A resistor member having a resistance value substantially equal to a resistance of a relay in an ON state is inserted into a current supply path which is not inserted with the relay in current supply paths for supplying currents from a driving circuit to a brushless motor. Further, in the driving circuit, widths of bus bars forming wirings are set such that resistances of the wirings (contact resistance) from a branch point on power source side to Hi side FET (source terminals thereof) are equal to each other and widths of bus bars forming the wirings are set such that the resistances of the wirings from a ground side branch point NL to Lo side FET (source terminals thereof) become equal to each other.
|
1. An electric power steering apparatus for applying a steering assisting force to a steering mechanism of a vehicle by driving a brushless motor based on a target value determined in accordance with an operation for steering the vehicle, the electric power steering apparatus comprising:
a control operating unit that calculates an instruction value of a voltage to be applied to the brushless motor based on the target value;
a driving circuit that drives the brushless motor based on the instruction value; and
a resistance adjusting unit that adjusts resistance components in a motor-driving circuit system such that differences among respective phases of the resistance components in the motor-driving circuit system including the brushless motor and the driving circuit become equal to or smaller than a predetermined value.
2. The electric power steering apparatus according to
wherein the resistance adjusting unit includes a resistor inserted into the current supply path which is not inserted with the opening/closing unit and the resistor has a resistance value in accordance with a resistance value in a closed state of the opening/closing unit such that differences among the respective phases of resistance values in the current supply paths become equal to or smaller than a predetermined value.
3. The electric power steering apparatus according to
wherein the resistance adjusting unit includes a resistor for adjusting the resistance value of at least one of the Hi side current path and the Lo side current path such that at least one of the differences among the respective phases of the resistance values of the Hi side current paths which are the current paths from the power source to the Hi side switching elements and the differences among the respective phases of the resistance values of the Lo side current paths which are the current paths from Lo side switching elements to the ground point becomes equal to or smaller than the predetermined value.
4. The electric power steering apparatus according to
|
The present invention relates to an electric power steering apparatus for applying a steering assisting force to a steering mechanism of a vehicle by a brushless motor.
In a related art, there is used an electric power steering apparatus applying a steering assisting force to a steering mechanism by driving an electric motor in accordance with a steering torque applied to a handle (steering wheel) by a driver. The electric power steering apparatus is provided with a torque sensor for detecting the steering torque applied to the steering wheel which is an operating unit for steering, and a target value of current (hereinafter, referred to as “target current value”) to be supplied to the electric motor is set based on the steering torque detected by the torque sensor. Further, an instruction value to be provided to a driving unit of the electric motors is generated by proportional integrating operation based on a deviation between the target current value and a value of current actually flowing in the electric motor. The driving unit of the electric motor is provided with a PWM signal generating circuit for generating a pulse width modulating signal (hereinafter, referred to as “PWM signal”) having a duty ratio in accordance with the instruction value, and a motor driving circuit (hereinafter, simply referred to as “driving circuit”) constituted by using a power transistor made to be ON/OFF in accordance with the duty ratio of the PWM signal, and applies voltage in accordance with the duty ratio to the electric motor. Current flowing in the electric motor by applying the voltage is detected by a current detecting circuit, and a difference between the target current value and the detected current value is used as the deviation for generating the above-described instruction value.
