberg, Jr. et al. describes a direction-finding material constructed from polymer composite materials which are electrically conductive.
U.S. Pat. No. 4,134,120 to DeLoach et al. describes antennas formed from fiber reinforced resin material.
U.S. Pat. No 6,531,983 B1 to Hirose et al. describes a dielectric antenna wherein a circuit pattern is formed of a conductive film or resin.
U.S. Pat. No. 6,320,753 B1 to Launay describes forming an antenna using silk-screen printing of a conductive ink or a conductive resin.
U.S. Pat. No. 6,617,976 B1 to Walden et al. teaches, without providing details, that an antenna could be formed of conductive plastics.
U.S. Pat. No. 6,486,853 B2 to Yoshinomoto et al. describe an antenna having a conductor wound on an insulating core body. The insulating core body can be formed using extrusion. There is no wire within the core body.
U.S. Pat. No. 6,317,102 to Stambeck describes an antenna unit having an insulating jacket formed over a metallic core, such as a wire.
U.S. Pat. No. 5,635,943 to Grunwell describes an antenna containing an antenna element having a conducting core surrounded by an insulating sheath. The conducting core can be a rigid rod or a wound wire semi-rigid coil. The insulating sheath can be a plastic film applied to the conduction core by extrusion.
Patent application Ser. No. 10/780,214; filed Feb. 17, 2004; entitled “Low Cost Antennas and Electromagnetic (EMF) Absorption in Electronic circuit Packages or Transceivers Using Conductive Loaded Resin-Based Materials” and assigned to the same assignee describe low cost antennas and electromagnetic absorption structures using conductive loaded resin-based materials.
Antennas are an essential part of electronic circuitry, such as electronic communication systems that contain wireless links. Lowering the cost and improving the manufacturing capabilities for antennas provides an important advantage for these systems. Low cost molded antennas offer significant advantages for these systems not only from a fabrication standpoint, but also characteristics related to 2D, 3D, 4D, and 5D electrical characteristics, which include the physical advantages that can be achieved by the molding process of the actual parts and the polymer physics within the conductive networks formed within the molded part.
It is a principle objective of this invention to provide low cost, high performance, and efficient molded antennas of conductively loaded resin-based material and having a conducting wire center or core. The antennas are fabricated from molded conductive loaded resin-based materials, comprising micron conductive fibers, micron conductive powders, or in combination thereof, that are homogenized within a base resin host in a molding process and have a conducting wire center or core.
It is another principle objective of this invention to provide a method of fabricating low cost, high performance, and efficient molded antennas of conductively loaded resin-based material having a conducting wire center or core. The antennas are fabricated from molded conductive loaded resin-based materials comprising micron conductive fibers, micron conductive powders, or in combination thereof, that are homogenized within a base resin during the molding process and have a conducting wire center or core.
These objectives are achieved by molding the antennas from conductive loaded resin-based materials around a conducting wire center. These conductive loaded resin-based materials are resins loaded with conductive materials to provide a resin-based material, which is a conductor rather than an insulator. The resins provide the structural material which; when loaded with micron conductive powders, micron conductive fibers, or any combination thereof, become composites which are conductors rather than insulators. The orientation of micron conductive fibers, micron conductive powders or in combination thereof, homogenized within the base resin may be tightly controlled in the molding process. Various desired electrical and EMF characteristics may be achieved during the molding and mix process. The conducting wire center can be any metal wire, such as copper, nickel, stainless steel, silver or the like. The wire can be single strand, multi strand, insulated, or non-insulated depending on desired electrical characteristics.
These conductive loaded resin-based materials can be molded around a conducting wire center into any number of desired shapes and sizes using methods such as injection molding, over-molding, thermo-set, protrusion, extrusion, co-extrusion, compression, or the like. The conducting wire center can be single strand, multi-strand, insulated, or non-insulated wire. The method, wire gages, and/or wire types are chosen to achieve the desired electrical characteristics for an antenna. The conductive loaded resin-based material could also be a molded part, sheet, bar stock, or the like that may be cut, stamped, milled, laminated, vacuumed formed, or the like, formed around a conducting wire center, to provide the desired shape and size of this element or part. The characteristics of the antenna elements depend on the wire gages and/or types and on the composition of the conductive loaded resin-based materials, which can be adjusted and tightly controlled in achieving the desired characteristics of the molded material.
This invention relates to antennas molded of conductive loaded resin-based materials comprising micron conductive powders, micron conductive fibers, or a combination thereof, homogenized within a base resin when molded and having a conducting wire center core.
