A diagnostic device for use in a process control system receives a sensor signal related to a process variable of a process sensed by a process variable sensor. A signal preprocessor provides a sensor power signal output as a function of a frequency distribution of power in the sensor signal. A process condition is determined based upon the sensor power signal.

Patent
   7010459
Priority
Jun 25 1999
Filed
Jun 05 2003
Issued
Mar 07 2006
Expiry
Nov 07 2019
Extension
135 days
Assg.orig
Entity
Large
27
345
all paid
25. A diagnostic method performed in a process control environment which includes a process device used to control the process, the method comprising:
obtaining a process variable sensor signal;
determining a frequency distribution of power in the process variable sensor signal; and
evaluating the frequency distribution of power in the process variable sensor signal and providing a process device condition output related to an operation condition of the process device of the process control system.
41. A diagnostic device for use in a process control system which includes a process device used to control the process, comprising:
a sensor signal input, the sensor signal related to a process variable of a process fluid of a process, the process variable sensed by a process variable sensor;
signal preprocessing means for determining a frequency distribution of power in the sensor signal; and
signal evaluating means for diagnosing a process device operation condition of the process device of the process control system based upon the frequency distribution of power in the sensor signal.
40. A computer-readable medium having stored thereon instructions executable by a microprocessor system in a diagnostic device to diagnose condition of a process which includes a process device used to control the process, the instructions comprising:
obtaining a process variable sensor signal;
determining a frequency distribution of power in the process variable sensor signal; and
evaluating the frequency distribution of power in the process variable sensor signal and providing a process device condition output related to an operation condition of the process device of the process control system.
1. A diagnostic device for use in a process control system which includes a process device used to control the process, comprising:
a sensor signal input, the sensor signal related to a process variable of a process fluid of a process, the process variable sensed by a process variable sensor;
a signal preprocessor coupled to the sensor input having a sensor power signal output as a function of a frequency distribution of power in the sensor signal; and
a signal evaluator coupled to the sensor power signal output having a process device condition output related to an operation condition of the process device of the process control system.
2. The diagnostic device of claim 1 wherein the diagnostic device couples to a communication bus.
3. The diagnostic device of claim 2 wherein the communication bus comprises a two-wire loop.
4. The diagnostic device of claim 3 wherein the diagnostic device is fully powered with power received from the two-wire loop.
5. The diagnostic device of claim 1 wherein the sensor signal has a frequency content of at least 50 Hz.
6. The diagnostic device of claim 1, wherein the diagnostic device is included in a transmitter.
7. The diagnostic device of claim 1 wherein the process variable sensor comprises a pressure sensor.
8. The diagnostic device of claim 1 wherein the process variable sensor comprises electrodes in a magnetic flowmeter.
9. The diagnostic device of claim 1 wherein the process variable sensor comprises a sensor in a vortex flowmeter.
10. The diagnostic device of claim 1 wherein the process variable sensor comprises a sensor in a coriolis flowmeter.
11. The diagnostic device of claim 1 wherein the signal preprocessor isolates a frequency range of the sensor signal.
12. The diagnostic device of claim 1 wherein the sensor signal has a frequency of between 0 Hz and 200 Hz.
13. The diagnostic device of claim 1 wherein the function comprises power spectral density.
14. The diagnostic device of claim 1 wherein the function is related to a Fourier transform of the sensor signal.
15. The diagnostic device of claim 1 wherein the function comprises a wavelet transform of the sensor signal.
16. The diagnostic device of claim 1 wherein the signal preprocessor includes a filter.
17. The diagnostic device of claim 1 wherein the diagnostic device is implemented in a process monitor.
18. The diagnostic device of claim 1 wherein the diagnostic device is implemented in a control system.
19. The diagnostic device of claim 1 wherein the sensor power signal output relates to a vibration noise signal carried in process fluid of the process.
20. The diagnostic device of claim 1 wherein the process variable sensor comprises a sensor in an ultrasonic flowmeter.
21. The diagnostic device of claim 1 wherein the condition of the process device condition is related to condition of a process device selected from the group of devices consisting of valves, pumps, pump seals, discharge systems, actuators, solenoids, compressors, turbines, agitators, dampers, piping, fixtures and tanks.
22. The diagnostic device of claim 1 wherein the signal evaluator compares the sensor power signal with a stored value.
23. The diagnostic device of claim 1 wherein the signal evaluator comprises a neural network.
24. The diagnostic device of claim 1 signal evaluator comprises fuzzy logic.
26. The method of claim 25 wherein determining includes performing a Fourier transformation on the process variable sensor signal.
27. The method of claim 26 wherein determining includes performing a wavelet transformation.
28. The method of claim 27 wherein performing a wavelet transform comprises performing a discrete wavelet transform.
29. The method of claim 25 wherein determining includes filtering the process variable sensor signal.
30. The method of claim 25 wherein evaluating comprises comparing frequency distribution of power in the process variable sensor signal to a stored value.
31. The method of claim 25 wherein evaluating comprises evaluating the frequency distribution of power in the process variable sensor signal to a neural network.
32. The method of claim 25 wherein evaluating comprises applying a rule to the frequency distribution of power in the process variable sensor signal.
33. The method of claim 25 wherein the process variable sensor signal comprises a pressure sensor signal.
34. The method of claim 25 wherein the process variable sensor signal comprises a sensor output from a coriolis flowmeter.
35. The method of claim 25 wherein the process variable sensor signal comprises a sensor output from a vortex flowmeter.
36. The method of claim 25 wherein the process variable sensor signal comprises electrode outputs from a magnetic flowmeter.
37. The method of claim 25 wherein the process variable sensor signal has a bandwidth of at least 50 Hz.
38. The method of claim 25 including fully powering the diagnostic device with power from a two-wire loop.
39. The method of claim 25 wherein the frequency distribution of power in the process variable sensor signal comprises power spectral density.

The present application is a Continuation-In-Part of and claims priority of U.S. patent application Ser. No. 09/344,631, filed Jun. 25, 1999 now U.S. Pat. No. 6,601,005, the content of which is hereby incorporated by reference in its entirety.

The present invention relates to diagnostics of process devices (for use with industrial processes). More specifically, the invention relates to diagnostics of processes using a process variable sensor signal.

Process control devices are used in industrial process control systems to control a process. A control device is a field device which is used to control the process and includes pumps, valves, actuators, solenoids, motors, mixers, agitators, breaker, crusher, roller, mill, ball mill, kneader, blender, filter, cyclone, centrifuge, tower, dryer, conveyor, separator, elevator, hoist, heater, cooler or others. A valve controller includes a valve actuator coupled to a valve used to control flow of process fluid. A pump controller includes a motor controller or actuator coupled to a pump. Diagnostics of process control devices can be used to identify a failed control device or predict an impending failure.

Sensing vibrations is one method used to diagnose process control devices. A vibration sensor such as an accelerometer placed directly on a control device can be used to sense vibration noise signals generated by the device. Vibrations are isolated and evaluated by identifying those which exceed an amplitude threshold or which have an abnormal frequency which are indicative of an actual or impending failure. For example, sensors are placed on pump or motor housings, discharge valves, or flanges associated with the control device. Another known diagnostic method is a manual inspection in which an operator listens for abnormal sounds from the control device.

These known methods rely on sensing vibrations at the process control device. The automated diagnostic techniques require additional sensors and circuitry to be included in the control device. There is thus a need for improved diagnostic technology which does not rely on additional components in the control device or the inaccurate and time consuming manual inspection of the prior art to isolate and evaluate vibration noise signals.

A diagnostic device for use in a process control system includes a sensor signal input related to a process variable of a process fluid of a process. A signal preprocessor provides sensor power signal output as a function of a frequency distribution of power in the sensor signal. A signal evaluator outputs a condition related to a condition of the process. A diagnostic method is also provided.

FIG. 1 is an illustration of a typical fluid processing environment for the diagnostic device.

FIG. 2 is a block diagram of a differential pressure fluid flowmeter that diagnoses a condition of the process.

FIG. 3 is a graph of amplitude versus frequency versus time of a process variable signal.

FIG. 4 is a block diagram of a discrete wavelet transformation.

FIG. 5 is a graph showing signals output from a discrete wavelet transformation.

FIG. 6A is a simplified flow chart of a diagnostic device diagnosing a condition of a process.

FIG. 6B is a more detailed flow chart of a diagnostic device diagnosing a condition of a process.

FIG. 7 illustrates a magnetic flowmeter type diagnostic device.

FIG. 8 illustrates a vortex flowmeter type diagnostic device.

FIG. 9 illustrates a coriolis type diagnostic device.

In FIG. 1, a typical environment for a diagnostic device in accordance with one embodiment of the invention is illustrated at 100. In FIG. 1, a diagnostic device, such as process transmitter 102 configured as a pressure transmitter, is shown connected to control system 104. Process transmitters can be configured to monitor one or more process variables associated with fluids in a process plant such as slurries, liquids, vapors and gasses in chemical, pulp, petroleum, gas, pharmaceutical, food and other fluid processing plants. The monitored process variables can be pressure, flow, level, temperature or other properties of fluids. A vibration sensitive process variable sensor is one that can sense vibrations carried in the process fluid, such as a pressure sensor, a sensor in a coriolis flow meter, electrodes in a magnetic flow meter, a sensor in a vortex or ultrasonic flowmeter or others. Process transmitters include one or more sensors that can be either internal to the transmitter or external to the transmitter, depending on the installation needs at the process plant. Process transmitters generate one or more transmitter outputs that represent a sensed process variable or can also monitor the process using data received from remote sensors. Transmitter outputs are configured for transmission over long distance to a controller or indicator via communication bus 106. In typical fluid processing plants, communication bus 106 can be a 4–20 mA current loop that powers the transmitter, or a fieldbus connection, a HART® protocol communication or a fiberoptic connection to a controller, a control system or an output device. In transmitters powered by a two wire loop, power must be kept low to provide intrinsic safety in explosive atmospheres. Other types of communication busses can also be used such as either net operating with other protocols such as tcp/ip.

In FIG. 1, pump control device 108 and valve control device 110 are illustrated as examples of control devices and vibration noise sources. Control devices are actuated by control system 104 using communication bus 106 to control the process fluid. System 104 can be a maintenance computer, an enterprise planning or monitoring system or a computerized maintenance measurement system or a process control system. Control devices are also typically vibration noise sources. However, a vibration noise source is any element in a process which generates vibrations which are carried by process fluid. Vibration noise signals are any vibration signal generated by a control device or which are generated by process fluid moving through the process system, such as vibrations due to cavitation or other flow or process related noise. Valve control device 110 includes a valve controller 112 which controls a supply of pressurized air to valve actuator 114 which in turn actuates valve 116. Pump control device includes motor 118 which actuates pump 120 to move process fluid through suction flange pipeline 122 and out discharge valve 124. Control devices and transmitters all couple to process piping 130 which carries process fluid. Vibration noise signals 132 generated by the process such as by operation of control devices, propagate through the process fluid and are sensed by a process variable sensor.

In FIG. 2, a block diagram shows one embodiment of a transmitter 102 configured as a diagnostic device in accordance with the invention. Examples of other diagnostic devices include control system 104, magnetic flowmeter 250 (FIG. 7), vortex flowmeter 260 (FIG. 8) and coriolis flowmeter 330 (FIG. 9). Transmitter 102 senses a process variable of process fluid in pipe 130 with process variable sensor 138. Transmitter 102 includes a process coupling 132 which couples a process variable sensor 138 to process fluid in pipe 130. For example, coupling 132 can comprise impulse lines 136 and flange 140 for transmitter 102, flow tube 252 for magnetic flowmeter 250, flow tube 264 and shedding bar 262 for vortex flowmeter 260, or flow tube 332 and measurement tubes 336 for coriolis flowmeter 330. Examples of process variable sensors 138 include a pressure sensor, electrodes 258 (FIG. 7), sensor 266 (FIG. 8), and coils 342 (FIG. 9). Analog to digital converter 144 receives sensor input 146 from process variable sensor 138 which is related to a process variable of the process fluid. Analog to digital converter 144 provides a digitized sensor signal to microprocessor system 148.

Microprocessor system 148 includes signal preprocessor 150 which is coupled to sensor input 146 through analog to digital converter 144 and isolates signal components in the sensor signal such as frequencies, amplitudes or signal characteristics which are related to operation of the process. Signal preprocessor 150 provides an isolated signal output 152 to signal evaluator 154. Signal preprocessor isolates a portion of the process variable signal by filtering, performing a wavelet transform, performing a Fourier transform, use of a neural network, statistical analysis, or other signal evaluation techniques. The isolated signal output is related to vibration noise signals 132 in the process fluid sensed by sensor 138. Signal evaluator 154 includes memory 155 and provides a condition output 156 which is related to a condition of the process. Signal evaluator 154 evaluates the isolated signal output 152 based upon a rule, fuzzy logic, a neural network, an expert system, a wavelet analysis or other signal evaluation technique. Process conditions include condition, diagnostic, health, or time to failure information related to valves, pumps, pump seals, discharge systems, actuators, solenoids, compressors, turbines, agitators, dampers, piping, fixtures, tanks, or other components of a process control system. Signal preprocessor 150 and signal evaluator 154 isolate and evaluate sensor signal components as shown in flow chart 200 of FIG. 6.

Microprocessor system 148 further calculates a process variable based upon the sensor signal input 146 in accordance with known techniques. A digital to analog converter 158 coupled to microprocessor system 148 generates an analog transmitter output 160 for coupling to communication bus 106. A digital communication circuit 162 generates a transmitter output 164. The analog output 160 and the diagnostic data 164 can be coupled to indicators or controllers as desired.

Signal preprocessor 150 is configured to isolate signal components which are related to vibration noise signals 132 in the process fluid. The signal components are isolated through signal processing techniques in which only desired frequencies or other signal characteristics such as amplitude are identified and an indication of their identification is provided on an isolated signal output 152. Depending upon the strength of noise signals 132 and their frequency, signal preprocessor can comprise a filter, for example a band pass filter, to generate the isolated signal output 152. For more sensitive isolation, advanced signal processing techniques are utilized such as a Fast Fourier transform (FFT) to obtain the spectrum of the sensor signal. In one preferred embodiment, signal preprocessor 150 comprises a wavelet processor which performs a wavelet analysis on the sensor signal as shown in FIGS. 3, 4 and 5 using a discrete wavelet transform. Wavelet analysis is well suited for analyzing signals which have transients or other non-stationary characteristics in the time domain. In contrast to Fourier transforms, wavelet analysis retains information in the time domain, i.e., when the event occurred.

Wavelet analysis is a technique for transforming a time domain signal into the frequency domain which, like a Fourier transformation, allows the frequency components to be identified. However, unlike a Fourier transformation, in a wavelet transformation the output includes information related to time. This may be expressed in the form of a three dimensional graph with time shown on one axis, frequency on a second axis and signal amplitude on a third axis. A discussion of wavelet analysis is given in On-Line Tool Condition Monitoring System With Wavelet Fuzzy Neural Network, by L. Xiaoli et al., 8 JOURNAL OF INTELLIGENT MANUFACTURING pgs. 271–276 (1997). In performing a continuous wavelet transformation, a portion of the sensor signal is windowed and convolved with a wavelet function. This convolution is performed by superimposing the wavelet function at the beginning of a sample, multiplying the wavelet function with the signal and then integrating the result over the sample period. The result of the integration is scaled and provides the first value for continuous wavelet transform at time equals zero. This point may be then mapped onto a three dimensional plane. The wavelet function is then shifted right (forward in time) and the multiplication and integration steps are repeated to obtain another set of data points which are mapped onto the 3-D space. This process is repeated and the wavelet is moved (convolved) through the entire signal. The wavelet function is then scaled, which changes the frequency resolution of the transformation, and the above steps are repeated.

Data from a wavelet transformation of a sensor signal from process variable sensor 138 is shown in FIG. 3. The data is graphed in three dimensions and forms a surface 170. As shown in the graph of FIG. 3, the sensor signal includes a small signal peak at about 1 kHz at time t1 and another peak at about 100 Hz at time t2 due to vibration noise signal 132. Through subsequent processing by signal evaluator 154, surface 170 or portions of surface 170 are evaluated to provide condition output 156.

The continuous wavelet transformation described above requires extensive computations. Therefore, in one embodiment, signal preprocessor 150 performs a discrete wavelet transform (DWT) which is well suited for implementation in microprocessor system 148. One efficient discrete wavelet transform uses the Mallat algorithm which is a two channel sub-band coder. The Mallet algorithm provides a series of separated or decomposed signals which are representative of individual frequency components of the original signal. FIG. 4 shows an example of such a system in which an original sensor signal S is decomposed using a sub-band coder of a Mallet algorithm. The signal S has a frequency range from 0 to a maximum of fMAX. The signal is passed simultaneously through a first high pass filter having a frequency range from ½ fmax to fmax, and a low pass filter having a frequency range from 0 to ½ fMAX. This process is called decomposition. The output from the high pass filter provides “level 1” discrete wavelet transform coefficients. The level 1 coefficients represent the amplitude as a function of time of that portion of the input signal which is between ½ fmax and fMAX. The output from the 0–½ fmax low pass filter is passed through subsequent high pass (¼ fmax–½ fmax) and low pass (0–¼ fmax) filters, as desired, to provide additional levels (beyond “level 1”) of discrete wavelet transform coefficients. The outputs from each low pass filter can be subjected to further decompositions offering additional levels of discrete wavelet transformation coefficients as desired. This process continues until the desired resolution is achieved or the number of remaining data samples after a decomposition yields no additional information. The resolution of the wavelet transform is chosen to be approximately the same as the sensor or the same as the minimum signal resolution required to monitor the vibration noise signal 132. Each level of DWT coefficients is representative of signal amplitude as a function of time for a given frequency range. Coefficients for each frequency range are concatenated to form a graph such as that shown in FIG. 3.

In some embodiments, padding is added to the signal by adding data to the sensor signal near the borders of windows used in the wavelet analysis. This padding reduces distortions in the frequency domain output. This technique can be used with a continuous wavelet transform or a discrete wavelet transform. “Padding” is defined as appending extra data on either side of the current active data window, for example, extra data points are added which extend 25% of the current window beyond either window edge. In one embodiment, the padding is generated by repeating a portion of the data in the current window so that the added data “pads” the existing signal on either side. The entire data set is then fit to a quadratic equation which is used to extrapolate the signal 25% beyond the active data window.

FIG. 5 is an example showing a signal S generated by sensor 138 and the resultant approximation signals yielded in seven decomposition levels labeled level 1 through level 7. In this example, signal level 7 is representative of the lowest frequency DWT coefficient which can be generated. Any further decomposition yields noise. All levels, or only those levels which relate vibration noise signal 132, are provided as isolated signal 152 to signal evaluator 154. For example, depending on the particular system configuration and sensor type, levels 2, 3 and 5 can comprise the isolated signal 152 provided to signal evaluator 154.

Signal evaluator 154 evaluates the isolated signal 152 received from signal preprocessor 150 and in one embodiment, monitors an amplitude of a certain frequency or range of frequencies identified in isolated signal 152 and provides the condition output 156 if a threshold is exceeded. For example, if the isolated signal 152 comprises those components of sensor signal between 45 and 55 Hz, sensor evaluator 154 can provide condition output 156 if a threshold is exceeded indicative of a condition in the process such as a bearing failure in pump control device 108 or cavitation in valve control device 110. Signal evaluator can also comprise more advanced decision making algorithms such as fuzzy logic, neural networks, expert systems, rule based systems, etc. Commonly assigned U.S. patent application Ser. No. 08/623,569 describes various decision making systems which can be implemented in signal evaluator 154 and is incorporated herein by reference.

In FIG. 6A, a flow chart 180 of a method of diagnosis performed in a diagnostic device capable of receiving a process variable is shown. The algorithm starts at 182 and a process variable sensor signal is obtained. The process noise signal which is present in the process variable signal is isolated at 184. Next, the isolated process noise signal is evaluated at 186 and an output indicative of the process condition is provided at 188 in response to the evaluated isolated process noise signal. FIG. 6B is a more detailed flow chart 200 of the method of diagnosis. The algorithm starts at 202 and a process variable sensor signal is obtained. Components, X1, X2, X3, X4 . . . XN are isolated at 204. (For simplicity, flow chart 200 shows only 4 components X1–X4). If no components X1–XN are present, control is passed to block 202 and the process variable sensor signal is again obtained. At 206, 208, 210, 212 the isolated component X1, X2, X3, X4, respectively, are output. Each output is indicative of the presence of a particular signal component in the process variable sensor signal. The isolated components are evaluated at 214, 216, 218 and 220. In the signal evaluation illustrated in FIG. 6, a rule is used in which the isolated signal component is compared to a limit (limit1, limit2, limit3, limit4, respectively). If none of the limits have been exceeded by the respective isolated signal, the algorithm returns to 202 to obtain an updated process variable signal. If any limit has been exceeded, the algorithm proceeds to output condition1, condition2, condition3, or condition4 at 222, 224, 226 or 228, respectively. For example, component X2 can comprise signal components of the process variable sensor signal between 45 and 55 Hz. If these components have a signal strength which is greater than a limit specified by limit2, condition2 is output which can indicate that a pump, for example, in the process is failing. Similarly, other components in the sensor signal indicate the condition of other aspects of the process control system. If a single component is indicative of a condition of more than one aspect of the process, the output indicates that there are two possible conditions in the process. Further, the condition output is not necessarily tied to a specific failure and can simply indicate that a particular signal component has exceeded a threshold or has some other characteristic. In general, steps 202212 are performed by signal preprocessor 150 of FIG. 2 and steps 214226 are performed by signal evaluator 154. However, the steps of isolating and evaluating can be combined and performed simultaneously or by the same components in a diagnostic device.

In process control systems where there is a known process variation, for example, due to certain process activities, the variation can be modeled and thereby removed from the process variable signal to obtain the isolated sensor signal. In one aspect, wavelet transformation data is calculated and stored in memory 155 of signal evaluator 154 shown in FIG. 2 during normal operation of the process. This data represents a base “plane” of normal operation. The data can be collected at various times during the day, during a process cycle and during the year. When placed into normal use, signal evaluator 154 retrieves the stored wavelet transformation from memory 155 and compares the base plane data with information gathered through wavelet analysis during operation. For example, if signal evaluator 154 subtracts the base plane data from a current wavelet transformation, the resultant data represents only the anomalies occurring in the process. Such a subtraction process separates the process variations from abnormal vibration noise signals along with daily and seasonal variations in the signal. For example, the vibration sensor signal 146 may change during the day or over the course of a year due to environmental temperature changes and process activities. This separates the process signal from the vibration noise signal 132. During operation, a neural network can operate in microprocessor system 148 to monitor operation of the process and select the optimum model stored in memory 155. Coefficients related to operation of the model can be generated using a neural network or can be received over communication bus 106 during installation of transmitter 102 as provided for in various communication protocols. Examples of models include a first order model including dead time which is typically good for non-oscillatory systems, or second order models plus dead time which typically suffice for oscillatory processes. Another modeling technique is to use an adaptive neural network-fuzzy logic model. Such a hybrid system includes a neural network and fuzzy logic. The fuzzy logic adapts the model to variability of the process while the neural network models allow flexibility of the modeling to thereby adjust to changing processes. This provides a relatively robust model. The use of adaptive membership functions in the fuzzy logic model further allows the determination whether the particular model should be updated. The diagnostic device can operate with any appropriate type of signal evaluator such as one that includes life expectancy or diagnostic circuitry. Examples of such techniques are shown in the co-pending application Ser. No. 08/744,980, filed Nov. 7, 1996, entitled “DIAGNOSTICS FOR RESISTANCE BASED TRANSMITTER,” which is incorporated by reference.

The process variable sensor 138 can be any type of process variable sensor which is capable of sensing vibrations in the process fluid. The process variable sensor should have a bandwidth and a frequency response or resolution sufficient to detect the desired vibration noise signals. Typically, this is between about 0 and about 200 Hz in a differential pressure based flow transmitter. One type of process variable sensor is a pressure sensor. A process variable pressure sensor having sufficient bandwidth is illustrated in U.S. Pat. No. 5,637,802, issued Jun. 10, 1997. Other components in the devices such as analog to digital converters must also have sufficient bandwidth, amplifiers and other elements in the input channel. FIG. 7 illustrates a magnetic flowmeter 250 having a process variable sensor provided by electrodes 258. Flowmeter 250 includes flow tube 252 coupled to electronics housing 254. In a magnetic flowmeter, coils 256 generate a magnetic field in flow tube 252. The flow of process fluid through the resultant magnetic field develops an electric potential between electrodes 258 which provide a process variable sensor signal. Vibration signals 132 in the fluid change the flow rate and can be sensed by electrodes 258. Typical frequency response of magnetic flowmeters are 0–75 Hz or higher.

FIG. 8 illustrates a vortex flowmeter 260 having a process variable sensor provided by sensor 266. Vortex flowmeter 260 includes a shedding bar 262 mounted in flow tube 264 and coupled to fourth sensor 266. A flow of process fluid through flow tube 264 causes shedding bar 262 to move about pivot axis 268. This movement causes a force 270 to be transferred to sensor 266 which provides a process variable sensor signal. The frequency of this force is related to the flow through flow tube 264. Noise vibration signals 132 are also transferred to sensor 266 for use with the signal preprocessor 150 and signal evaluator 154 shown in FIG. 2. Vortex flowmeters typically have a frequency response of between about 0 and 10 KHz or higher.

FIG. 9 illustrates a coriolis flowmeter 330 process variable sensor provided by coils 342 and which includes a flow tube 332 and meter electronics 334. Measurement tubes 336 coupled to flow tube 332. A drive coil 340 vibrates tubes 336 in response to a drive signal and sense elements which include sense coils 342 and sense magnets 344 provide left and right velocity signals related to the resultant vibration of tubes 336. Flow through the tubes 336 cause tubes 336 to pivot in a manner which is sensed by coils 342. The outputs from coils 342 are related to flow through tubes 336 and provide a process variable sensor signal. Vibration noise signals 132 can also be sensed by coils 342 and provided to signal preprocessor 140 shown in FIG. 2. Coriolis meters typically have a very wide frequency response which can sense vibrations at very high frequencies.

Other types of process variable sensors include an ultrasonic or radio frequency receiver in a level gauge or an ultrasonic receiver in a ultrasonic level sensor. For example, transmitter 102 can comprise an ultrasonic flowmeter or level gauge and sensor 138 is an ultrasonic sensor. Additionally, control devices such as valve controllers can include process variable sensors.

In one embodiment, the signal preprocessor 150 generates a sensor power signal 152 as a function of the frequency distribution of power of the sensor signal. For example, the signal preprocessor 150 can perform a wavelet transformation, discrete wavelet transformation, Fourier transformation, or use other techniques to determine the spectrum of the sensor signal. The power of the distributed frequencies is determined by monitoring such a converted signal over time. One example of this is the power spectral density (PSD). The power spectral density can be defined as the power (or variance) of a time series and can be described as how the power (or variance) of a time series is distributed with frequency. For example, this can be defined as the Fourier transform of an auto-correlation sequence of the time series. Another definition of power spectral density is the squared modulus of the Fourier transform of the time series, scaled by an appropriate constant term.

Power spectral density, Fi, can also be calculated using Welch's method of averaged periodograms for a given data set. The method uses a measurement sequence x(n) sampled at fs samples per second, where n=1, 2, . . N. A front end filter with a filter frequency less than fs/2 is used to reduce aliasing in the spectral calculations. The data set is divided into Fk,i as shown in Eq. 1: F k , i = ( 1 / M ) n = 1 M x k ( n ) - j2Π i Δ fn 2 Eq . 1

There are Fk,i overlapping data segments and for each segment, a periodogram is calculated where M is the number of points in the current segment. After all periodograms for all segments are evaluated, all of them are averaged to calculate the power spectrum: Fi = ( 1 / L ) k = 1 L F k , i Eq . 2
Once a power spectrum is obtained for a training mode, this sequence is stored in memory, preferably EEPROM, as the baseline power spectrum for comparison to real time power spectrums. Fi is thus the power spectrum sequence and i goes from 1 to N which is the total number of points in the original data sequence. N, usually a power of 2, also sets the frequency resolution of the spectrum estimation. Therefore, Fi is also known as the signal strength at the ith frequency. The power spectrum typically includes a large number points at predefined frequency intervals, defining a shape of the spectral power distribution as a function of frequency.

The signal evaluator 154 evaluates the signal is using any appropriate techniques and including those discussed above. For example, the signal evaluator 154 can compare the frequency distribution of power in a sensor signal against a stored value, such as a stored threshold level, for example across a frequency range. Other evaluation techniques can be chosen as desired, for example, neural networks or fuzzy logic techniques can be used. The process power signal can be compared against known signal signatures, and the comparison used in performing diagnostics.

Although the invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes can be made in form and detail without departing from the spirit and scope of the invention. The invention can be practiced in software rather than in any of a number of places in a process control system such as in a field mounted device or even a system controller. Furthermore, modern digital protocol such as fieldbus, profibus and others allow for the software which practices the invention to be communicated between elements in a process control system, and also provide for process variables to be sent in one transmitter and then sent to the software which is resident in a different piece of equipment. For example, various function blocks of the invention have been described in terms of circuitry, however, many function blocks may be implemented in other forms such as digital and analog circuits, software and their hybrids. When implemented in software, a microprocessor performs the functions and the signals comprise digital values on which the software operates. A general purpose processor programmed with instructions that cause the processor to perform the desired process elements, application specific hardware components that contain circuit wired to perform the desired elements and any combination of programming a general purpose processor and hardware components can be used. Deterministic or fuzzy logic techniques can be used as needed to make decisions in the circuitry or software. Because of the nature of complex digital circuitry, circuit elements may not be partitioned into separate blocks as shown, but components used for various functional blocks can be intermingled and shared. Likewise with software, some instructions can be shared as part of several functions and be intermingled with unrelated instructions within the scope of the invention. A diagnostic device can be any device (or a combination of devices such as devices which share information to arrive at a conclusion) which receives a process variable signal including a process monitoring system, a personal computer, a control system, a portable communicator, a controller or a transmitter. U.S. Pat. No. 5,754,596 describes a technique for transmitting stored data which has been stored in a field device such that the stored data can have a higher bandwidth than would be possible if data were transmitted at the update rate of the communication protocol. Any type of process variable sensor which is sensitive to a process noise signal can be used with the diagnostic device of the invention.

Eryurek, Evren, Kavaklioglu, Kadir, Esboldt, Steven R.

Patent Priority Assignee Title
10663331, Sep 26 2013 Micro Motion, Inc Magnetic flowmeter with power limit and over-current detection
11184383, May 27 2016 ETAS GmbH Security test system, security test method, function evaluation device, and program
7523667, Dec 23 2003 Rosemount Inc. Diagnostics of impulse piping in an industrial process
7536274, May 28 2004 Fisher-Rosemount Systems, Inc. System and method for detecting an abnormal situation associated with a heater
7627441, Sep 30 2003 Rosemount Inc Process device with vibration based diagnostics
7680549, Apr 04 2005 Fisher-Rosemount Systems, Inc Diagnostics in industrial process control system
7693606, Dec 21 2007 Rosemount Inc Diagnostics for mass flow control
7702478, Feb 28 2005 Rosemount Inc Process connection for process diagnostics
7765873, Jul 20 2007 Rosemount Inc Pressure diagnostic for rotary equipment
7770459, Jul 20 2007 Rosemount Inc Differential pressure diagnostic for process fluid pulsations
7779702, Nov 03 2008 Micro Motion, Inc Flow disturbance compensation for magnetic flowmeter
7913566, May 23 2006 Rosemount Inc. Industrial process device utilizing magnetic induction
7940189, Sep 26 2006 Rosemount Inc Leak detector for process valve
7949495, Mar 28 1996 Rosemount Inc Process variable transmitter with diagnostics
7977924, Nov 03 2008 Rosemount Inc. Industrial process power scavenging device and method of deriving process device power from an industrial process
8032234, May 16 2006 Micro Motion, Inc Diagnostics in process control and monitoring systems
8250924, Apr 22 2008 Rosemount Inc Industrial process device utilizing piezoelectric transducer
8576082, Jul 15 2010 Jones Group Forensic Engineers Busway joint parameter detection system
8729440, Mar 02 2009 Harris Corporation Applicator and method for RF heating of material
8820176, Jan 31 2011 KROHNE Messtechnik GmbH Vortex flow meter having an inertial sensor for detecting parasitic oscillations
8882883, Dec 24 2012 Air Products and Chemicals, Inc.; Air Products and Chemicals, Inc Apparatus and methods to monitor and control cyclic process units in a steady plant environment
8898036, Aug 06 2007 Rosemount Inc. Process variable transmitter with acceleration sensor
9086335, Apr 21 2006 FLOWSERVE PTE LTD Rotary encoder frequency analysis
9537692, Aug 31 2005 ABB Patent GmbH Automation device operable to convert between data byte streams and frequency modulated line signals
9574919, Jun 20 2013 University of Southern California Reducing false alarms with multi-modal sensing for pipeline blockage
9823276, May 29 2012 Rosemount Inc Process control loop current verification
9921120, Apr 22 2008 Rosemount Inc. Industrial process device utilizing piezoelectric transducer
Patent Priority Assignee Title
3096434,
3404264,
3468164,
3590370,
3618592,
3688190,
3691842,
3701280,
3855858,
3948098, Apr 24 1974 The Foxboro Company Vortex flow meter transmitter including piezo-electric sensor
3973184, Jan 27 1975 Leeds & Northrup Company Thermocouple circuit detector for simultaneous analog trend recording and analog to digital conversion
4058975, Dec 08 1975 General Electric Company Gas turbine temperature sensor validation apparatus and method
4099413, Jun 25 1976 Yokogawa Electric Corporation Thermal noise thermometer
4102199, Aug 26 1976 Megasystems, Inc. RTD measurement system
4122719, Jul 08 1977 Environmental Systems Corporation System for accurate measurement of temperature
4250490, Jan 19 1979 Rosemount Inc. Two wire transmitter for converting a varying signal from a remote reactance sensor to a DC current signal
4337516, Jun 26 1980 United Technologies Corporation Sensor fault detection by activity monitoring
4399824, Oct 05 1981 Air-Shields, Inc. Apparatus for detecting probe dislodgement
4459858, Sep 18 1981 Hach Company Flow meter having an electromagnetic sensor probe
4463612, Dec 10 1981 ELSAG INTERNATIONAL B V , A CORP OF THE NETHERLANDS Electronic circuit using digital techniques for vortex shedding flowmeter signal processing
4517468, Apr 30 1984 Siemens Westinghouse Power Corporation Diagnostic system and method
4528869, Feb 21 1978 Toyota Jidosha Kogyo Kabushiki Kaisha Automatic transmission for vehicles
4530234, Jun 30 1983 MOBIL OIL CORPORATION, A CORP Method and system for measuring properties of fluids
4540468, Sep 26 1983 Board of Trustees of the University of Maine Method for determining the degree of completion and pulp yield
4571689, Oct 20 1982 The United States of America as represented by the Secretary of the Air Multiple thermocouple testing device
4630265, Sep 26 1984 General Electric Company Method and apparatus for selecting for use between data buses in a redundant bus communication system
4635214, Jun 30 1983 Fujitsu Limited Failure diagnostic processing system
4642782, Jul 31 1984 Westinghouse Electric Corp. Rule based diagnostic system with dynamic alteration capability
4644479, Jul 31 1984 Hughes Tool Company Diagnostic apparatus
4649515, Apr 30 1984 WESTINGHOUSE ELECTRIC CO LLC Methods and apparatus for system fault diagnosis and control
4668473, Apr 25 1983 ELSAG INTERNATIONAL B V , A CORP OF THE NETHERLANDS Control system for ethylene polymerization reactor
4686638, Nov 04 1983 Kabushiki Kaisha Kosumo Keiki Leakage inspection method with object type compensation
4707796, Oct 19 1983 Reliability and maintainability indicator
4720806, Mar 31 1984 BARMAG BARMER MASCHINENFABRIK AKTIENGESELLSCHAFT, A GERMAN CORP Method and apparaus for centrally collecting measured values
4736367, Dec 22 1986 SIEMENS VDO AUTOMOTIVE ELECTRONICS CORPORATION Smart control and sensor devices single wire bus multiplex system
4736763, Feb 26 1987 AIR FORCE, UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE Automatic device for the detection and shutoff of unwanted liquid flow in pipes
4758308, Mar 05 1985 System for monitoring contaminants with a detector in a paper pulp stream
4777585, Feb 06 1985 Hitachi, Ltd. Analogical inference method and apparatus for a control system
4807151, Apr 11 1986 Purdue Research Foundation Electrical technique for correcting bridge type mass air flow rate sensor errors resulting from ambient temperature variations
4818994, Oct 22 1987 Rosemount Inc.; ROSEMOUNT INC , A CORP OF MINNESOTA Transmitter with internal serial bus
4831564, Oct 22 1987 Suga Test Instruments Co., Ltd. Apparatus for estimating and displaying remainder of lifetime of xenon lamps
4841286, Feb 08 1988 Honeywell Inc. Apparatus and method for detection of an open thermocouple in a process control network
4873655, Aug 21 1987 Board of Regents, The University of Texas System Sensor conditioning method and apparatus
4907167, Sep 30 1987 PAVILION TECHNOLOGIES, INC Process control system with action logging
4924418, Feb 10 1988 U S BANK NATIONAL ASSOCIATION Universal monitor
4926364, Jul 25 1988 Westinghouse Electric Corp. Method and apparatus for determining weighted average of process variable
4934196, Jun 02 1989 Micro Motion, Inc. Coriolis mass flow rate meter having a substantially increased noise immunity
4939753, Feb 24 1989 FISHER-ROSEMOUNT SYSTEMS, INC , A DELAWARE CORPORATION Time synchronization of control networks
4964125, Aug 19 1988 HE HOLDINGS, INC , A DELAWARE CORP ; Raytheon Company Method and apparatus for diagnosing faults
4988990, Aug 11 1987 Rosemount Inc. Dual master implied token communication system
4992965, Apr 02 1987 paragon AG Circuit arrangement for the evaluation of a signal produced by a semiconductor gas sensor
5005142, Jan 30 1987 Westinghouse Electric Corp. Smart sensor system for diagnostic monitoring
5019760, Dec 07 1989 ELECTRIC POWER RESEACH INSTITUTE, A CORP OF DISTRICT OF COLUMBIA Thermal life indicator
5025344, Nov 30 1988 Carnegie Mellon University Built-in current testing of integrated circuits
5043862, Apr 07 1988 Hitachi, Ltd. Method and apparatus of automatically setting PID constants
5053815, Apr 09 1990 Eastman Kodak Company Reproduction apparatus having real time statistical process control
5057774, Jan 10 1989 NXP B V Apparatus for measuring the quiescent current of an integrated monolithic digital circuit
5067099, Nov 03 1988 DIO TECHNOLOGY HOLDINGS LLC Methods and apparatus for monitoring system performance
5081598, Feb 21 1989 SIEMENS POWER GENERATION, INC Method for associating text in automatic diagnostic system to produce recommended actions automatically
5089979, Feb 08 1989 FLEET NATIONAL BANK, AS AGENT Apparatus for digital calibration of detachable transducers
5089984, May 15 1989 ALLEN-BRADLEY COMPANY, INC Adaptive alarm controller changes multiple inputs to industrial controller in order for state word to conform with stored state word
5098197, Jan 30 1989 The United States of America as represented by the United States Optical Johnson noise thermometry
5099436, Nov 03 1988 DIO TECHNOLOGY HOLDINGS LLC Methods and apparatus for performing system fault diagnosis
5103409, Jan 09 1989 Hitachi, Ltd. Field measuring instrument and its abnormality managing method
5111531, Jan 08 1990 AUTOMATION TECHNOLOGY, INC A CORPORATION OF DE Process control using neural network
5121467, Aug 03 1990 ROCKWELL AUTOMATION TECHNOLOGIES, INC Neural network/expert system process control system and method
5122794, Aug 11 1987 Rosemount Inc. Dual master implied token communication system
5122976, Mar 12 1990 Siemens Westinghouse Power Corporation Method and apparatus for remotely controlling sensor processing algorithms to expert sensor diagnoses
5130936, Sep 14 1990 WILMINGTON TRUST, NATIONAL ASSOCIATION Method and apparatus for diagnostic testing including a neural network for determining testing sufficiency
5134574, Feb 27 1990 INVENSYS SYSTEMS INC FORMERLY KNOWN AS THE FOXBORO COMPANY ; Invensys Systems, Inc Performance control apparatus and method in a processing plant
5137370, Mar 25 1991 Delta M Corporation Thermoresistive sensor system
5142612, Aug 03 1990 ROCKWELL AUTOMATION TECHNOLOGIES, INC Computer neural network supervisory process control system and method
5143452, Feb 04 1991 Rockwell International Corporation System for interfacing a single sensor unit with multiple data processing modules
5148378, Nov 18 1988 OMRON CORPORATION, 10, TSUCHIDO-CHO, HANAZONO, UKYO-KU, KYOTO-SHI KYOTO-FU, JAPAN Sensor controller system
5150289, Jul 30 1990 INVENSYS SYSTEMS INC FORMERLY KNOWN AS THE FOXBORO COMPANY Method and apparatus for process control
5167009, Aug 03 1990 ROCKWELL AUTOMATION TECHNOLOGIES, INC On-line process control neural network using data pointers
5175678, Aug 15 1990 ELSAG INTERNATIONAL B V Method and procedure for neural control of dynamic processes
5193143, Jan 12 1988 Honeywell Inc. Problem state monitoring
5197114, Aug 03 1990 ROCKWELL AUTOMATION TECHNOLOGIES, INC Computer neural network regulatory process control system and method
5197328, Aug 25 1988 Fisher Controls International LLC Diagnostic apparatus and method for fluid control valves
5212765, Aug 03 1990 ROCKWELL AUTOMATION TECHNOLOGIES, INC On-line training neural network system for process control
5214582, Jan 30 1991 Snap-On Tools Company Interactive diagnostic system for an automotive vehicle, and method
5216226, Mar 04 1991 Mitsubishi Denki Kabushiki Kaisha Apparatus for preventing and predicting deterioration of insulation in an electric equipment
5224203, Aug 03 1990 ROCKWELL AUTOMATION TECHNOLOGIES, INC On-line process control neural network using data pointers
5228780, Oct 30 1992 Martin Marietta Energy Systems, Inc. Dual-mode self-validating resistance/Johnson noise thermometer system
5235527, Feb 09 1990 Toyota Jidosha Kabushiki Kaisha Method for diagnosing abnormality of sensor
5265031, Nov 26 1990 PRAXAIR TECHNOLOGY, INC Diagnostic gas monitoring process utilizing an expert system
5265222, Nov 27 1989 Hitachi, Ltd. Symbolization apparatus and process control system and control support system using the same apparatus
5269311, Aug 29 1989 HOSPIRA, INC Method for compensating errors in a pressure transducer
5274572, Dec 02 1987 Schlumberger Technology Corporation Method and apparatus for knowledge-based signal monitoring and analysis
5282131, Jan 21 1992 BROWN AND ROOT INDUSTRIAL SERVICES, INC Control system for controlling a pulp washing system using a neural network controller
5282261, Aug 03 1990 ROCKWELL AUTOMATION TECHNOLOGIES, INC Neural network process measurement and control
5293585, Aug 31 1989 Kabushiki Kaisha Toshiba Industrial expert system
5303181, Nov 08 1985 Harris Corporation Programmable chip enable logic function
5305230, Nov 22 1989 Hitachi, Ltd. Process control system and power plant process control system
5311421, Dec 08 1989 Hitachi, Ltd. Process control method and system for performing control of a controlled system by use of a neural network
5317520, Jul 01 1991 Moore Industries International Inc. Computerized remote resistance measurement system with fault detection
5327357, Dec 03 1991 PRAXAIR TECHNOLOGY, INC Method of decarburizing molten metal in the refining of steel using neural networks
5333240, Apr 14 1989 Hitachi, LTD Neural network state diagnostic system for equipment
5340271, Aug 18 1990 Rolls-Royce plc Flow control method and means
5347843, Sep 23 1992 KORR MEDICAL TECHNOLOGIES INC Differential pressure flowmeter with enhanced signal processing for respiratory flow measurement
5349541, Jan 23 1992 Electric Power Research Institute Method and apparatus utilizing neural networks to predict a specified signal value within a multi-element system
5357449, Apr 26 1991 Texas Instruments Incorporated Combining estimates using fuzzy sets
5361628, Aug 02 1993 FORD GLOBAL TECHNOLOGIES, INC A MICHIGAN CORPORATION System and method for processing test measurements collected from an internal combustion engine for diagnostic purposes
5365423, Jan 08 1992 Rockwell International Corporation Control system for distributed sensors and actuators
5365787, Oct 02 1991 Monitoring Technology Corp. Noninvasive method and apparatus for determining resonance information for rotating machinery components and for anticipating component failure from changes therein
5367612, Oct 30 1990 SCIENCE APPLICATIONS INTERNATIONAL, A CORP OF DE Neurocontrolled adaptive process control system
5384699, Aug 24 1992 ASSOCIATED UNIVERSITIES, INC Preventive maintenance system for the photomultiplier detector blocks of pet scanners
5386373, Aug 05 1993 ROCKWELL AUTOMATION TECHNOLOGIES, INC Virtual continuous emission monitoring system with sensor validation
5388465, Nov 17 1992 Yamatake Corporation Electromagnetic flowmeter
5392293, Feb 26 1993 AT&T Corp. Built-in current sensor for IDDQ testing
5394341, Mar 25 1993 FORD GLOBAL TECHNOLOGIES, INC A MICHIGAN CORPORATION Apparatus for detecting the failure of a sensor
5394543, Feb 05 1991 Storage Technology Corporation Knowledge based machine initiated maintenance system
5404064, Sep 02 1993 UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY OF THE NAVY Low-frequency electrostrictive ceramic plate voltage sensor
5408406, Oct 07 1993 Honeywell INC Neural net based disturbance predictor for model predictive control
5408586, Aug 03 1990 ROCKWELL AUTOMATION TECHNOLOGIES, INC Historical database training method for neural networks
5410495, Jul 20 1993 Texas Instruments Incorporated Apparatus, systems, and methods for diagnosing anomalous mass flow controller operation
5414645, Oct 25 1991 Mazda Motor Corporation Method of fault diagnosis in an apparatus having sensors
5419197, Jun 02 1992 Mitsubishi Denki Kabushiki Kaisha Monitoring diagnostic apparatus using neural network
5430642, Jun 04 1990 Hitachi, LTD Control device for controlling a controlled apparatus, and a control method therefor
5434774, Mar 02 1994 Fisher Controls International LLC Interface apparatus for two-wire communication in process control loops
5436705, Apr 18 1994 Xerox Corporation Adaptive process controller for electrophotographic printing
5440478, Feb 22 1994 Mercer Forge Company Process control method for improving manufacturing operations
5442639, Oct 12 1993 SHIP STAR ASSOCIATES, INC Method and apparatus for monitoring a communications network
5467355, Apr 13 1992 Mita Industrial Co., Ltd. Image forming apparatus provided with self-diagnosis system
5469070, Oct 16 1992 ROSEMOUNT ANALYTICAL INC Circuit for measuring source resistance of a sensor
5469156, Jul 04 1989 Hitachi, Ltd. Field sensor communication system
5469735, Dec 09 1993 Hitachi, LTD Self-diagnosing apparatus and method for determining occurence of failure in inner cylinder pressure responsive sensor applicable to engine combustion detecting/controlling system
5481199, Sep 24 1993 Administrator of the National Aeronautics and Space Administration System for improving measurement accuracy of transducer by measuring transducer temperature and resistance change using thermoelectric voltages
5481200, Sep 15 1993 Rosemount Inc Field transmitter built-in test equipment
5483387, Jul 22 1994 Honeywell, Inc.; Honeywell INC High pass optical filter
5485753, Dec 13 1991 Honeywell Inc. Piezoresistive silicon pressure sensor implementing long diaphragms with large aspect ratios
5486996, Jan 22 1993 Honeywell Inc. Parameterized neurocontrollers
5488697, Jan 12 1988 Honeywell Inc. Problem state monitoring system
5489831, Sep 16 1993 Honeywell INC Pulse width modulating motor controller
5495769, Sep 07 1993 Rosemount Inc. Multivariable transmitter
5510799,
5511004, Jun 03 1992 Thomson-CSF Diagnostic method for an evolutionary process
5526293, Dec 17 1993 Texas Instruments Inc. System and method for controlling semiconductor wafer processing
5539638, Aug 05 1993 ROCKWELL AUTOMATION TECHNOLOGIES, INC Virtual emissions monitor for automobile
5548528, Aug 05 1993 ROCKWELL AUTOMATION TECHNOLOGIES, INC Virtual continuous emission monitoring system
5555190, Jul 12 1995 Micro Motion, Inc. Method and apparatus for adaptive line enhancement in Coriolis mass flow meter measurement
5560246, Aug 22 1992 Claas Ohg Beschrankt Haftende Offene Handelsgesellschaft Mass flow rate measuring device with dual electrodes
5561599, Jun 14 1995 Honeywell, Inc Method of incorporating independent feedforward control in a multivariable predictive controller
5570034, Dec 29 1994 Intel Corporation Using hall effect to monitor current during IDDQ testing of CMOS integrated circuits
5570300, Apr 22 1992 INVENSYS SYSTEMS INC FORMERLY KNOWN AS THE FOXBORO COMPANY Self-validating sensors
5572420, Apr 03 1995 Honeywell Inc. Method of optimal controller design for multivariable predictive control utilizing range control
5573032, Aug 25 1993 Fisher Controls International LLC Valve positioner with pressure feedback, dynamic correction and diagnostics
5591922, May 27 1994 Schlumberger Technology Corporation Method and apparatus for measuring multiphase flows
5598521, Jun 16 1992 Honeywell Inc. Directly connected display of process control system in an open systems windows environment
5600148, Dec 30 1994 Honeywell, Inc Low power infrared scene projector array and method of manufacture
5608650, Aug 19 1994 MEDIQ PRN LIFE SUPPORT SERVICES, INC ; TRIAD MEDICAL, INC Systems and methods for testing pump flow rates
5623605, Aug 29 1994 THE CHASE MANHATTAN BANK, AS COLLATERAL AGENT Methods and systems for interprocess communication and inter-network data transfer
5629870, May 31 1994 SIEMENS INDUSTRY, INC Method and apparatus for predicting electric induction machine failure during operation
5633809, Dec 22 1989 American Sigma, Inc. Multi-function flow monitoring apparatus with area velocity sensor capability
5637802, Feb 28 1995 Rosemount Inc.; Rosemount Inc Capacitive pressure sensor for a pressure transmitted where electric field emanates substantially from back sides of plates
5640491, Apr 14 1992 AspenTech Corporation Control system using an adaptive neural network for target and path optimization for a multivariable, nonlinear process
5654869, Dec 12 1994 NEC Tokin Corporation Chip-formed solid electrolytic capacitor without an anode lead projecting from anode member
5661668, May 25 1994 VMWARE, INC Apparatus and method for analyzing and correlating events in a system using a causality matrix
5665899, Feb 23 1996 Rosemount Inc.; Rosemount Inc Pressure sensor diagnostics in a process transmitter
5669713, Sep 27 1994 Rosemount Inc.; Rosemount Inc Calibration of process control temperature transmitter
5671335, May 23 1991 Allen-Bradley Company, Inc. Process optimization using a neural network
5672247, Mar 03 1995 UNION CAMP PATENT HOLDING, INC Control scheme for rapid pulp delignification and bleaching
5675504, Jan 23 1996 Universite Laval Method of predicting residual chlorine in water supply systems
5675724, May 03 1991 Storage Technology Corporation Knowledge based resource management
5680109, Jun 21 1996 SCHNEIDER ELECTRIC SYSTEMS USA, INC Impulse line blockage detector systems and methods
5700090, Jan 03 1996 Rosemount Inc.; Rosemount Inc Temperature sensor transmitter with sensor sheath lead
5703575, Jun 06 1995 Rosemount Inc. Open sensor diagnostic system for temperature transmitter in a process control system
5704011, Nov 01 1994 SCHNEIDER ELECTRIC SYSTEMS USA, INC Method and apparatus for providing multivariable nonlinear control
5705754, Oct 26 1995 Endress+Hauser Flowtec AG; Endress + Hauser Flowtec AG Coriolis-type mass flowmeter with a single measuring tube
5705978, Sep 29 1995 Rosemount Inc Process control transmitter
5708211, Jan 17 1997 Ohio University Flow regime determination and flow measurement in multiphase flow pipelines
5708585, Mar 20 1995 General Motors Corporation Combustible gas measurement
5710370, May 17 1996 DIETERICH STANDARD, INC , A CORP OF DELAWARE Method for calibrating a differential pressure fluid flow measuring system
5710708, Oct 25 1994 INGOLSTADT, RIETER Backplane control system for spinning machines
5713668, Aug 23 1996 AccuTru International Corporation Self-verifying temperature sensor
5719378, Nov 19 1996 Illinois Tool Works, Inc. Self-calibrating temperature controller
5736649, Aug 23 1995 Tokico Ltd. Vortex flowmeter
5741074, Jun 06 1995 Thermo Electrioc Corporation Linear integrated sensing transmitter sensor
5742845, Jun 22 1995 WI-LAN TECHNOLOGIES INC System for extending present open network communication protocols to communicate with non-standard I/O devices directly coupled to an open network
5746511, Jan 03 1996 Rosemount Inc.; Rosemount Inc Temperature transmitter with on-line calibration using johnson noise
5747701, Jun 12 1996 RACINE FEDERATED, INC Ultrasonic vortex flowmeter having remote signal processing
5752008, May 28 1996 Fisher-Rosemount Systems, Inc Real-time process control simulation method and apparatus
5764539, Jan 21 1994 Nestec S A Non-invasive system and method for a fluid flow monitoring system
5764891, Feb 15 1996 Rosemount Inc.; Rosemount Inc Process I/O to fieldbus interface circuit
5781024, Jul 26 1996 EASYDX, INC Instrument performance verification system
5781878, Jun 05 1995 Nippondenso Co., Ltd. Apparatus and method for diagnosing degradation or malfunction of oxygen sensor
5790413, Mar 22 1993 Exxon Chemical Patents INC Plant parameter detection by monitoring of power spectral densities
5801689, Jan 22 1996 Extended Systems, Inc.; EXTENDED SYSTEMS INC Hypertext based remote graphic user interface control system
5805442, May 30 1996 SCHNEIDER AUTOMATION INC Distributed interface architecture for programmable industrial control systems
5817950, Jan 04 1996 Rosemount Inc.; Rosemount Inc Flow measurement compensation technique for use with an averaging pitot tube type primary element
5828567, Nov 07 1996 Rosemount Inc.; Rosemount Inc Diagnostics for resistance based transmitter
5829876, Sep 27 1994 Rosemount Inc. Calibration of process control temperature transmitter
5848383, May 06 1997 SENSATA TECHNOLOGIES, INC System and method for precision compensation for the nonlinear offset and sensitivity variation of a sensor with temperature
5854993, Dec 10 1996 Caterpillar Inc.; Caterpillar Inc Component machine testing using neural network processed vibration data analysis
5859964, Oct 25 1996 Advanced Micro Devices, Inc. System and method for performing real time data acquisition, process modeling and fault detection of wafer fabrication processes
5869772, Jun 24 1997 SIERRA INSTRUMENTS, INC Vortex flowmeter including cantilevered vortex and vibration sensing beams
5876122, Jan 03 1996 Rosemount Inc. Temperature sensor
5880376, Oct 26 1995 Kabushiki Kaisha Toshiba Electromagnetic flowmeter
5887978, Aug 23 1996 AccuTru International Corporation Self-verifying temperature sensor
5908990, Apr 19 1996 AURA ENVIRONMENTAL LTD , FORMERLY INDEPENDENT MEASUREMENT LIMITED Apparatus for measuring the velocity of a fluid flowing in a conduit
5923557, Aug 01 1997 Agilent Technologies Inc Method and apparatus for providing a standard interface to process control devices that are adapted to differing field-bus protocols
5924086, Oct 10 1990 Honeywell Inc. Method for developing a neural network tool for process identification
5926778, Jan 30 1997 Temic Telefunken Microelectronic GmbH Method for temperature compensation in measuring systems
5934371, Feb 09 1995 Baker Hughes Incorporated Pressure test method for permanent downhole wells and apparatus therefore
5936514, Sep 27 1996 Rosemount Inc.; Rosemount Inc Power supply input circuit for field instrument
5940290, Dec 06 1995 Honeywell Inc. Method of predictive maintenance of a process control system having fluid movement
5956663, Nov 07 1996 ROSEMOUNT, INC Signal processing technique which separates signal components in a sensor for sensor diagnostics
5970430, Oct 04 1996 Fisher Controls International LLC Local device and process diagnostics in a process control network having distributed control functions
6002952, Apr 14 1997 JPMorgan Chase Bank, National Association Signal processing apparatus and method
6014612, Oct 02 1997 Fisher Controls International LLC Remote diagnostics in a process control network having distributed control functions
6014902, Dec 28 1995 SCHNEIDER ELECTRIC SYSTEMS USA, INC Magnetic flowmeter with diagnostics
6016523, Mar 09 1998 SCHNEIDER AUTOMATION, INC I/O modular terminal having a plurality of data registers and an identification register and providing for interfacing between field devices and a field master
6016706, Apr 23 1992 Hitachi, Ltd. Process state detector, semiconductor sensor and display device for displaying a process state used therefor
6017143, Mar 28 1996 Rosemount Inc.; Rosemount Inc Device in a process system for detecting events
6023399, Sep 24 1996 Hitachi, Ltd. Decentralized control system and shutdown control apparatus
6038579, Jan 08 1997 Kabushiki Kaisha Toshiba Digital signal processing apparatus for performing wavelet transform
6045260, Sep 27 1994 Rosemount Inc. Switch for selectively coupling a sensor or calibration element to a terminal block
6046642, Sep 08 1998 SHENZHEN XINGUODU TECHNOLOGY CO , LTD Amplifier with active bias compensation and method for adjusting quiescent current
6047220, Dec 31 1996 Rosemount Inc.; Rosemount Inc Device in a process system for validating a control signal from a field device
6047222, Oct 04 1996 Fisher Controls International LLC Process control network with redundant field devices and buses
6052655, Mar 19 1997 Hitachi, Ltd. System for converting input/output signals where each amplifier section comprises a storage unit containing information items relating to an associated terminal end
6061603, Sep 10 1997 Schneider Automation Inc. System for remotely accessing an industrial control system over a commercial communications network
6119047, Mar 28 1996 Rosemount Inc Transmitter with software for determining when to initiate diagnostics
6119529, Nov 28 1996 SGS-THOMSON MICROELECTRONICS S R L Fluid flow meter and corresponding flow measuring methods
6139180, Mar 27 1998 Vesuvius Crucible Company Method and system for testing the accuracy of a thermocouple probe used to measure the temperature of molten steel
6151560, Mar 27 1995 ETI INC Open circuit failure monitoring apparatus for controlled electrical resistance heaters
6182501, Oct 21 1997 Cosmo Instruments, Co., Ltd. Leak test method and apparatus
6192281, Oct 04 1996 Fisher Controls International LLC Network accessible interface for a process control network
6195591, Apr 12 1996 Fisher-Rosemount Systems, Inc. Process control system using a process control strategy distributed among multiple control elements
6199018, Mar 04 1998 Emerson Electric Co Distributed diagnostic system
6209048, Feb 09 1996 RICOH COMPANY,LTD ,A CORP OF JAPAN HAVING A PLACE OF BUSINESS IN TOKYO,JAPAN AND RICOH CORP ; RICOH COMPANY, LTD A CORP OF JAPAN; Ricoh Corporation Peripheral with integrated HTTP server for remote access using URL's
6236948, Jun 07 1997 DEUTSCHES ZENTRUM FUER LUFT- UND RAUMFAHRT E V Process and device for determining a measured value of a target measured variable of a multiphase flow
6263487, Jan 17 1996 Siemens AG Programmable controller
6272438, Aug 05 1998 Micro Motion, Inc. Vibrating conduit parameter sensors, methods and computer program products for generating residual-flexibility-compensated mass flow estimates
6289735, Sep 29 1998 Reliance Electric Technologies, LLC Machine diagnostic system and method for vibration analysis
6298377, Jun 01 1998 METSO FLOW CONTROL OY Field device management system
6307483, Jun 07 1995 Rosemount Inc. Conversion circuit for process control system
6311136, Nov 26 1997 SCHNEIDER ELECTRIC SYSTEMS USA, INC Digital flowmeter
6317701, Jun 17 1998 Metso Field Systems Oy Field device management system
6327914, Sep 30 1998 Micro Motion, Inc. Correction of coriolis flowmeter measurements due to multiphase flows
6360277, Jul 22 1998 CRYDOM, INC Addressable intelligent relay
6370448, Oct 13 1997 Rosemount Inc Communication technique for field devices in industrial processes
6377859, Oct 04 1996 Fisher Controls International LLC Maintenance interface device for a use in a process control network
6396426, Oct 05 1998 Texas Instruments Incorporated Embedded mechanism offering real-time self failure detection for an analog to digital converter
6405099, Dec 25 1996 SMC Kabushiki Kaisha Automatic control system
6425038, Sep 28 1999 Rockwell Automation Technologies, Inc. Conversion of desk-top operating system for real-time control using installable interrupt service routines
6473656, Jun 21 1996 Siemens Aktiengesellschaft Process automation system
6480793, Oct 27 2000 WESTINGHOUSE ELECTRIC CO LLC Flow condition monitor
6492921, Mar 24 1999 Matsushita Electric Industrial Co., Ltd. Device for clamping multiple signals
6546814, Mar 13 1999 TEXTRON IPMP L P Method and apparatus for estimating torque in rotating machinery
20020013629,
20020032544,
20020121910,
20020145568,
20020148644,
20030033040,
20030045962,
CA999950,
DE10036971,
DE10223725,
DE19502499,
DE19704694,
DE19905071,
DE19930660,
DE29600609,
DE29917651,
DE3213866,
DE3540204,
DE4008560,
DE4343747,
DE4433593,
EP122622,
EP413814,
EP487419,
EP512794,
EP594227,
EP624847,
EP644470,
EP807804,
EP825506,
EP827096,
EP838768,
EP1022626,
EP1058093,
FR2302514,
FR2334827,
GB1534280,
GB1534288,
GB2310346,
GB2317969,
GB2342453,
GB2347232,
GB928704,
JP10232170,
JP11083575,
JP205105,
JP2712625,
JP2712701,
JP2753592,
JP3229124,
JP5122768,
JP57196619,
JP58129316,
JP59116811,
JP59163520,
JP59211196,
JP59211896,
JP60000507,
JP60131495,
JP60174915,
JP6076619,
JP6230915,
JP6242192,
JP6248224,
JP6401914,
JP6472699,
JP7063586,
JP7225530,
JP7234988,
JP8054923,
JP8102241,
JP8136386,
JP8166309,
JP8247076,
JP8313466,
RE29383, Jan 31 1977 Process Systems, Inc. Digital fluid flow rate measurement or control system
WO41050,
WO55700,
WO70531,
WO101213,
WO177766,
WO227418,
WO9425933,
WO9611389,
WO9612993,
WO9639617,
WO9721157,
WO9725603,
WO9806024,
WO9813677,
WO9814855,
WO9820469,
WO9839718,
WO9919782,
////
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jun 05 2003Rosemount Inc.(assignment on the face of the patent)
Sep 09 2003ERYUREK, EVRENRosemount IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0145040792 pdf
Sep 09 2003KAVAKLIOGLU, KADIRRosemount IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0145040792 pdf
Sep 10 2003ESBOLDT, STEVEN R Rosemount IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0145040792 pdf
Date Maintenance Fee Events
Aug 10 2009M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Mar 12 2013M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Sep 07 2017M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Mar 07 20094 years fee payment window open
Sep 07 20096 months grace period start (w surcharge)
Mar 07 2010patent expiry (for year 4)
Mar 07 20122 years to revive unintentionally abandoned end. (for year 4)
Mar 07 20138 years fee payment window open
Sep 07 20136 months grace period start (w surcharge)
Mar 07 2014patent expiry (for year 8)
Mar 07 20162 years to revive unintentionally abandoned end. (for year 8)
Mar 07 201712 years fee payment window open
Sep 07 20176 months grace period start (w surcharge)
Mar 07 2018patent expiry (for year 12)
Mar 07 20202 years to revive unintentionally abandoned end. (for year 12)