Although as an electric motor (drive source) used in such an electric power steering apparatus, in a related art, a motor with a brush has been frequently used, in recent years, there is also used a brushless motor from a standpoint of promotion of reliability and durability, a reduction in enertia and the like. According to an electric power steering apparatus using a brushless motor, there is normally provided an opening/closing unit (typically, relay) for electrically cutting to separate a driving circuit and a motor as necessary when the driving circuit is failed. In this case, it is preferable that a number of pieces of the opening/closing unit of relays or the like is as small as possible because of a restriction in cost or space and therefore, there is used opening/closing unit of a number of pieces which is necessary minimum for cutting current supplied from the driving circuit to the motor. For example, in the case of an electric power steering apparatus using a brushless motor of 3 phases, there are used 2 pieces of relays as opening/closing unit for cutting supply of currents of 2 phases in 3 phases of currents supplied from the driving circuit to the motor (see JP-A-2001-106098, for example)
According to a constitution minimizing a number of pieces of relays used as opening/closing unit as described above, in current paths of respective phases between a brushless motor and a driving circuit, there are present a phase in which a relay is interposed and a phase in which a rely is not interposed. Therefore, resistance components in a motor-driving circuit system comprising the brushless motor and the driving circuit differ among phases, and according to an electric power steering apparatus having such a circuit constitution, gains and phases of the motor-driving circuit system as transmitting elements constituting an input by a phase voltage (instruction value) to be applied to the brushless motor and constituting an output by a phase current actually flowing in the motor differ among phases. As a result, even when an equal voltage is applied to respective phases of the brushless motor in control, amplitudes and phases of currents flowing in the brushless motor differ among phases. Such a difference among phases of motor currents constitutes a factor of generating a torque ripple in the brushless motor and therefore, a driver feels a strange feeling in steering operation.
Hence, according to the invention, it is an object thereof to provide an electric power steering apparatus for preventing a driver from feeling a strange feeling in steering operation by restraining a torque ripple owing to differences among phases of gains and phases of a motor-driving circuit system.
In order to solve the aforesaid object, the invention is characterized by having the following arrangement.
a control operating unit that calculates an instruction value of a voltage to be applied to the brushless motor based on the target value;
a driving circuit that drives the brushless motor based on the instruction value; and
a resistance adjusting unit that adjusts resistance components in a motor-driving circuit system such that differences among respective phases of the resistance components in the motor-driving circuit system including the brushless motor and the driving circuit become equal to or smaller than a predetermined value.
wherein the resistance adjusting unit includes a resistor inserted into the current supply path which is not inserted with the opening/closing unit and the resistor has a resistance value in accordance with a resistance value in a closed state of the opening/closing unit such that differences among the respective phases of resistance values in the current supply paths become equal to or smaller than a predetermined value.
wherein the resistance adjusting unit includes a resistor for adjusting the resistance value of at least one of the Hi side current path and the Lo side current path such that at least one of the differences among the respective phases of the resistance values of the Hi side current paths which are the current paths from the power source to the Hi side switching elements and the differences among the respective phases of the resistance values of the Lo side current paths which are the current paths from Lo side switching elements to the ground point becomes equal to or smaller than the predetermined value.
According to the first aspect of the invention, the differences among the respective phases of the resistance components in the motor-driving circuit system become equal to or smaller than the predetermined value and therefore, gains and phases of the motor-driving circuit system with regard to the respective phases substantially become equal to each other, as a result, with regard to any phase of the brushless motor, when the same phase voltage is applied thereto, substantially the same phase current is made to flow. Thereby, the driver can be prevented from feeling a strange feeling in steering operation by reducing the torque ripple in the brushless motor.
According to the second aspect of the invention, the differences among the respective phases of the resistance values in the current supply paths for supplying the currents from the driving circuit to the brushless motor become equal to or smaller than the predetermined value and therefore, the differences among the respective phases of the resistance components in the motor-driving circuit system are resolved or reduced. Thereby, the driver can be prevented from feeling a strange feeling in steering operation by reducing the torque ripple in the brushless motor by making the gains and the phases of the motor-driving circuit system with regard to the respective phases substantially equal to each other.
According to the third aspect of the invention, differences among the respective phases of the resistance values of the Hi side current paths and/or differences among the respective phases of the resistance values of the Lo side current paths become equal to or smaller than the predetermined value and therefore, the differences among the respective phases of the resistance components in the motor-driving circuit system are reduced or resolved. Thereby, the driver can be prevented from feeling a strange feeling in steering operation by reducing the torque ripple in the brushless motor by making the gains and the phases of the motor-driving circuit system with regard to the respective phases substantially equal to each other.
According to the fourth aspect of the invention, the differences among the respective phases of the resistance components in the motor-driving circuit system become equal to or smaller than the predetermined value by pertinently setting the sectional areas and/or the lengths of the bus bars for wirings. Therefore, it is not necessary to separately add a resistor or the like for adjusting the resistances among the phases and therefore, the differences among the respective phases of the gains and the phases of the motor-driving circuit system can be resolved or reduced while restraining an increase in cost.
<1. Basic Study>
A basic study is carried out on a related art in resolving the problem of the related art. An explanation will be given of the basic study in reference to an attached drawing as follows before explaining an embodiment of the invention.
Gm(s)=Km/(L·s+R+R′) (1)
where, notation Km designates a constant, and notation R′ designates the external resistance including the wiring resistances of the motor and the driving circuit or the like.
In the motor-driving circuit system, with respect to characteristic values L, R, R′ determining the above-described transfer function Gm(s), differences of the inductance L and the internal resistance R among phases are to almost negligible degrees. However, when the relays as an opening/closing unit are inserted as described above, normally, the relays are not inserted in all of the phases and therefore, the external resistances R′ differ among the phases. Further, in the driving circuit, there is also a case in which the external resistance R′ differ among the phases since it is difficult to make lengths of bus bars used in wirings between switching elements of MOS transistors or the like for power and a power source or a ground point uniform among the phases. Therefore, according to the electric power steering apparatus of the related art using the brushless motor, the gain and the phase of the motor driving system as transmitting elements differ among the phases owing to a difference of the external resistors R′ among the phases.
The inventors of the application have confirmed that such a difference brings about a noticeable difference in a response of the motor-driving circuit system among the phases by measuring a frequency characteristic of the motor-driving circuit system. That is,
Hence, according to the invention, there is constructed a constitution providing a resistance adjusting unit for resolving or reducing a difference of resistance components in a motor-driving circuit system among respective phases by providing a pertinent resistor in a current path in correspondence with a phase of the motor-driving circuit system which is not inserted with a relay in order to resolve a difference of gains and phases of the motor-driving circuit system among respective phases in an electric power steering apparatus using a brushless motor. An explanation will be given of embodiments of the invention in reference to the attached drawings as follows.
<2. Embodiments>
<2.1 Total Constitution>
<2.2 Constitution of Control Apparatus>
The driving circuit 50 is provided with FET (field effect transistor) 51H, 52H, 53H which are power switching elements arranged on a power source line side and respectively in correspondence with U phase, V phase, W phase of the motor 6, and FET 51L, 52L, 53L which are power switching elements arranged on a ground line side and respectively in correspondence with U phase, V phase, W phase of the motor 6, and connected in series to constitute respective pairs by the power source line side FET (hereinafter, abbreviated as “Hi side FET”) 5jH and the ground line side FET (hereinafter, abbreviated as “Lo side FET”) 5jL (j=1, 2, 3). Generally, a circuit portion on the power source line side including FET 51H through 53H are referred to as “upper arm”, and a circuit portion on the ground line side including FET 51L through 53L are referred to as “lower arm”. Respective connection points Nu, Nv, Nw of the upper arm and the lower arm are connected to terminals 61 through 63 of respective phases of the motor by lead wires for power (specifically, constituted by bus bars), thereby, current supply paths for supplying driving currents from the driving circuit 50 to the motor 6 are formed for respective phases. Further, a relay 91 is inserted into the current supply path formed by the lead wire connecting the connection point Nu in correspondence with u phase and the motor terminal 61 (hereinafter, referred to as “current supply path for u phase”), and a relay 92 is inserted into the current supply path formed by the lead wire connecting the connection point Nv in correspondence with v phase and the motor terminal 62 (hereinafter, referred to as “current supply path for v phase”), respectively. Further, a relay 90 is also inserted between a connection point (power source side branch point, mentioned later) in which source terminals of the Hi side FET 51H through 53H are connected to each other and the battery 8. In contrast thereto, a relay is not inserted into the current supply path (hereinafter, referred to as “current supply path for w phase”) formed by the lead wire connecting the connection point Nw in correspondence with w phase and the motor terminal 63.
The current detector 81 on one side in 2 pieces of the current detectors 81, 82 detects u phase current flowing in the lead wire connecting the connection point Nu of the driving circuit 50 and the motor terminal 61 (current supply path for u phase), and the current detector 82 on other side detects v phase current flowing in the lead wire (current supply path for v phase) connecting the connection point Nv of the driving circuit 50 and the motor terminal 62. Current values detected by the current detectors 81, 82 are respectively inputted to the motor control portion 20 as a u phase current detected value Iu and a v phase current detected value Iv.
The motor control portion 20 receives a steering torque detected by the torque sensor 3, a vehicle speed detected by the vehicle speed sensor 4, and u phase and v phase current detected values Iu, Iv detected by the current detectors 81, 82. Further, the motor control portion 20 determines a target current value to be made to flow to the motor 6 based on the steering torque and the vehicle speed in reference to a table for corresponding the steering torque and the target current value which is referred to as an assist map. Further, instruction values V*u, V*v, V*w of respective phases to be supplied to the motor 6 are calculated by proportional integrating operation based on a deviation between the target current value and a motor current value calculated by the motor current detected values Iu, Iv.
In calculating the instruction values V*u, V*v, V*w of the respective phase voltages, normally, voltages and currents as 3 phase alternating currents with regard to driving of the motor, are expressed by a rotating orthogonal coordinates system (referred to as “d-q coordinates”) comprising d axis in a direction of a magnetic flux by field of the rotor of the motor, and q axis which is orthogonal to d axis and a phase of which is advanced from d axis by π/2. According to the d-q coordinates, the current made to flow to the motor can be dealt with as a direct current comprising a d axis component and a q axis component. In this case, after calculating the d axis component and the q axis component of the motor current value by coordinate conversion from the u phase and the v phase current detected values Iu, Iv, a d axis voltage instruction value is calculated by proportional integrating operation based on a deviation between a d axis component of the target current value and the d axis component of the motor current value, and a q axis voltage instruction value is calculated by proportional integrating operation based on a deviation between a q axis component of the target current value and the q axis component of the motor current value. Further, the instruction values V*u, V*v, V*w of the respective phase voltages are calculated from the d axis and the q axis voltage instruction values by coordinate conversion. Although in controlling the brushless motor, a method based on introduction of the d-q coordinates is general, the invention is not limited thereto.
Further, other than calculating the instruction values V*u, V*v, V*w of the respective phase voltages, the motor control portion 20 also outputs a relay control signal for controlling the relay driving circuit 70 based on a result of a predetermined failure detecting processing.
In the motor driving portion 30, the PWM signal generating circuit 40 receives the instruction values V*u, V*v, V*w of the respective phase voltages from the motor control portion 20 and generates a PWM signal a duty ratio of which is changed in accordance with the instruction values V*u, V*v, V*w. The driving circuit 50 is a PWM voltage type inverter constituted by using the Hi side FET 51H through 53H and the Lo side FET 51L through 53L as described above for generating respective phase voltages Vu, Vv, Vw to be applied to the motor 6 by making FET 51H through 53H and 51L through 53L ON/OFF. The respective voltages Vu, Vv, Vw are outputted from ECU 5 to apply to the motor 6. In accordance with application of the voltages, currents are made to flow to coils (not illustrated) of respective phases u, v, w of the motor 6 and the motor 6 generates a torque (motor torque) for assisting steering in accordance with the currents.
The relay driving circuit 70 is operated based on the relay control signal outputted from the control portion 20. The relay driving circuit 70 maintains the relays 90, 91, 92 in a closed state and continues to supply power source to the motor driving portion 30 and the motor 6 until a signal indicating that a failure is detected from the motor control portion 20 is received from the motor control portion 20. When a failure is detected by the failure detecting processing in the motor control portion 20, the relay driving circuit 70 receives the signal indicating that the failure is detected from the motor control portion 20. Thereby, the relay driving circuit 70 brings the relays 90, 91, 92 in an open state and stops to supply the power source to the motor driving portion 30 and the motor 6.
<2.3 Constitution of Essential Portion of Motor-Driving Circuit System>
The electric power steering apparatus according to the embodiment is provided with the following constitution for resolving or reducing differences of resistance components among respective phases (among respective phases u, v, w) in a motor-driving circuit system which is a constitution portion comprising the driving circuit 50, the brushless motor 6 and the lead wires connecting these and the like. Further, also in the embodiment, the transfer function Gm(s) of the motor-driving circuit system can be expressed by the following equation with regard to the respective phases (refer to
Gm(s)=Km/(L·s+R+R′) (2)
where notation Km designates a constant, and notation R′ designates the external resistance including the wiring resistance of the lead wires forming the current supply paths for the respective phases and so on.
As described above, although the relay 91 is inserted into the current supply path for u phase connecting the connection point Nu at inside of the driving circuit 50 and the motor terminal 61 and the relay 92 is inserted into the current supply path for v phase connecting the connection point Nv at inside of the driving circuit 50 and the motor terminal 62, a relay is not inserted into the current supply path for w phase connecting the connection point Nw at inside of the driving circuit 50 and the motor terminal 63. Hence, according to the embodiment, the current supply path for w phase is inserted with a resistor member Ra having a resistance value substantially equal to a contact resistance value which is a resistance value in an ON state of the relay 91 or 92.
By inserting the resistor member Ra, the differences of the resistance components of the external resistor R′ with regard to electric connection between the driving circuit 50 and the motor 6, that is, the differences of resistance values of the current supply paths for supplying the currents from the driving circuit 50 to the motor 6 are reduced or resolved. Further, although in inserting the resistor member Ra, specifically, a resistor in correspondence therewith may be inserted into the current supply path for w phase into which a relay is not inserted, in place thereof, insertion of the resistor member Ra may be realized by pertinently setting a sectional area (width or thickness) and/or a length of the bus bar forming the lead wire as the current supply path for w phase as described later.
Further, according to the embodiment, in order to resolve the differences of the external resistor R′ among the respective phases, a wiring resistance at inside of the driving circuit 50 is adjusted. That is, when the 3 phase voltage type inverter shown by
By setting (adjusting) the widths W1 through W6 of the bus bars forming the wirings at inside of the driving circuit 50 as described above, in the external resistance R′, differences among resistance components among respective phases of u, v, w phases with regard to the wirings at inside of the driving circuit 50 are reduced or resolved. Differences of the internal resistance R among the phases of the motor 6 can substantially be disregarded and therefore, by adjusting the external resistance R′ among the respective phases as described above, the differences among the respective phases of the resistance components including both of the internal resistance R and the external resistance R′ in the motor-driving circuit system can be made to be equal to or smaller than a predetermined value (for example, equal to or smaller than 5%).
Further, generally, it is not easy to change the thickness and the length of the bus bar and therefore, according to the embodiment, the wiring resistances are adjusted among the respective phases by pertinently setting the width W1 through W3 and W4 through W6 of the bus bars 55H, 55L. However, the differences among the respective phases of the resistance components in the driving circuit 50 may be reduced or resolved by adjusting the wiring resistances among the respective phases by adjusting the thicknesses (or sectional areas) and/or the lengths along with the widths or in place of the widths.
<2.4 Operation and Effect>
As described above, according to the embodiment, the differences among the respective phases are resolved or reduced with regard to the resistance values of the current supply paths for supplying the currents from the driving circuit 50 to the motor 6 and the resistance values of the wirings at inside of the driving circuit 50, thereby, the differences among the respective phases of the external resistance R′ in the motor-driving circuit system are resolved or reduced. Further, the differences of the internal resistance R and the inductance L are substantially to a negligible degree and therefore, not only the differences among the respective phases of the resistance components in the motor-driving circuit system are resolved or reduced as described above but also the gains and the phases of the motor-driving circuit system with regard to respective phases are substantially equal to each other. As a result, in any of u, v, w phases, when the same phase voltage is applied thereto, substantially the same phase current is made to flow in the motor 6 and therefore, the torque ripple in the motor 6 can be reduced. For example, although a change in the motor torque in the electric power steering apparatus of the related art with respect to a motor electric angle is provided with a waveform as shown by a curve C1 (slender curve) in
Further, according to the embodiment, by pertinently setting the widths or the like of the bus bars used for the wirings, the resistance components in the motor-driving circuit system are adjusted and therefore, it is not necessary to separately add a resistor or the like for adjusting the resistances among the phases. Therefore, the differences of the gains and the phases of the motor-driving circuit system among the phase can be reduced or resolved while restraining an increase in cost.
<3. Modified Examples>
Although according to the above-described embodiment, in order to reduce or resolve the differences among the respective phases of the resistance components in the motor-driving circuit system, the adjusting resistor member Ra is inserted into the path which is not inserted with a relay in the current supply paths for supplying the currents from the driving circuit 50 to the motor 6 (
Further, although in the above-described embodiment, the brushless motor 6 of 3 phases is used as the drive source of the electric power steering apparatus, a number of phases of the brushless motor is not limited to 3 but the invention is applicable also to an electric power steering apparatus using a brushless motor of 4 or more phases.
Nishizaki, Katsutoshi, Ueda, Takeshi, Nagase, Shigeki
Patent | Priority | Assignee | Title |
11124224, | Nov 27 2019 | Hiwin Technologies Corp.; HIWIN TECHNOLOGIES CORP | Electric power steering system |
7240761, | Jun 12 2003 | JTEKT Corporation | Electric power steering apparatus |
7800322, | Sep 15 2005 | STMICROELECTRONICS ASIA PACIFIC PTE , LTD | Isolation circuit for DC power sources |
8019507, | Apr 13 2006 | Mitsubishi Electric Corporation | Electric power steering control system |
8237392, | Aug 25 2008 | JTEKT Corporation | Motor control apparatus and electric power steering apparatus |
Patent | Priority | Assignee | Title |
5631529, | Jun 06 1994 | Honda Giken Kogyo Kabushiki Kaisha | Electric power steering |
6370459, | Jul 21 1998 | Techco Corporation | Feedback and servo control for electric power steering systems |
6392854, | Jul 27 2000 | Continental Automotive Systems, Inc | Method and system for testing continuity of a motor and associated drive circuitry |
6400116, | Jun 09 1998 | NSK Ltd | Motor drive control apparatus |
6927548, | Apr 21 2003 | Koyo Seiko Co., Ltd. | Electric power steering apparatus |
JP2001106098, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 09 2004 | NAGASE, SHIGEKI | KOYO SEIKO CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015707 | /0086 | |
Aug 09 2004 | NISHIZAKI, KATSUTOSHI | KOYO SEIKO CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015707 | /0086 | |
Aug 09 2004 | UEDA, TAKESHI | KOYO SEIKO CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015707 | /0086 | |
Aug 17 2004 | Koyo Seiko Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 21 2006 | ASPN: Payor Number Assigned. |
Aug 05 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 18 2013 | REM: Maintenance Fee Reminder Mailed. |
Mar 07 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 07 2009 | 4 years fee payment window open |
Sep 07 2009 | 6 months grace period start (w surcharge) |
Mar 07 2010 | patent expiry (for year 4) |
Mar 07 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 07 2013 | 8 years fee payment window open |
Sep 07 2013 | 6 months grace period start (w surcharge) |
Mar 07 2014 | patent expiry (for year 8) |
Mar 07 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 07 2017 | 12 years fee payment window open |
Sep 07 2017 | 6 months grace period start (w surcharge) |
Mar 07 2018 | patent expiry (for year 12) |
Mar 07 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |