A <span class="c0 g0">morphingspan> <span class="c2 g0">airfoilspan> <span class="c3 g0">systemspan> includes a <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> having a <span class="c7 g0">firstspan> root, <span class="c7 g0">firstspan> span, <span class="c7 g0">firstspan> <span class="c8 g0">chordspan>, and <span class="c7 g0">firstspan> tip. The <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> is attachable to an aircraft near the <span class="c7 g0">firstspan> root. A <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> has a <span class="c10 g0">secondspan> root, <span class="c10 g0">secondspan> span, <span class="c10 g0">secondspan> <span class="c8 g0">chordspan>, and <span class="c10 g0">secondspan> tip. The <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> is attachable to the aircraft near the <span class="c7 g0">firstspan> root. At least one moveable connection is attached to at least one of the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> and the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> near their respective roots. The moveable connection is arranged to permit movement of at least one of the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> and the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> from a <span class="c7 g0">firstspan> <span class="c11 g0">positionspan> with their tips near each other to a <span class="c10 g0">secondspan> <span class="c11 g0">positionspan> with their tips spaced apart from each other. An endplate may connect the two airfoils near their respective tips.
|
1. A <span class="c0 g0">morphingspan> <span class="c2 g0">airfoilspan> <span class="c3 g0">systemspan> for an aircraft, the <span class="c3 g0">systemspan> comprising:
a <span class="c7 g0">firstspan> non-planar <span class="c2 g0">airfoilspan> having a <span class="c7 g0">firstspan> root, a <span class="c7 g0">firstspan> span, a <span class="c7 g0">firstspan> <span class="c8 g0">chordspan>, and a <span class="c7 g0">firstspan> tip, the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> being attachable to an aircraft near the <span class="c7 g0">firstspan> root;
a <span class="c10 g0">secondspan> non-planar <span class="c2 g0">airfoilspan> having a <span class="c10 g0">secondspan> root, a <span class="c10 g0">secondspan> span, a <span class="c10 g0">secondspan> <span class="c8 g0">chordspan>, and a <span class="c10 g0">secondspan> tip, the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> being attachable to the aircraft near the <span class="c7 g0">firstspan> root; and
at least one movable connection attached to at least one of the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> near the <span class="c7 g0">firstspan> root and the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> near the <span class="c10 g0">secondspan> root, the movable connection being arranged to move at least one of the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> and the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> from a <span class="c7 g0">firstspan> <span class="c11 g0">positionspan> with the <span class="c7 g0">firstspan> tip and <span class="c10 g0">secondspan> tip near each other during a <span class="c5 g0">flightspan> <span class="c6 g0">conditionspan> other than takeoff and landing to a <span class="c10 g0">secondspan> <span class="c11 g0">positionspan> with the <span class="c7 g0">firstspan> tip and <span class="c10 g0">secondspan> tip spaced apart from each other, during at least one of takeoff and landing.
9. An aircraft with a <span class="c0 g0">morphingspan> <span class="c2 g0">airfoilspan>, the aircraft comprising:
a fuselage;
at least one engine;
a <span class="c7 g0">firstspan> non-planar <span class="c2 g0">airfoilspan> having a <span class="c7 g0">firstspan> root, a <span class="c7 g0">firstspan> span, a <span class="c7 g0">firstspan> <span class="c8 g0">chordspan>, and a <span class="c7 g0">firstspan> tip, the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> being attached to the fuselage near the <span class="c7 g0">firstspan> root;
a <span class="c10 g0">secondspan> non-planar <span class="c2 g0">airfoilspan> having a <span class="c10 g0">secondspan> root, a <span class="c10 g0">secondspan> span, a <span class="c10 g0">secondspan> <span class="c8 g0">chordspan>, and a <span class="c10 g0">secondspan> tip, the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> being attached to the fuselage near the <span class="c7 g0">firstspan> root; and
at least one movable connection attached to the fuselage and attached to at least one of the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> near <span class="c7 g0">firstspan> root and the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> near <span class="c10 g0">secondspan> root, the movable connection being arranged to move at least one of the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> and the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> from a <span class="c7 g0">firstspan> <span class="c11 g0">positionspan> with the <span class="c7 g0">firstspan> span substantially parallel to the <span class="c10 g0">secondspan> span during a <span class="c5 g0">flightspan> <span class="c6 g0">conditionspan> other than takeoff and landing to a <span class="c10 g0">secondspan> <span class="c11 g0">positionspan> with the <span class="c7 g0">firstspan> span at an <span class="c15 g0">acutespan> <span class="c16 g0">anglespan> to the <span class="c10 g0">secondspan> span, during at least one of takeoff and landing.
18. A <span class="c0 g0">morphingspan> <span class="c1 g0">rotatingspan> <span class="c2 g0">airfoilspan> <span class="c3 g0">systemspan> for an aircraft, the <span class="c3 g0">systemspan> comprising:
a hub;
a <span class="c7 g0">firstspan> non-planar <span class="c2 g0">airfoilspan> having a <span class="c7 g0">firstspan> root, a <span class="c7 g0">firstspan> span, a <span class="c7 g0">firstspan> <span class="c8 g0">chordspan>, and a <span class="c7 g0">firstspan> tip, the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> being attached to the hub near the <span class="c7 g0">firstspan> root;
a <span class="c10 g0">secondspan> non-planar <span class="c2 g0">airfoilspan> having a <span class="c10 g0">secondspan> root, a <span class="c10 g0">secondspan> span, a <span class="c10 g0">secondspan> <span class="c8 g0">chordspan>, and a <span class="c10 g0">secondspan> tip, the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> attached to the hub near the <span class="c7 g0">firstspan> root;
at least one movable connection attached to the hub, the movable connection being attached to at least one of the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> near the <span class="c7 g0">firstspan> root and the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> near the <span class="c10 g0">secondspan> root, the movable connection being arranged to move at least one of the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> and the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> from a <span class="c7 g0">firstspan> <span class="c11 g0">positionspan> during a <span class="c5 g0">flightspan> <span class="c6 g0">conditionspan> other than takeoff and landing with the <span class="c7 g0">firstspan> tip and <span class="c10 g0">secondspan> tip near each other to a <span class="c10 g0">secondspan> <span class="c11 g0">positionspan> wherein the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> and the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> form a double <span class="c2 g0">airfoilspan> <span class="c4 g0">configuredspan> for increased lift during at least one of takeoff and landing with the <span class="c7 g0">firstspan> tip and <span class="c10 g0">secondspan> tip spaced apart from each other.
17. An aircraft with a <span class="c0 g0">morphingspan> <span class="c2 g0">airfoilspan> <span class="c3 g0">systemspan>, the comprising:
a fuselage;
at least one engine;
a <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> having a <span class="c7 g0">firstspan> root, a <span class="c7 g0">firstspan> span, a <span class="c7 g0">firstspan> <span class="c8 g0">chordspan>, and a <span class="c7 g0">firstspan> tip, the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> being attachable to an aircraft near the <span class="c7 g0">firstspan> root;
a <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> having a <span class="c10 g0">secondspan> root, a <span class="c10 g0">secondspan> span, a <span class="c10 g0">secondspan> <span class="c8 g0">chordspan>, and a <span class="c10 g0">secondspan> tip, the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> being attachable to the aircraft near the <span class="c7 g0">firstspan> root;
an endplate having a <span class="c7 g0">firstspan> end, a <span class="c10 g0">secondspan> end, and a third span between the <span class="c7 g0">firstspan> end and <span class="c10 g0">secondspan> end, the endplate being attached to the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> with the <span class="c7 g0">firstspan> end near the <span class="c7 g0">firstspan> tip and being attached to the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> with the <span class="c10 g0">secondspan> end near the <span class="c10 g0">secondspan> tip; and
at least one movable connection attached to at least one of the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> near the <span class="c7 g0">firstspan> root and the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> near the and the <span class="c10 g0">secondspan> root, the movable connection being arranged to move at least one of the <span class="c7 g0">firstspan> <span class="c2 g0">airfoilspan> and the <span class="c10 g0">secondspan> <span class="c2 g0">airfoilspan> from a <span class="c7 g0">firstspan> <span class="c11 g0">positionspan> with the <span class="c7 g0">firstspan> span substantially parallel to the <span class="c10 g0">secondspan> span to a <span class="c10 g0">secondspan> <span class="c11 g0">positionspan> with the <span class="c7 g0">firstspan> span at an <span class="c15 g0">acutespan> <span class="c16 g0">anglespan> to the <span class="c10 g0">secondspan> span.
4. The <span class="c3 g0">systemspan> of
5. The <span class="c3 g0">systemspan> of
6. The <span class="c3 g0">systemspan> of
7. The <span class="c3 g0">systemspan> of
8. The <span class="c3 g0">systemspan> of
12. The aircraft of
13. The aircraft of
14. The aircraft of
15. The aircraft of
19. The <span class="c3 g0">systemspan> of
20. The <span class="c3 g0">systemspan> of
21. The <span class="c3 g0">systemspan> of
22. The <span class="c3 g0">systemspan> of
23. The <span class="c3 g0">systemspan> of
24. The <span class="c3 g0">systemspan> of
25. The <span class="c3 g0">systemspan> of
26. The <span class="c3 g0">systemspan> of
27. The <span class="c3 g0">systemspan> of
|
This invention relates generally to aircraft wing configurations, and, more specifically, to variable aircraft wing configurations.
Current aircraft utilize a variety of methods to increase lift and maneuverability at different speeds and orientation. Such methods include leading and trailing edge flaps, swinging/sweeping wings, and control surface deflections. These techniques provide increases in wing lift, but generally less than 30% of total lift. In aircraft with variable missions, including cruise, high maneuverability and loiter tasks, there is an unmet need, including for unmanned aircraft, for wing configurations that can provide further increases in lift and maneuverability.
The present invention presents a morphing airfoil system for an aircraft, thereby providing increased lift and maneuverability. The invention provides flexibility for increasing the lift of an aircraft, subsequently increasing its capability to maneuver. Increasing aircraft lift and maneuverability makes an aircraft more agile and increases its capability of surviving in a hostile environment. Increased aircraft performance also translates into increased aircraft payload capability and hence economic benefits for an aircraft owner.
An exemplary morphing airfoil system includes a first airfoil and a second airfoil. The first airfoil has a first root and a first tip, and the first airfoil is attachable to an aircraft near the first root. The second airfoil has a second root and a second tip, and the second airfoil is attachable to the aircraft with the second root near the first root. The system also includes at least one moveable connection attached to at least one of the first airfoil near the first root and the second airfoil near the second root. The moveable connection is arranged to permit movement of at least one of the airfoils from a first position with the first airfoil tip and the second airfoil tip near each other to a second position with the first airfoil tip and the second airfoil tip spaced apart from each other.
According to an aspect of the invention, the tips of the first airfoil and the second airfoil may move away from each other with a component perpendicular to their chords. In another aspect of the present invention the tips may move away from each other in a direction with a component parallel to their chords.
In a further aspect of the present invention, the morphing airfoil system includes an endplate attached to the first airfoil near the first airfoil tip, and attached to the second airfoil near the second airfoil tip.
The preferred and alternative embodiments of the present invention are described in detail below with reference to the following drawings.
The present invention provides a system for a morphing or changing aircraft airfoil. Given by way of overview, in one embodiment of the present invention, the morphing airfoil system includes a first airfoil having a first root, first span, first chord, and first tip. The first airfoil is attachable to an aircraft near the first root. The system includes a second airfoil having a second root, second span, second chord, and second tip. The second airfoil is attachable to the aircraft with the second root near the first root. At least one moveable connection is attached to at least one of the first airfoil and the second airfoil near their respective roots. The moveable connection is arranged to permit movement of at least one of the first airfoil and the second airfoil from a first position with their tips near each other to a second position with their tips spaced apart from each other. The tips suitably may be separated through movement with a component parallel to the airfoil chords and/or movement perpendicular to the airfoil chords. The system suitably may include an endplate, which may include a third airfoil, connecting the two airfoils linked to the two airfoils near their respective tips.
Referring to
It will be appreciated that a variety of airfoil shapes may be utilized for the upper airfoil 14 and the lower airfoil 18. In the consolidated configuration, the upper airfoil 14 and the lower airfoil 18 suitably do not touch over all or part of their chords 26 when they are near each other, as shown in
It will be appreciated that the morphing joint 66 may be any suitable mechanical or material joint joining one or both of the upper airfoil 14 and lower airfoil 18 to the fuselage 60 that permits the tips 34 and 35 of the upper airfoil 14 and lower airfoil 18 to be alternately near each other and separated away from each other. By way of example, and not limitation, such a morphing joint 66 may advantageously be a hinge 67 attached to one of the upper airfoil 14 or the lower airfoil 18. Such a hinge suitably and relatively simply accommodates movement of the airfoil tips 34 and 35 towards each other and away from each other. Alternate morphing joints may include flexible materials, pivots, and hinges involving both airfoils 14 and 18. Typically the angle of separation α between the upper airfoil 14 and the lower airfoil 18 in a separated configuration with their tips 34 and 35 away from each other would be an acute angle.
In an alternate embodiment, shown in
Wind tunnel testing indicates that in a separated configuration the lift produced by a morphing airfoil as shown in
Typically a morphing airfoil system may be utilized to increase lift for takeoff and landing, hi-g maneuvers, and high altitude loitering. Such configurations provide increased lift and maneuverability. In other conditions, the morphing airfoil system may have the upper airfoil 14 and lower airfoil 18 consolidated for highspeed dashes or level flight at altitudes and payload configurations where extra lift of the separated morphing airfoil system may not be desired.
Turning to
It will be appreciated that the respective lengths of the upper airfoil 72, lower airfoil 74, and endplate 80 may be variable so that the airfoils 72 and 74, and endplate 80 suitably may rest against each other in a consolidated configuration, and separate from each other forming a triangle in the separated configuration. It will also be appreciated that with advanced materials part or all of the components, upper airfoil 72, endplate 80, and lower airfoil 74, and their accompanying morph joints 76, 79 and 83 may be flexible and not rigidly linear components. As described in connection with
It will be appreciated that the morphing wings of the present invention may be moved between their consolidated positions and their separated positions by a variety of mechanisms. Electrical or hydraulic drives (not shown) may move the airfoils between their consolidated and separated positions. Further, one or more aerodynamic control surfaces (not shown) on the airfoils themselves advantageously may fly the airfoils together and apart, from their consolidated position to their separated position, and back, with or without further power mechanisms.
In
It will be appreciated that an aircraft with two opposite wings (not shown) incorporating the wing 110 of
By way of example and not limitation, a morphing joint 166 permitting one or both of the upper airfoil 116 and lower airfoil 114 to swing or sweep forward or aft may suitably include a pivot. It will be appreciated that sweeping of the upper airfoil 116 and lower airfoil 114 with a component parallel to their chords 118 and 112 may be combined with a roll component (not shown) moving the tips 117 and 115 away from each other with a component perpendicular to their chords 118 and 112 in the manner described in connection with
While the preferred embodiment of the invention has been illustrated and described, as noted above, many changes can be made without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is not limited by the disclosure of the preferred embodiment. Instead, the invention should be determined entirely by reference to the claims that follow.
Patent | Priority | Assignee | Title |
11279469, | Jul 12 2016 | The Aircraft Performance Company GmbH | Airplane wing |
11312481, | Jul 12 2017 | The Aircraft Performance Company GmbH | Airplane wing |
11396368, | Dec 15 2017 | The Aircraft Performance Company GmbH | Airplane wing |
11427307, | Jan 15 2018 | The Aircraft Performance Company GmbH | Airplane wing |
7258308, | Jul 02 2002 | The Boeing Company | Method and apparatus for controlling airflow with a gapped trailing edge device having a flexible flow surface |
7264206, | Sep 30 2004 | The Boeing Company | Leading edge flap apparatuses and associated methods |
7270305, | Jun 15 2004 | The Boeing Company | Aircraft leading edge apparatuses and corresponding methods |
7300021, | May 20 2005 | The Boeing Company | Aerospace vehicle fairing systems and associated methods |
7309043, | Apr 27 2005 | The Boeing Company | Actuation device positioning systems and associated methods, including aircraft spoiler droop systems |
7322547, | Jan 31 2005 | The Boeing Company | Aerospace vehicle leading edge slat devices and corresponding methods |
7338018, | Feb 04 2005 | The Boeing Company | Systems and methods for controlling aircraft flaps and spoilers |
7357358, | Feb 27 2004 | The Boeing Company | Aircraft leading edge device systems and corresponding sizing methods |
7424350, | Feb 02 2004 | The Boeing Company | Vehicle control systems and corresponding sizing methods |
7475854, | Nov 21 2005 | The Boeing Company; Boeing Company, the | Aircraft trailing edge devices, including devices with non-parallel motion paths, and associated methods |
7494094, | Sep 08 2004 | The Boeing Company | Aircraft wing systems for providing differential motion to deployable lift devices |
7500641, | Aug 10 2005 | The Boeing Company | Aerospace vehicle flow body systems and associated methods |
7506842, | Nov 24 2003 | The Boeing Company | Aircraft control surface drive system and associated methods |
7708231, | Nov 21 2005 | The Boeing Company; Boeing Company, the | Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods |
7721999, | May 20 2005 | The Boeing Company | Aerospace vehicle fairing systems and associated methods |
7726610, | Sep 08 2004 | The Boeing Company | Systems and methods for providing differential motion to wing high lift device |
7744040, | Nov 21 2005 | The Boeing Company | Aircraft trailing edge devices, including devices with non-parallel motion paths, and associated methods |
7766282, | Dec 11 2007 | The Boeing Company | Trailing edge device catchers and associated systems and methods |
7828250, | Sep 30 2004 | The Boeing Company | Leading edge flap apparatuses and associated methods |
7891611, | Feb 04 2005 | The Boeing Company | Systems and methods for controlling aircraft flaps and spoilers |
7913955, | Nov 24 2003 | The Boeing Company | Aircraft control surface drive system and associated methods |
7954769, | Dec 10 2007 | The Boeing Company | Deployable aerodynamic devices with reduced actuator loads, and related systems and methods |
8382045, | Jul 21 2009 | The Boeing Company | Shape-changing control surface |
8567726, | Nov 21 2005 | The Boeing Company | Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods |
9567075, | Feb 10 2014 | Northrop Grumman Systems Corporation | Tilt wing aerial vehicle |
9856012, | Jun 21 2012 | Bombardier Inc | Morphing wing for an aircraft |
Patent | Priority | Assignee | Title |
1819948, | |||
4235400, | May 10 1979 | Juanita June, Haworth | Hi-lo two speed wing |
4890803, | Jul 29 1987 | MARSHALL, REBECCA | Airfoil with fixed and variable upper camber portions |
5078339, | Jul 07 1989 | Israel Aircraft Industries Ltd | Unmanned aircraft having a pivotably movable double wing unit |
5312070, | Apr 02 1992 | Grumman Aerospace Corporation | Segmented variable sweep wing aircraft |
5671898, | Feb 16 1996 | Aircraft having fixed and pivotal wings | |
5899410, | Dec 13 1996 | McDonnell Douglas Corporation | Aerodynamic body having coplanar joined wings |
5984231, | Jun 19 1998 | Northrop Grumman Corporation | Aircraft with variable forward-sweep wing |
6601795, | Aug 23 2002 | Air vehicle having scissors wings | |
D345396, | Mar 20 1992 | DISNEY ENTERPRISES, INC | Amusement space vehicle |
DE2725221, | |||
WO8911417, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 15 2003 | PITT, DALE M | Boeing Company, the | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017507 | /0201 | |
Aug 28 2003 | The Boeing Company | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Feb 16 2006 | ASPN: Payor Number Assigned. |
Oct 19 2009 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 18 2013 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 27 2017 | REM: Maintenance Fee Reminder Mailed. |
May 14 2018 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 18 2009 | 4 years fee payment window open |
Oct 18 2009 | 6 months grace period start (w surcharge) |
Apr 18 2010 | patent expiry (for year 4) |
Apr 18 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 18 2013 | 8 years fee payment window open |
Oct 18 2013 | 6 months grace period start (w surcharge) |
Apr 18 2014 | patent expiry (for year 8) |
Apr 18 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 18 2017 | 12 years fee payment window open |
Oct 18 2017 | 6 months grace period start (w surcharge) |
Apr 18 2018 | patent expiry (for year 12) |
Apr 18 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |