A tin-oxide based three-way catalytic material employing precious metals that is stable at exhaust gas temperatures of internal combustion engines when the tin oxide lattice includes any of several rare earth oxide stabilizers in the lanthanide series. The rare-earth elements are the 15 lanthanide elements with atomic numbers 57 through 71 that are in Group IIIA of the Periodic Table: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Such tin-oxide based catalytic materials may also beneficially include zirconium oxide and/or yttrium oxide. The invention is useful in providing three-way catalytic exhaust converters for internal combustion engines.
|
1. A chemical composition for supporting noble metal in an exhaust catalyst, said composition comprising tin oxide, zirconium oxide, cerium oxide, and lanthanum oxide.
5. An exhaust gas catalyst, comprising a composition including tin oxide, zirconium oxide, cerium oxide, lanthanum oxide, and a noble metal selected from the group consisting of platinum, palladium, gold, silver, ruthenium, iridium, rhodium, and combinations thereof.
2. A composition in accordance with
3. A composition in accordance with
|
1. Field of the Invention
The present invention relates to materials for catalytically oxidizing hydrocarbons; more particularly, to so-called “three-way” materials for catalytically oxidizing hydrocarbons and carbon monoxide, and reducing nitrogen oxides; and most particularly, to three-way tin-oxide based catalytic systems capable of withstanding temperatures of exhaust gases from internal combustion engines.
2. Discussion of the Related Art
Catalysts based on tin oxide (SnO2) and precious metals are well known in the art of catalysis, especially for low-temperature oxidation of carbon monoxide (CO) to carbon dioxide (CO2) in the absence of SO2 and in the presence of only trace amounts of water vapor. See, for example, U.S. Pat. Nos. 4,829,035; 4,855,274; and 4,912,082, the relevant disclosures of which are herein incorporated by reference, which disclose the manufacture and use of such catalysts for maintaining CO2 levels in a CO2 laser, wherein the CO2 gas undergoes progressive degradation to CO during operation of the laser. Such catalysis proceeds at temperatures between about 23° C. and 100° C., the normal operating temperature range of a CO2 laser.
It is further known in the art of precious metal tin oxide catalysts to include one or more “promoters” in a tin oxide-coated substrate. Such promoters can permit large reductions in the amount of precious metal required for desired catalytic activity. For example, U.S. Pat. No. 6,132,694, herein incorporated by reference and referred to as '694, discloses that when no promoter is employed, the catalyst may comprise about 85% tin oxide and up to 15% platinum. When a promoter is employed at a level of about 3 atom percent to tin metal, especially good catalysis is observed at platinum loading of only 1–2% relative to the tin oxide. The promoters disclosed and claimed are all oxides of transition metals such as iron, manganese, copper, cobalt, and nickel.
Precious metal catalysts are widely known for use in catalytically modifying exhaust gases from internal combustion engines, especially in vehicular applications. So-called “three-way” catalysts are able to oxidize CO to CO2, to oxidize hydrocarbons to CO2 and H2O, and reduce nitrogen oxides to N2. Tin oxide is especially attractive as a component of a three-way exhaust catalysis system because of a high inherent oxygen storage capacity. A serious problem exists, however, in applying prior art tin-oxide based catalytic systems to automotive uses. At the relatively high temperatures dictated by engine exhaust, generally between about 500° C. and 1000° C., the structure of tin oxide is seriously affected, as measured by the Brunauer/Emmett/Teller (BET) surface area. The BET surface area is important because it has a major role in controlling the dispersion of the catalytically-active precious or “noble” metal component. Having a high precious-metal dispersion ensures a high level of catalytic activity. As the tin oxide structure loses surface area, the number of catalytic sites decreases due to precious metal sintering, and catalytic activity is diminished. Consequently, tin oxide in any form has not been commercially adapted heretofore in automotive catalyst systems.
What is needed is a means for stabilizing tin oxide structure at high temperatures to permit use of tin-oxide based catalytic systems on internal combustion engine exhaust gases.
It is a principal object of the invention to reduce the cost of internal combustion engine catalytic converters by adapting stabilized tin-oxide based systems for the purpose.