The conductive loaded resin-based materials of the invention are base resins loaded with conductive materials, which then makes any base resin a conductor rather than an insulator. The resins provide the structural integrity to the molded part. The micron conductive fibers, micron conductive powders, or a combination thereof, are homogenized within the resin during the molding process, providing the electrical continuity.
The conductive loaded resin-based materials can be molded, extruded, co-extruded, or the like to provide almost any desired shape or size. The molded conductive loaded resin-based materials can also be cut, stamped or vacuumed formed from injection molded, extruded, co-extruded, sheet or bar stock, over-molded, laminated, milled or the like to provide the desired antenna shape and size. The electrical characteristics of antennas fabricated using conductive loaded resin-based materials, depend on the composition of the conductive loaded resin-based materials, of which the loading or doping parameters can be adjusted, to aid in achieving the desired structural, electrical or other physical characteristics of the material. The selected materials used to build the antennas are homogenized together using molding techniques and/or methods such as injection molding, over-molding, thermo-set, protrusion, extrusion, co-extrusion, or the like. Characteristics related to 2D, 3D, 4D, and 5D designs, molding and electrical characteristics, include the physical and electrical advantages that can be achieved during the molding process of the actual parts and the polymer physics associated within the conductive networks within the molded part(s) or formed material(s).
The use of conductive loaded resin-based materials in the fabrication of antennas significantly lowers the cost of materials and the design and manufacturing processes used to hold close tolerances, by forming these materials into desired shapes and sizes. The antennas can be manufactured into infinite shapes and sizes using conventional forming methods such as injection molding, overmolding, or extrusion, co-extrusion, or the like.
The conductive loaded resin-based materials when molded typically but not exclusively produce a desirable usable range of resistivity from between about 5 and 25 ohms per square, but other resistivities can be achieved by varying the doping parameters and/or resin selection(s).
The conductive loaded resin-based materials comprise micron conductive powders, micron conductive fibers, or in any combination thereof, which are homogenized together within the base resin, during the molding process, yielding an easy to produce low cost, electrically conductive, close tolerance manufactured part or circuit. The micron conductive powders can be of carbons, graphites, amines or the like, and/or of metal powders such as nickel, copper, silver, or plated or the like. The use of carbons or other forms of powders such as graphite(s) etc. can create additional low level electron exchange and, when used in combination with micron conductive fibers, creates a micron filler element within the micron conductive network of fiber(s) producing further electrical conductivity as well as acting as a lubricant for the molding equipment. The micron conductive fibers can be nickel plated carbon fiber, stainless steel fiber, copper fiber, silver fiber, or the like, or combinations thereof. The structural material is a material such as any polymer resin. Structural material can be, here given as examples and not as an exhaustive list, polymer resins produced by GE PLASTICS, Pittsfield, Mass., a range of other plastics produced by GE PLASTICS, Pittsfield, Mass., a range of other plastics produced by other manufacturers, silicones produced by GE SILICONES, Waterford, N.Y., or other flexible resin-based rubber compounds produced by other manufacturers.
The resin-based structural material loaded with micron conductive powders, micron conductive fibers, or in combination thereof can be molded, using conventional molding methods such as injection molding or overmolding, extrusion, or co-extrusion to create desired shapes and sizes. The molded conductive loaded resin-based materials can also be stamped, cut or milled as desired to create the desired form factor(s) of the antennas. The doping composition and directionality associated with the micron conductors within the loaded base resins can affect the electrical and structural antenna characteristics, and can be precisely controlled by mold designs, gating and or protrusion design(s) and or during the molding process itself.
A resin based sandwich laminate could also be fabricated with random or continuous webbed micron stainless steel fibers or other conductive fibers, forming a cloth like material. The webbed conductive fiber can be laminated or the like to materials such as Teflon, Polyesters, or any resin-based flexible or single strand material, which when discretely designed in fiber content(s), orientation(s) and shape(s), will produce a very highly conductive flexible cloth-like material.
Such a cloth-like antenna could be embedded in a person's clothing as well as other resin materials such as rubber(s) or plastic(s). When using conductive fibers as a webbed conductor as part of a laminate or cloth-like material the fibers may have diameters of between about 3 and 12 microns, typically between about 8 and 12 microns or in the range of about 10 microns, with length(s) that can be seamless or overlapping.
The conductive loaded resin-based material typically comprises a micron powder(s) of conductor particles, micron conductor fiber(s), or in combination thereof homogenized within a base resin host.
The conductors used for these conductor particles 202 or conductor fibers 210 can be stainless steel, nickel, copper, silver, or other suitable metals or conductive fibers, or combinations thereof. These conductor particles and/or fibers are homogenized within a base resin. As previously mentioned, the conductive loaded resin-based materials have a resistivity between about 5 and 25 ohms per square, but other resistivities can be achieved by varying the doping parameters and/or resin selection. To realize this resistivity the ratio of the weight of the conductor material, in this example the conductor particles 202 and/or conductor fibers 210, to the weight of the base resin host 204 is between about 0.20 and 0.40, and is preferably about 0.30. Stainless Steel Fiber of 8–11 micron in diameter and lengths of 4–6 mm with a fiber weight to base resin weight ratio of 0.30 will produce a very highly conductive parameter, efficient within any EMF spectrum.
Electronic elements, antenna elements, or EMF absorbing elements formed from conductive loaded resin-based materials can be formed or molded in a number of different ways including injection molding, extrusion, co-extrusion, or chemically induced molding or forming.
Referring now to
Similarly, a conductive, but cloth-like, material can be formed using woven or webbed micron stainless steel fibers, or other micron conductive fibers. These woven or webbed conductive cloths could also be sandwich laminated to one or more layers of materials such as Polyester(s), Teflon(s), Kevlar(s) or any other desired resin-based material(s). This conductive fabric may then be cut into desired shapes and sizes.
Refer now to
As shown in
Although the examples shown in
While the invention has been particularly shown and described with reference to the preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention.
Patent | Priority | Assignee | Title |
7403152, | Feb 28 2005 | TELEFONAKTIEBOLAGET LM ERICSSON PUBL | Method and arrangement for reducing the radar cross section of integrated antennas |
9608308, | Oct 19 2011 | Hewlett-Packard Development Company, L.P. | Material including signal passing and signal blocking strands |
9748035, | Sep 10 2013 | The Charles Stark Draper Laboratory, Inc | Methods for forming chip-scale electrical components |
Patent | Priority | Assignee | Title |
4008477, | Jun 25 1975 | The United States of America as represented by the Secretary of Commerce | Antenna with inherent filtering action |
4134120, | Oct 12 1976 | Coastal Engineered Products Company, Inc. | Whip antenna formed of electrically conductive graphite strands embedded in a resin material |
5554997, | Aug 29 1989 | Hughes Aircraft Company | Graphite composite structures exhibiting electrical conductivity |
5635943, | Oct 16 1995 | MATSUSHITA COMMUNICATION INDUSTRIAL CORPORATION OF U S A | Transceiver having retractable antenna assembly |
5771027, | Mar 03 1994 | ALLIANT TECHSYSTEMS INC | Composite antenna |
6249261, | Mar 23 2000 | Southwest Research Institute | Polymer, composite, direction-finding antenna |
6317102, | Mar 12 1998 | Munkplast International AB | Method and tool for manufacturing an antenna unit, and an antenna unit |
6320753, | Oct 07 1997 | De la rue Cartes et Systemes | Integrated circuit board combining external contact zones and an antenna, and process for manufacturing such a board |
6356234, | Jun 12 1996 | BTG International Limited | Electrical circuit |
6486853, | May 18 2000 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Chip antenna, radio communications terminal and radio communications system using the same and method for production of the same |
6531983, | Jul 16 1999 | Mitsubishi Materials Corporation | Method for antenna assembly and an antenna assembly with a conductive film formed on convex portions |
6617976, | Sep 02 1998 | Neptune Technology Group, Inc. | Utility meter pit lid mounted antenna antenna assembly and method |
6870516, | Feb 15 2001 | Integral Technologies, Inc. | Low cost antennas using conductive plastics or conductive composites |
EP1233426, | |||
GB2377449, | |||
JP3044203, | |||
JP56064502, | |||
JP57166702, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 11 2004 | AISENBREY, THOMAS | Integral Technologies, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015088 | /0117 | |
Mar 12 2004 | Integral Technologies, Inc. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 20 2009 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Aug 08 2013 | M2552: Payment of Maintenance Fee, 8th Yr, Small Entity. |
Oct 09 2017 | REM: Maintenance Fee Reminder Mailed. |
Mar 26 2018 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 28 2009 | 4 years fee payment window open |
Aug 28 2009 | 6 months grace period start (w surcharge) |
Feb 28 2010 | patent expiry (for year 4) |
Feb 28 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 28 2013 | 8 years fee payment window open |
Aug 28 2013 | 6 months grace period start (w surcharge) |
Feb 28 2014 | patent expiry (for year 8) |
Feb 28 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 28 2017 | 12 years fee payment window open |
Aug 28 2017 | 6 months grace period start (w surcharge) |
Feb 28 2018 | patent expiry (for year 12) |
Feb 28 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |