A method for pulse modulation control of switching regulators includes positioning a series of parallel FET-type switches (high-side switches) between the input side of an inductor and the voltage supply. A second parallel series of FET-type switches (low-side switches) are used to connect the input side of the inductor to ground. A control module enables one or more of the high-side switches at the start of each switching cycle. The enabled high side switches remain enabled until the output of the buck-type switching regulator is within regulation or a current limit through the high-side switches has been exceeded. The control module then disables all high-side switches and enables an equivalent number of low-side switches. The low-side switches remain enabled until the output has fallen below regulation or current has ceased to flow from the inductor to the load of the regulator.

Patent
   7026795
Priority
Jul 09 2003
Filed
Jul 09 2003
Issued
Apr 11 2006
Expiry
Mar 11 2024
Extension
246 days
Assg.orig
Entity
Large
18
6
all paid
1. A method for control of a switching regulator, the switching regulator including a parallel series of high side switches and a parallel series of low side switches with the high and low side switches connected to a common inductor, the method comprising:
a) closing m of the high side switches;
b) opening all of the high side switches;
c) closing m of the low side switches;
d) opening all of the low side switches; and
e) repeating steps a through d while varying the number m in proportion to the load applied to the switching regulator.
7. A switching regulator that comprises:
an inductor;
a parallel series of high side switches;
a parallel series of low side switches with the high and low side switches connected to the inductor;
a feedback circuit configured to monitor the load applied to the switching regulator;
a controller configured to:
a) close m of the high side switches;
b) open all of the high side switches;
c) close m of the low side switches;
d) open all of the low side switches; and
e) repeat the steps a through d while varying the number m in proportion to the load applied to the switching regulator.
2. A method as recited in claim 1 in which the high side switches are opened when the rate of current flowing from the high side switches to the inductor exceeds a predetermined maximum.
3. A method as recited in claim 1 in which the high side switches are opened when the output of the regulator exceeds a first predetermined voltage.
4. A method as recited in claim 1 in which the low side switches are opened when the output of the switching regulator falls below a second predetermined voltage.
5. A method as recited in claim 1 in which the low side switches are opened to prevent current flowing from the inductor to the low side switches.
6. A method as recited in claim 1 where the steps of closing and opening the high side switches is controlled to avoid a predetermined switching frequency.
8. A switching regulator as recited in claim 7 that further comprises a circuit for monitoring the current flowing through at least one of the high side switches and in which the controller is configured to open the high side switches when the rate of current flowing from the high side switches to the inductor exceeds a predetermined maximum.
9. A switching regulator as recited in claim 7 that further comprises a circuit for monitoring the voltage at the output of the switching regulator and in which the controller is configured to open the high side switches when the output of the regulator exceeds a first predetermined voltage.
10. A switching regulator as recited in claim 7 that further comprises a circuit for monitoring the voltage at the output of the switching regulator and in which the controller is configured to open the low side switches when the output of the switching regulator falls below a second predetermined voltage.
11. A switching regulator as recited in claim 7 that further comprises a circuit for monitoring the current flowing through at least one of the low side switches and in which the controller is configured to open the low side switches to prevent current flowing from the inductor to the low side switches.
12. A switching regulator as recited in claim 1 in which the controller is configured to control the opening and closing of the high side switches to avoid a predetermined switching frequency.

This application claims the benefit of a U.S. Provisional Patent Application Ser. No. 60/368,474 entitled “Pulse Modulation Control of Switching Regulators” filed Mar. 28, 2002. The disclosure of that provisional application is incorporated in this document by reference.

The present invention relates generally to switching power supplies. More particularly, the present invention relates to methods for producing low-noise, high efficiency switching regulators that provide fast response to transient load variations.

Extending battery life is one of the most important tasks faced by designers of portable electronic systems. This is particularly true for consumer electronics, such as cellular phones, digital cameras, portable computers and other handheld equipment. Designers of these products are faced with a continual need to reduce package size (and battery size) while increasing battery life to match or exceed competitive products.

Voltage regulators play an important role in extending battery life. In portable electronic systems, these regulators are used to increase, decrease and invert voltages to perform a wide range of tasks. In portable electronics, the efficiency of these devices is an important, and in some cases crucial consideration.

Switching regulators are generally considered to be among the most efficient and versatile available. For typical applications, the efficiency of switching regulators exceeds ninety percent. As shown in FIG. 1, they may be used to convert voltage upward (boost or step-up configuration). Alternately, and as shown in FIG. 2, switching regulators may be used to convert voltage downward (buck or step-down configuration). Switching regulators may even be used as shown in FIG. 3 to invert voltage (buck-boost or inverting configuration).

Switching regulators can generally be classified as either pulse-width-modulation (PWM) or pulse-frequency-modulation (PFM) types. PWM regulators produce a pulse train having a fixed frequency and a variable pulse width. PFM regulators, on the other hand, use a fixed pulse width and a variable pulse frequency. Over time, various methods have been used to enhance the basic PWM and PFM methods. For many PWM applications, this has resulted in a switch from voltage mode control to current mode control. Current mode control has a number of inherent advantages including faster response to changing loads and ease of combining the output of multiple regulators. PFM regulator topologies have been refined to support pulse skipping, hysteretic and burst mode control.

Unfortunately, neither PWM nor PFM types are without disadvantages. As shown in FIG. 4A, conventional switching regulators (a voltage mode PWM controller in this case) include a feedback loop with an analog error amplifier and comparator as core elements. As shown in FIG. 4A, the output of the PWM controller (labeled Vfb for feedback voltage) is sent to the error amplifier. The output of the error amplifier (labeled Verr for error voltage) is the difference between a reference voltage (labeled Vref) and the feedback voltage Vfb. Verr sets the threshold of a comparator whose other input is connected to a ramp voltage (Vramp). The output of the comparator drives a switch. Greater error voltages increase the comparator threshold on the comparator and increase the amount of time the switch is enabled. As the switch is held on longer, the peak current in the inductor is allowed to climb higher, storing more energy to serve the load and maintain regulation. The relationship is shown graphically in FIG. 4b. In general, this approach is characterized by low efficiency at light load, slow dynamic response with transients, and loop instability resulting from variations of component values, switching noise injection or insufficient compensational margins. In general, PFM can be used to increase efficiency for light load conditions. Unfortunately, PFM designs are prone to producing electromagnetic noise over a broad spectrum. As a result, there are many applications where PFM cannot be used.

For these reasons and others, there is a need for switching regulators that have rapid dynamic response to transients, and do not suffer from loop instability resulting from variations of component values, switching noise injection or insufficient compensational margins. This need is particularly important for applications that cannot tolerate the noise associated with PFM based regulators.

The present invention includes a method for pulse modulation control of switching regulators. A buck-type switching regulator implemented using this method uses a filter capacitor and an inductor. These components are used as they would be in a typical buck-type topology with the filter capacitor in parallel with the regulator load and the inductor positioned in series between the capacitor and the voltage supply. A first series of parallel FET-type switches (high-side switches) are positioned between the input side of the inductor and the voltage supply. A second parallel series of FET-type switches (low-side switches) are used to connect the input side of the inductor to ground. The low-side switches are somewhat analogous to the diode used in typical buck-type topologies.

A control module enables one or more of the high-side switches synchronously with a system clock at the start of each switching cycle. The number of high-side switched enabled is chosen to match the instantaneous load of the buck-type switching regulator. The enabled high-side switches remain enabled until the output of the buck-type switching regulator is within regulation or a predetermined current limit through the high-side switches has been exceeded. The control module then disables all high-side switches and enables (in a break-before-make fashion) an equivalent number of low-side switches. The low-side switches remain enabled until the output of the buck-type switching regulator has fallen below regulation or current has ceased to flow from the inductor to the load of the regulator.

The entire switching cycle then repeats with the number of high-side and low-side switches adjusted up, down or held constant depending on the load of the regulator. With appropriate modifications, the pulse modulation control method can used to implement the full range of switching regulator topologies including boost, buck, and boost-buck types.

FIG. 1 is a block diagram of a prior art boost type switching regulator.

FIG. 2 is a block diagram of a prior art buck type switching regulator.

FIG. 3 is a block diagram of a prior art buck-boost type switching regulator.

FIG. 4A is a block diagram of a feedback loop with an analog error amplifier used to control a prior art buck-boost type switching regulator.

FIG. 4B is a timing diagram showing the operational performance of the feedback loop of FIG. 4A.

FIG. 5 is a block diagram of a buck type switching regulator implemented using a pulse modulation control method provided by the present invention.

FIG. 6 is a timing diagram for the buck type switching regulator of FIG. 5.

FIG. 7 is a block diagram showing additional enhancements for the buck type switching regulator of FIG. 5.

The present invention includes a method for pulse modulation control of switching regulators. The pulse modulation control method can used to implement the full range of switching regulator topologies including boost, buck, and boost-buck types. FIG. 5 shows an implementation of a buck-type switching regulator 500 that uses the pulse modulation control method. This implementation includes the familiar inductor (labeled L) and capacitor (labeled C) originally shown in FIG. 2 and operates to convert an input voltage Vin to an output voltage Vout.

Buck-type switching regulator 500 includes a series of high-side switches labeled 506a through 506n. Each high-side switch 506 is typically implemented as an FET type device, but other appropriate technologies may also be used. High-side switches 506 are functionally analogous to the switch included in the buck-type converter of FIG. 2 and form a link between the input voltage Vin and inductor 502. Selecting the number of high-side switches 506 that are on, controls the rate of current flowing from Vin to inductor 502.

The rate of current flow between Vin to inductor 502 is monitored by an over current sense circuit 508. Typically, this is accomplished by monitoring the current following through one of the high-side switches 506. This requires that the monitored high-side switch 506 be used as the primary high-side switch 506 (i.e., any combination of closed high-side switches 506 must include the monitored high-side switch 506). Over current sense circuit 508 compares the current through the monitored high-side switch 506 to a predetermined limit using a high-speed comparator. When asserted, the output of the comparator indicates that the predetermined current limit has been reached.

Buck-type switching regulator 500 also includes a series of low-side switches labeled 510a through 510n. As with high-side switches 506, each low-side switch 510 is typically implemented as an FET-type device, but other appropriate technologies may also be used. Low-side switches 510 are functionally analogous to the diode in the buck-type converter of FIG. 2 and form a link between inductor 502 and the ground output of buck-type switching regulator 500. Selecting the number of low-side switches 510 that are on, controls the rate of current flowing from the ground output to inductor 502.

The rate of current flow between Vout to inductor 502 is monitored by a reverse current sense circuit 512. Typically, this is accomplished by monitoring the current following through one of the low-side switches 510. This requires that the monitored low-side switch 510 be used as the primary low-side switch 510 (i.e., any combination of closed low-side switches 510 must include the monitored low-side switch 510). Reverse current sense circuit 512 examines the direction of current flowing through the monitored low-side switch 510. Current flowing from Vout to inductor 502 is detected and used to turn low-side switches 510 off.

The level of Vout is monitored by a feedback voltage sense circuit 514. Typically, this is performed by comparing Vout to a reference voltage using a comparator or similar device. The result of this comparison is forwarded to a load detection circuit 516. Load detection circuit 516 also receives the output of over current sense circuit 508. The frequency with which Vout is found to be within regulation is compared to the frequency with which the predetermined current limit is exceeded. In insufficient drive situations (i.e., in situations where an inadequate number of high-side switches 506 are being used) the frequency of over current events dominates the frequency of in-regulation events. In lightly loaded situations the frequency of in-regulation events dominates the frequency of over current events.

The output of load detection circuit 516 is passed to a dynamic driver shifter circuit 518. Dynamic driver shifter circuit 518 uses this input to construct an output that indicates if the number of active high-side switches 506 and low-side switches 510 should be increased, decreased or maintained as is.

The output of dynamic driver shifter circuit 518 is passed to an anti-shoot-through switching and digital control module 520. Control module 520 uses this input, and a system clock signal to control the state of high-side switches 506 and low-side switches 510. Control module 520 enables high-side switches 506 synchronously with the system clock. The number of high-side switches 506 is determined by the output of dynamic driver shifter circuit 518. The enabled high-side switches 506 remain enabled until: 1) over current sense circuit 508 detects that the predetermined current limit has been exceeded, or 2) feedback voltage sense circuit 514 detects that Vout has attained the reference voltage.

At that time, control module 520 disables all high-side switches 506. Control module 520 then enables an equivalent number of low-side switches 510 (i.e., the number of enable low-side switches is equal to the number of previously enabled high-side switches 506). Low-side switches 510 are enabled after all high-side switches 506 have been disabled in a break-before-make fashion. This avoids shoot through where Vin is connected directly to ground. The enabled low-side switches 510 remain enabled until: 1) reverse current sense circuit 512 detects current flowing from Vout to inductor 502, or 2) feedback voltage sense circuit 514 detects that Vout has fallen below the reference voltage. At that time, control module 520 disables all low-side switches 510 (once again in a break-before-make fashion) in preparation for enablement of high-side switches 506 at the start of the next clock.

FIG. 6 shows operation of buck-type switching regulator 500 over several cycles of the system clock. As shown in that figure, control module 520 enables high-side switches 506a and 506b at the start of a clock cycle labeled X. This is in response to an indication from dynamic driver shifter circuit 518 that a total of two high-side switches 506 are required to compensate for the instantaneous load of the buck-type switching regulator 500. The third high-side switch 506c (or 506n in FIG. 5) remains disabled.

Control module 520 subsequently disables high-side switches 506a and 506b after the predetermined current limit has been exceeded, or Vout has attained the reference voltage. Once high-side switches 506a and 506b have been disabled, control module 520 enables low-side switches 510a and 510b. These stay enabled until current starts flowing from Vout to inductor 502 or Vout has fallen below the reference voltage. The entire cycle is then repeated starting at a clock cycle labeled X+n. In this case, a total of three high-side switches 506 are enabled followed by three low-side switches 510. This indicates that the load of buck-type switching regulator 500 has increased over the previous switching cycle.

FIG. 7 shows several enhancements that may be made to improve the performance of buck-type switching regulator 500. These include a maximum on-time controller 522 and a minimum on-time blanker 524. These two circuits place upper and lower limits (respectively) on the amount of time that high-side switches 504 are enabled. This ensures that the switching cycle is not prolonged indefinitely and prevents transient ringing from causing high-side switches 504 to switch on and off. Maximum on-time controller 522 also places a lower bound on the switching frequency of buck-type switching regulator 500. Preferably, this lower bound is higher than the audio band, ensuring silent operation of buck-type switching regulator 500.

The enhancements of FIG. 7 also include a digital soft start 526 that incrementally increases the number of enabled high-side switches 506 active. Typically, this increase is performed at a predetermined rate derived by dividing the frequency of the system clock. The soft start function is important during startup to reduce inrush current drawn from the input.

FIG. 7 also shows a series of enhancements all related to the system clock input. These include: an oscillator or external synchronous phase-locked loop circuit 528, a pulse skip counter circuit 530, a synchronous turn on enable circuit 532 and an on/off double pulse suppression latch 534. Oscillator or external synchronous phase-locked loop circuit 528 is a high frequency (e.g., MHz range) low jitter oscillator, phase-locked loop or equivalent circuit that is capable of either generating a stable clock signal or synchronizing to a reference-timing signal. The main function of this circuit is to define the switch-on time-edge for the system and also provides the clock timing for other functional blocks.

Pulse skip counter circuit 530 is used to block out the switching noise of pre-defined frequency bands. This block delays the switch-on time-edge event by skipping the critical frequency range.

Synchronous turn on enable circuit 532 gates a request-to-turn-on signal with the system clock. This synchronizes the turn-on time-edge of buck-type switching regulator 500 with the system clock.

On/off double pulse suppression latch 534 latches the switching of high-side switches 506 and low-side switches 510. This ensures that buck-type switching regulator 500 stays on until deactivated by an off signal and prevents the ringing that might occur if buck-type switching regulator 500 turned off rapidly after being activated.

Control module 520 provides a flexible mechanism for controlling switching regulator behavior. For example, it is possible to configure control module 520 to avoid undesirable switching frequency bands. This can avoid noise that to which a particular device is sensitive (e.g., 400K to 500K in cellular telephone applications). Synchronous turn-on of high-side switches 506 with the system clock further facilitates noise filtering. In addition, the combination of control module 520 with a variable number of enabled high-side switches 506 and low-side switches 510 provides a combination of low switching loss at light load, fast response to transient load and adaptive current limit for low output ripple at light load.

Although particular embodiments of the present invention have been shown and described, it will be apparent to those skilled in the art that changes and modifications may be made without departing from the present invention in its broader aspects, and therefore, the appended claims are to encompass within their scope all such changes and modifications that fall within the true scope of the present invention.

So, John Sung K.

Patent Priority Assignee Title
10193442, Feb 09 2016 Faraday Semi, LLC Chip embedded power converters
10504848, Feb 19 2019 FARADAY SEMI, INC Chip embedded integrated voltage regulator
10924011, Feb 09 2016 Faraday Semi, Inc. Chip embedded power converters
11063516, Jul 29 2020 FARADAY SEMI, INC Power converters with bootstrap
11069624, Apr 17 2019 FARADAY SEMI, INC Electrical devices and methods of manufacture
11557962, Feb 09 2016 Faraday Semi, Inc. Chip embedded power converters
11621230, Apr 17 2019 Faraday Semi, Inc. Electrical devices and methods of manufacture
11652062, Feb 19 2019 Faraday Semi, Inc. Chip embedded integrated voltage regulator
11848610, Aug 03 2021 Analog Devices, Inc. Low ripple pulse-skip mode control in switching mode power supplies
11855534, Jul 29 2020 Faraday Semi, Inc. Power converters with bootstrap
7345464, Sep 16 2004 JPMORGAN CHASE BANK, N A PWM power supply controller having multiple PWM signal assertions and method therefor
7683590, Mar 13 2008 NEC SPACE TECHNOLOGIES, LTD Step-down switching DC-DC converter
7777587, Aug 06 2008 Infineon Technologies Americas Corp Minimum pulse width for pulse width modulation control
8067928, May 28 2008 Kabushiki Kaisha Toshiba DC-DC converter with gate voltage control based on output current
8253398, Jul 16 2008 Kabushiki Kaisha Toshiba Semiconductor device
8988059, Jan 28 2013 Qualcomm Incorporated Dynamic switch scaling for switched-mode power converters
9046904, Mar 26 2012 DB HITEK CO , LTD Apparatus and method for controlling pulse frequency modulation in single-inductor dual-output power circuit
9601999, Jan 28 2013 Qualcomm Incorporated Dynamic switch scaling for switched-mode power converters
Patent Priority Assignee Title
6362608, Feb 01 2001 Maxim Integrated Products, Inc. Multi-phase switching converters and methods
6366062, Jan 11 1996 MICROPLANET, INC Method and apparatus for electronic power control
6373728, Sep 27 1999 GRUNFOS A S Frequency converter with an intermediate buck-boost converter for controlling an electric motor
6396250, Aug 31 2000 Texas Instruments Incorporated Control method to reduce body diode conduction and reverse recovery losses
6597157, Jul 25 2001 RPX Corporation Parallel phased switch control
6788033, Aug 08 2002 Vicor Corporation Buck-boost DC-DC switching power conversion
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 09 2003Advanced Analogic Technologies, Inc.(assignment on the face of the patent)
Jun 22 2004SO, JOHNAdvanced Analogic Technologies, IncASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0155340708 pdf
Date Maintenance Fee Events
Oct 13 2009M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Oct 11 2013M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Oct 11 2017M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Apr 11 20094 years fee payment window open
Oct 11 20096 months grace period start (w surcharge)
Apr 11 2010patent expiry (for year 4)
Apr 11 20122 years to revive unintentionally abandoned end. (for year 4)
Apr 11 20138 years fee payment window open
Oct 11 20136 months grace period start (w surcharge)
Apr 11 2014patent expiry (for year 8)
Apr 11 20162 years to revive unintentionally abandoned end. (for year 8)
Apr 11 201712 years fee payment window open
Oct 11 20176 months grace period start (w surcharge)
Apr 11 2018patent expiry (for year 12)
Apr 11 20202 years to revive unintentionally abandoned end. (for year 12)