It is a further object of the invention to improve the effectiveness of internal combustion engine catalytic converters by adapting stabilized tin-oxide based systems for the purpose.
Briefly described, three-way tin-oxide based catalytic materials employing precious metals are stable at exhaust gas temperatures of internal combustion engines when the tin oxide lattice includes hafnium and/or any of several rare earth oxide components in the lanthanide series, for example, oxides of La, Pr, and Nd. The rare-earth elements (REE) are the 15 lanthanide elements with atomic numbers 57 through 71 that are in Group IIIA of the Periodic Table: lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium. Such tin-oxide based catalytic materials may also beneficially include zirconium oxide and/or yttrium oxide. The invention is useful in providing three-way catalytic exhaust converters for internal combustion engines.
As noted above, tin-oxide based precious metal catalysts in accordance with the prior art are excellent low temperature catalysts but lack the thermal stability required for automotive exhaust uses. We have found surprisingly that replacing or supplementing with rare earth oxides the transition metal oxide promoters disclosed in the incorporated '694 reference provides a high degree of thermal stability as measured by BET surface area in the range of temperatures required for automotive uses.
Stabilized tin-oxide powders may be formed directly by direct precipitation from solution. In a first preferred method, tin metal is dissolved in aqueous nitric acid. An aqueous solution of a soluble salt, such as a nitrate, of a rare earth, cerium, zirconium, or and/or hafnium is added with mixing to the tin solution. Preferably, an inert material having a high BET surface area, such as aluminum oxide, is added to the solution, permitting the stabilized tin compounds to be precipitated directly onto a high surface area substrate. The solution is titrated with aqueous ammonia, causing stabilized tin and rare earth salts to coprecipitate. The salts are recovered by filtration, dried in ambient air, and calcined at 500° C. to yield a stabilized powder of high-BET material covered with coprecipitated tin oxide and transition and/or rare earth oxide, the percentage of the latter being preferably between about 2 weight percent and about 14 weight percent, and most preferably between about 4 weight percent and 8 weight percent with respect to tin oxide.
Although the above is a currently preferred method for making stabilized tin oxide powders, other methods as may occur to those of ordinary skill in the arts are within the scope of the invention. Catalysts may then be prepared by a variety of coating processes, including slurry and sol gel methods. In a first and preferred method, an aqueous slurry of tin oxide coprecipitate is coated conventionally as a washcoat or undercoat to a conventional high surface area inert support structure such as granules, pellets, honeycomb monoliths, fabrics, or rigid foams. A plurality of washcoats may be applied successively, as needed. Active precious or noble metal salts, for example, tetraamine palladium dihydroxide, palladium chloride, chloroplatinic acid, platinum nitrate, rhodium nitrate, rhodium chloride, and the like, may be included in the washcoat slurry but preferably are overcoated on the dried washcoat from an aqueous solution, as described in the incorporated references. Suitable noble metals can include platinum, palladium, gold, silver, ruthenium, iridium, and rhodium.
In a second method for forming a catalyst, the above mixture of oxidized tin rare earth salt solution, with or without a high BET surface area material, may be mixed with the precious metal salt solution, coprecipitated directly onto the final support structure, and calcined in situ to provide the final catalytic element.
A tin-oxide based powder was prepared by precipitation and calcining as described above but with no stabilizer and was conditioned at 950° C. for 4 hours to simulate aging of a catalyst under automotive use conditions. The resulting BET surface area was 5.7 m2/g.
A tin-oxide based powder was prepared and conditioned as in Example 1 but also included between 4 weight percent and 8 weight percent of a mixture of rare earth oxides (La, Pr, Nd, and Ce) plus yttrium oxide. The resulting BET surface area was between 10.4 and 17.5 m2/g.
A tin-oxide based powder was prepared and conditioned as in Example 1 but also included between 4 weight percent and 8 weight percent of a mixture of oxides of La, Y, and Zr without Ce. The resulting BET surface area was between 22.9 and 30.4 m2/g.
It is seen that stabilizing a tin-oxide based catalyst using combinations of rare earth oxides, yttrium oxide, and zirconium oxide can provide a several-fold increase in residual unit surface area of the powder after prolonged exposure to extremely high temperatures, thus potentially also increasing several-fold the areal dispersion of precious metal sites. Although not presented here as proven fact, the inventors believe that the comparatively high residual BET surface area is attributed to increased stability of the tin oxide three-dimensional structure afforded by inclusion of the rare earth oxides in the lattice structure of the tin oxide.
Tin oxide may also be coprecipitated with zirconium oxide and stabilized with lanthanum or yttrium oxide. The resulting BET surface area may be between 22.9 and 30.4 m2/g, comparable to that seen in Example 3.
From the foregoing description it will be apparent that there has been provided an improved three-way catalyst and catalyst washcoat wherein the structure of tin oxide is thermally stabilized by incorporation of rare earth oxides into the washcoat. Variations and modifications of the herein described catalyst, in accordance with the invention, will undoubtedly suggest themselves to those skilled in this art. Accordingly, the foregoing description should be taken as illustrative and not in a limiting sense.
Gulati, Suresh T., Summers, Jerry C.
Patent | Priority | Assignee | Title |
10639621, | Mar 05 2018 | QATAR UNIVERSITY | Nanoporous cerium oxide with interconnected pores for catalysis and a cost-effective method of preparing thereof |
11745173, | Mar 31 2020 | Johnson Matthey Public Limited Company; Johnson Matthey (Shanghai) Chemicals Limited | Tin incorporated catalysts for gasoline engine exhaust gas treatments |
8414835, | May 17 2006 | Magnesium Elektron Limited | Oxygen storage component |
9089838, | Aug 25 2010 | Bayer MaterialScience AG | Catalyst and method for the production of chlorine by gas phase oxidation |
9468913, | Aug 25 2010 | Bayer MaterialScience AG | Catalyst and method for the production of chlorine by gas phase oxidation |
Patent | Priority | Assignee | Title |
4056489, | Dec 10 1973 | Engelhard Corporation | High temperature stable catalyst composition and method for its preparation |
4220559, | Feb 14 1978 | Engelhard Corporation | High temperature-stable catalyst composition |
4536375, | Oct 18 1982 | M.P. United Drug Company Limited | Purification of gases |
4581343, | May 19 1983 | Pro-Catalyse | Process for the preparation of a pollution control catalyst for internal combustion engine exhaust system/catalytic converter |
4829035, | Jun 12 1986 | National Aeronautics and Space Administration | Reactivation of a tin oxide-containing catalyst |
4855274, | Aug 31 1987 | The United States of America as represented by the Administrator of the | Process for making a noble metal on tin oxide catalyst |
4912082, | Jan 18 1989 | UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE ADMINISTRATOR OF THE NATIONAL AERONAUTICS AND SPACE ADMINISTRATION | Catalyst for carbon monoxide oxidation |
5024984, | Aug 17 1988 | Amoco Corporation; AMOCO CORPORATION, A CORP OF IN | Catalysts for the oxidative conversion of methane to higher hydrocarbons |
20030092562, | |||
20030139290, | |||
20030144143, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 09 2002 | Airflow Catalyst Systems, Inc. | (assignment on the face of the patent) | / | |||
Aug 04 2003 | SUMMERS, JERRY | AIRFLOW CATALYSTS SYSTEMS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014398 | /0544 | |
Dec 12 2005 | GULATI, SURESH T | AIRFLOW CATALYST SYSTEMS, INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017443 | /0812 |
Date | Maintenance Fee Events |
Sep 18 2009 | M2551: Payment of Maintenance Fee, 4th Yr, Small Entity. |
Jan 17 2014 | REM: Maintenance Fee Reminder Mailed. |
Jun 06 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jun 06 2009 | 4 years fee payment window open |
Dec 06 2009 | 6 months grace period start (w surcharge) |
Jun 06 2010 | patent expiry (for year 4) |
Jun 06 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 06 2013 | 8 years fee payment window open |
Dec 06 2013 | 6 months grace period start (w surcharge) |
Jun 06 2014 | patent expiry (for year 8) |
Jun 06 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 06 2017 | 12 years fee payment window open |
Dec 06 2017 | 6 months grace period start (w surcharge) |
Jun 06 2018 | patent expiry (for year 12) |
Jun 06 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |