Bumping a substrate having a metal layer thereon may include forming a barrier layer on the substrate including the metal layer and forming a conductive bump on the barrier layer. Moreover, the barrier layer may be between the conductive bump and the substrate, and the conductive bump may be laterally offset from the metal layer. After forming the conductive bump, the barrier layer may be removed from the metal layer thereby exposing the metal layer while maintaining a portion of the barrier layer between the conductive bump and the substrate. Related structures are also discussed.
|
40. A method of bumping an electronic device comprising a substrate including a metal layer wherein the metal layer has an exposed portion, the method comprising:
forming a barrier layer comprising a barrier layer material on the substrate wherein the exposed portion of the metal layer and portions of the substrate surrounding the exposed portion of the metal layer are free of the barrier layer material; and
forming a conductive bump comprising a conductive bump material on the barrier layer wherein the barrier layer is between the conductive bump and the substrate, wherein the exposed portion of the metal layer and portions of the substrate surrounding the exposed portion of the metal layer are free of the conductive bump material, and wherein the barrier layer, the conductive bump, and the metal layer all comprise different conductive materials.
36. A method of bumping an integrated circuit substrate including a metal layer thereon wherein the metal layer has an exposed portion, the method comprising:
forming a barrier layer on a substrate and on the exposed portion of the metal layer;
forming a conductive bump on the barrier layer wherein the barrier layer is between the conductive bump and the substrate and wherein the conductive bump is laterally offset and laterally separated from the metal layer in a direction parallel to a surface of the substrate; and
after forming the conductive bump, removing the barrier layer from the exposed portion of the metal layer while maintaining a portion of the barrier layer between the conductive bump and the substrate so that the portion of the barrier layer maintained between the conductive bump and the substrate is laterally separated from the metal layer in a direction parallel to the surface of the substrate.
24. A method of bumping an electronic device comprising a substrate including a metal layer thereon wherein the metal layer has an exposed portion, the method comprising:
forming a barrier layer comprising a barrier layer material on the substrate wherein the barrier layer is laterally offset and laterally separated from the exposed portion of the metal layer in a direction parallel to a surface of the substrate so that the exposed portion of the metal layer is free of the barrier layer material; and
forming a conductive bump comprising a conductive bump material on the barrier layer wherein the barrier layer is between the conductive bump and the substrate, wherein the conductive bump is laterally offset and laterally separated from the exposed portion of the metal layer in a direction parallel to the surface of the substrate so that the exposed portion of the metal layer is free of the conductive bump material, and wherein the barrier layer, the conductive bump, and the metal layer all comprise different conductive materials.
1. A method of bumping a substrate including a metal layer thereon wherein the metal layer has an exposed portion, the method comprising:
forming a barrier layer comprising a barrier layer material on the substrate and on the exposed portion of the metal layer;
forming a conductive bump comprising a conductive bump material on the barrier layer wherein the barrier layer is between the conductive bump and the substrate and wherein the conductive bump is laterally offset and laterally separated from the exposed portion of the metal layer in a direction parallel to a surface of the substrate so that the exposed portion of metal layer is free of the conductive bump material; and
after forming the conductive bump, removing the barrier layer from the exposed portion of the metal layer while maintaining a portion of the barrier layer between the conductive bump and the substrate so that the portion of the barrier layer maintained between the conductive bump and the substrate is laterally offset and laterally separated from the exposed portion of the metal layer in the direction parallel to the surface of the substrate and so that the exposed portion of the metal layer is free of the barrier layer material.
5. A method according to
6. A method according to
before forming the conductive bump, forming a conductive under bump metallurgy layer on the barrier layer; and
before removing the barrier layer, removing the conductive under bump metallurgy layer from the barrier layer opposite the metal layer while maintaining a portion of the conductive under bump metallurgy layer between the conductive bump and the substrate so that the portion of the conductive under bump metallurgy layer maintained between the conductive bump and the substrate is laterally offset and laterally separated from the exposed portion of the metal layer in the direction parallel to the surface of the substrate and so that the exposed portion of the metal layer is free of the conductive under bump metallurgy layer.
7. A method according to
8. A method according to
9. A method according to
before forming the conductive bump, forming a second barrier layer on the under bump metallurgy layer wherein the second barrier layer and the under bump metallurgy layer comprise different materials and wherein the second barrier layer is between the conductive bump and the conductive under bump metallurgy layer.
12. A method according to
13. A method according to
14. A method according to
15. A method according to
16. A method according to
17. A method according to
19. A method according to
20. A method according to
21. A method according to
22. A method according to
23. A method according to
after removing the barrier layer from the exposed portion of the metal layer, bonding a second substrate to the conductive bump.
25. A method according to
28. A method according to
29. A method according to
forming a conductive under bump metallurgy layer between the barrier layer and the conductive bump.
30. A method according to
bonding a second substrate bonded to the conductive bump.
31. A method according to
32. A method according to
33. A method according to
34. A method according to
35. A method according to
an under bump metallurgy layer between the barrier layer and the conductive bump wherein the under bump metallurgy layer and the barrier layer comprise different materials.
37. A method according to
38. A method according to
39. A method according to
41. A method according to
44. A method according to
45. A method according to
forming a conductive under bump metallurgy layer between the barrier layer and the conductive bump.
46. A method according to
bonding a second substrate bonded to the conductive bump.
47. A method according to
48. A method according to
49. A method according to
50. A method according to
51. A method according to
an under bump metallurgy layer between the barrier layer and the conductive bump wherein the under bump metallurgy layer and the barrier layer comprise different materials.
|
This application claims the benefit of priority from U.S. Provisional Patent Application No. 60/448,096 filed on Feb. 18, 2003, the disclosure of which is hereby incorporated herein by reference in its entirety.
The present invention relates to the field of integrated circuits and more particularly to methods of bumping integrated circuit substrates.
High performance microelectronic devices often use solder balls or solder bumps for electrical interconnection to other microelectronic devices. For example, a very large scale integration (VLSI) chip may be electrically connected to a circuit board or other next level packaging substrate using solder balls or solder bumps. This connection technology is also referred to as “Controlled Collapse Chip Connection—C4” or “flip-chip” technology, and will be referred to herein as solder bumps.
According to solder bump technology developed by IBM, solder bumps are formed by evaporation through openings in a shadow mask which is clamped to an integrated circuit wafer. For example, U.S. Pat. No. 5,234,149 entitled “Debondable Metallic Bonding Method” to Katz et al. discloses an electronic device with chip wiring terminals and metallization layers. The wiring terminals are typically essentially aluminum, and the metallization layers may include a titanium or chromium localized adhesive layer, a co-deposited localized chromium copper layer, a localized wettable copper layer, and a localized gold or tin capping layer. An evaporated localized lead-tin solder layer is located on the capping layer.
Solder bump technology based on an electroplating method has also been actively pursued. The electroplating method is particularly useful for larger substrates and smaller bumps. In this method, an “under bump metallurgy”(UBM) layer is deposited on a microelectronic substrate having contact pads thereon, typically by evaporation or sputtering. A continuous under bump metallurgy layer is typically provided on the pads and on the substrate between the pads to allow current flow during solder plating.
An example of an electroplating method with an under bump metallurgy layer is discussed in U.S. Pat. No. 5,162,257 entitled “Solder Bump Fabrication Method” to Yung and assigned to the assignee of the present application. In this patent, the under bump metallurgy layer includes a chromium layer adjacent the substrate and pads, a top copper layer which acts as a solderable metal, and a phased chromium/copper layer between the chromium and copper layers. The base of the solder bump is preserved by converting the under bump metallurgy layer between the solder bump and contact pad into an intermetallic of the solder and the solderable component of the under bump metallurgy layer.
According to embodiments of the present invention, an integrated circuit substrate includes a metal layer thereon, a barrier layer is formed on the integrated circuit substrate including the metal layer, and a conductive bump is formed on the barrier layer. More particularly, the barrier layer is between the conductive bump and the substrate, and the conductive bump is offset from the metal layer. After forming the conductive bump, at least portions of the barrier layer are removed from the metal layer thereby exposing the metal layer while a portion of the barrier layer is maintained between the conductive bump and the substrate. The metal layer may be an aluminum layer, and/or the barrier layer may be a layer of TiW. Moreover, the metal layer, the barrier layer, and the conductive bump may be layers of different materials.
A conductive under bump metallurgy layer may also be formed on the barrier layer before forming the conductive bump. Before removing the barrier layer, the conductive under bump metallurgy layer may be removed from the barrier layer opposite the metal layer while maintaining a portion of the conductive under bump metallurgy layer between the conductive bump and the substrate. The conductive under bump metallurgy layer may include a layer of copper, and the conductive under bump metallurgy layer and the barrier layer may be layers of different materials.
A second barrier layer may also be formed on the under bump metallurgy layer before forming the conductive bump with the second barrier layer and the under bump metallurgy layer being layers of different materials. Moreover, the second barrier layer may be between the conductive bump and the conductive under bump metallurgy layer. The second barrier layer may be a layer of nickel, and the under bump metallurgy layer may be a layer of copper.
The second barrier layer may be selectively formed on a portion of the under bump metallurgy layer with the second barrier layer being offset from the metal layer. Moreover, the conductive bump may be selectively formed on the second barrier layer offset from the metal layer. In addition, the second barrier layer and the conductive bump may be selectively formed using a same mask. The conductive bump may be at least one of a solder bump, a gold bump, and/or a copper bump. Moreover, the conductive bump may be selectively plated on the barrier layer offset from the metal layer.
The integrated circuit substrate may also include an input/output pad thereon. The barrier layer may be formed on the substrate including the metal layer and the input/output pad, and the conductive bump may be formed on the barrier layer opposite the input/output pad. More particularly, the metal layer and the bump pad may both be layers of aluminum.
The integrated circuit substrate may include an input/output pad thereon, the barrier layer may be formed on the substrate including the metal layer and the input/output pad, and the conductive bump may be electrically coupled to the input/output pad after removing the barrier layer from the metal layer. Moreover, the metal layer and the input/output pad may both be layers of aluminum. In addition, the conductive bump may be formed on the barrier layer opposite the input/output pad, or the conductive bump may be offset from the input/output pad. A second substrate may also be bonded to the conductive bump after removing the barrier layer from the metal layer.
According to additional embodiments of the present invention, methods of bumping an integrated circuit device include forming a barrier layer on an integrated circuit substrate wherein the barrier layer is offset from an exposed metal layer on the integrated circuit substrate. A conductive bump is formed on the barrier layer with the barrier layer being between the conductive bump and the substrate. Moreover, the conductive bump is offset from the metal layer, and the barrier layer, the conductive bump, and the metal layer may be layers of different conductive materials.
The barrier layer may be a layer of titanium tungsten, and the exposed metal layer may be a layer of aluminum. In addition, the conductive bump may be at least one of a solder bump, a gold bump, and/or a copper bump. A conductive under bump metallurgy layer may also be provided between the barrier layer and the conductive bump, and a second substrate may be bonded to the conductive bump.
The integrated circuit substrate may also include an input/output pad on the integrated circuit substrate wherein the barrier layer and the conductive bump are electrically connected to the input/output pad. Moreover, the input/output pad and the metal layer may each be layers of aluminum. In addition, the conductive bump may be on the barrier layer opposite the input/output pad, and the conductive bump may be offset from the input/output pad. An under bump metallurgy layer may also be between the barrier layer and the conductive bump, and the under bump metallurgy layer and the barrier layer may be layers of different materials.
According to still additional embodiments of the present invention, an integrated circuit device includes an integrated circuit substrate having an exposed metal layer thereon. A barrier layer is on the integrated circuit substrate offset from the exposed metal layer, and a conductive bump is on the barrier layer. More particularly, the barrier layer is between the conductive bump and the substrate, the conductive bump is offset from the metal layer, and the barrier layer, the conductive bump, and the metal layer all comprise different conductive materials.
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, thicknesses of layers and regions are exaggerated for clarity. Like numbers refer to like elements throughout.
It will be understood that when an element such as a layer, region or substrate is referred to as being “on” another element, it can be directly on the other element, or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. Also, when an element is referred to as being “bonded” to another element, it can be directly bonded to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly bonded” to another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. Finally, the term “directly” means that there are no intervening elements.
According to embodiments of the present invention, methods may be provided that allow bumping of integrated circuit substrates (such as integrated circuit wafers) while providing metal layers (such as exposed aluminum layers) exposed on the substrate. A metal layer, such as an aluminum layer, may be used to provide a wirebond contact, an exposed Input/output pad, a fuse and/or a reflector. Moreover, a conductive bump, such as a solder bump may be provided on the substrate to provide electrical and/or mechanical interconnection with another substrate. By providing an exposed metal layer after forming bumps on the substrate, a metal layer input/out pad can provide a wirebond pad after forming bumps, and/or a metal layer laser fuse can be opened using a laser after forming bumps.
First embodiments of the present invention are discussed below with reference to
The metal layer 23, for example, may provide an input/output pad for electronic devices of the substrate 21 to be used as an input/output pad for subsequent wire bonding. In an alternative, the metal layer 23 may provide a fuse that can be cut mechanically and/or with a laser to provide coupling/decoupling of redundant circuitry on the substrate 21. In another alternative, the metal layer 23 may provide a pad for electrical probing of circuitry on the substrate 21.
The passivation layer 25 may include an inorganic material (such as silicon dioxide and/or silicon nitride) and/or an organic material (such as polyimide). As shown, a hole in the passivation layer 25 may expose portions of the metal layer 23. More particularly, the passivation layer 25 may be formed over the metal layer 23, and then portions of the passivation layer 25 may be selectively removed to expose portions of the metal layer 23. By providing that portions of the metal layer 23 are exposed, the metal layer may be subsequently probed, cut, and/or used as a wire bonding pad.
As shown in
The conductive under bump metallurgy layer 29 may then be formed on the barrier layer 27 opposite the substrate 21 and the metal layer 23. More particularly, the conductive under bump metallurgy layer 29 may include copper (Cu). A mask layer 31 (such as a layer of photoresist and/or polymer) may be formed on the conductive under bump metallurgy layer 29, and a hole 33 may be formed in the mask layer 31 to provide a plating template. More particularly, the mask layer 31 may be a layer of photoresist that has been selectively exposed and developed using photolithographic techniques to form the hole 33.
A second barrier layer 32 (such as a layer of nickel) and a bumping material 35 (such as a tin based solder, gold, and/or copper) may then be selectively formed on portions of the conductive under bump metallurgy layer 29 exposed by the hole 33. For example, the second barrier layer 32 and the bumping material 35 may be electroplated with the under bump metallurgy layer 29 providing a plating electrode and a current path under the mask 31. In an alternative, electroless plating may be used so that a current path under the mask is not needed during plating. Other deposition techniques may also be used. After forming the second barrier layer 32 and the bumping material 35, the mask 31 can be stripped, for example, using a dry and/or wet process chemistry.
As shown in
Portions of the first barrier layer 27 not covered by the bumping material 35, the second barrier layer 32, and/or remaining portions of the under bump metallurgy layer 29 can then be removed using an etch chemistry that removes the first barrier layer 27 preferentially with respect to the metal layer 23. Accordingly, the first barrier layer 27 may be removed without significantly damaging the metal layer 23. With a first barrier layer 27 of titanium-tungsten (TiW) and a metal layer 23 of aluminum (Al), portions of the first barrier layer 27 may be removed using a mixture including:
The structure of
While not shown in
Accordingly, the bumping material 35 can be used to provide electrical and/or mechanical coupling to another substrate (such as another integrated circuit semiconductor device and/or a printed circuit board) while the metal layer 23 is exposed. Accordingly, the metal layer 23 may be burned, cut, probed, and/or wire bonded after forming the bumping material 35 and/or after bonding the bumping material 35 to another substrate.
Second embodiments of the present invention are discussed below with reference to
The metal layer 123, for example, may provide an input/output pad for electronic devices of the substrate 121 to be used as an input/output pad for subsequent wire bonding. In an alternative, the metal layer 123 may provide a fuse that can be cut mechanically and/or with a laser to provide coupling/decoupling of redundant circuitry on the substrate 121. In another alternative, the metal layer 123 may provide a pad for electrical probing of circuitry on the substrate 121. The interconnection layer 119 may provide electrical and mechanical interconnection through a bumping material to a next level substrate (such as a printed circuit board or an integrated circuit device) as discussed in greater detail below. The metal layer 123 and the interconnection layer 119 may both include aluminum.
The passivation layer 125 may include an inorganic material (such as silicon dioxide and/or silicon nitride) and/or an organic material (such as polyimide). As shown, holes in the passivation layer 125 may expose portions of the metal layer 123 and portions of the interconnection layer 119. More particularly, the passivation layer 125 may be formed over the metal layer 123 and the interconnection layer 119, and then portions of the passivation layer 125 may be selectively removed to expose portions of the metal layer 123 and the interconnection layer 119. By providing that portions of the metal layer 123 are exposed, the metal layer may be subsequently probed, cut, and/or used as a wire bonding pad.
As shown in
The conductive under bump metallurgy layer 129 may then be formed on the barrier layer 127 opposite the substrate 121, the metal layer 123, and the interconnection layer 119. More particularly, the conductive under bump metallurgy layer 129 may include copper (Cu). A mask layer 131 (such as a layer of photoresist and/or polymer) may be formed on the conductive under bump metallurgy layer 129, and a hole 133 may be formed in the mask layer 131 to provide a plating template exposing portions of the under bump metallurgy layer 129 opposite the interconnection layer 119. More particularly, the mask layer 131 may be a layer of photoresist that has been selectively exposed and developed using photolithographic techniques to form the hole 133.
A second barrier layer 132 (such as a layer of nickel) and a bumping material 135 (such as a tin based solder, gold, and/or copper) may then be selectively formed on portions of the conductive under bump metallurgy layer 129 exposed by the hole 133. For example, the second barrier layer 132 and the bumping material 135 may be electroplated with the under bump metallurgy layer 129 providing a plating electrode and a current path under the mask 131. In an alternative, electroless plating may be used so that a current path under the mask is not needed during plating. Other deposition techniques may also be used. After forming the second barrier layer 132 and the bumping material 135, the mask 131 can be stripped, for example, using a dry and/or wet process chemistry.
As shown in
Portions of the first barrier layer 127 not covered by the bumping material 135, the second barrier layer 132, and/or remaining portions of the under bump metallurgy layer 129 can then be removed using an etch chemistry that removes the first barrier layer 127 preferentially with respect to the metal layer 123. Accordingly, the first barrier layer 127 may be removed without significantly damaging the metal layer 123. With a first barrier layer 127 of titanium-tungsten (TiW) and a metal layer 123 of aluminum (Al), portions of the first barrier layer 127 may be removed using a mixture including:
The structure of
While not shown in
Accordingly, the bumping material 135 can be used to provide electrical and/or mechanical coupling to another substrate (such as another integrated circuit semiconductor device and/or a printed circuit board) while the metal layer 123 is exposed. Accordingly, the metal layer 123 may be burned, cut, probed, and/or wire bonded after forming the bumping material 135 and/or after bonding the bumping material 135 to another substrate.
Third embodiments of the present invention are discussed below with reference to
The metal layer 323, for example, may provide an input/output pad for electronic devices of the substrate 321 to be used as an input/output pad for subsequent wire bonding. In an alternative, the metal layer 323 may provide a fuse that can be cut mechanically and/or with a laser to provide coupling/decoupling of redundant circuitry on the substrate 321. In another alternative, the metal layer 323 may provide a pad for electrical probing of circuitry on the substrate 321. The interconnection layer 219 may provide electrical and mechanical interconnection through a bumping material to a next level substrate (such as a printed circuit board or an integrated circuit device) as discussed in greater detail below. The metal layer 323 and the interconnection layer 319 may both include aluminum.
The passivation layer 325 may include an inorganic material (such as silicon dioxide and/or silicon nitride) and/or an organic material (such as polyimide). As shown, holes in the passivation layer 325 may expose portions of the metal layer 323 and portions of the interconnection layer 319. More particularly, the passivation layer 325 may be formed over the metal layer 323 and the interconnection layer 319, and then portions of the passivation layer 325 may be selectively removed to expose portions of the metal layer 323 and the interconnection layer 319. By providing that portions of the metal layer 323 are exposed, the metal layer may be subsequently probed, cut, and/or used as a wire bonding pad.
As shown in
The conductive under bump metallurgy layer 329 may then be formed on the barrier layer 327 opposite the substrate 321, on the metal layer 323, and on the interconnection layer 319. More particularly, the conductive under bump metallurgy layer 329 may include copper (Cu). In addition, a dam layer 330 may be formed on the under bump metallurgy layer 329 opposite the substrate. The dam layer 330 may be formed of a material such as chromium to which a subsequently formed bump material does not wet during reflow.
A mask layer 331 (such as a layer of photoresist and/or polymer) may be formed on the conductive under bump metallurgy layer 329, and a hole 333 may be formed in the mask layer 331 to provide a plating template exposing portions of the under bump metallurgy layer 329 opposite the interconnection layer 319. The mask layer 331 may be a layer of photoresist that has been selectively exposed and developed using photolithographic techniques to form the hole 333. After forming the hole 333, portions of the dam layer 330 exposed through the hole 333 may be removed to expose portions of the under bump metallurgy layer 329.
The hole 333 through the mask layer 331 may have an elongate portion and a relatively wide portion when viewed perpendicular from the substrate 321 (i.e. when viewed from above the substrate 321 in the orientation illustrated in
A second barrier layer 332 (such as a layer of nickel) and a bumping material 335 (such as a tin based solder, gold, and/or copper) may then be selectively formed on portions of the conductive under bump metallurgy layer 329 exposed by the hole 333. For example, the second barrier layer 332 and the bumping material 335 may be electroplated with the under bump metallurgy layer 329 providing a plating electrode and a current path under the mask 331. In an alternative, electroless plating may be used so that a current path under the mask is not needed during plating. Other deposition techniques may also be used. After forming the second barrier layer 332 and the bumping material 335, the mask 331 can be stripped, for example, using a dry and/or wet process chemistry. Accordingly, the second barrier layer 332 and the bumping material 335 may have enlarged width portions spaced apart from the interconnection layer 319 and elongate portions between the enlarged width portions and the interconnection layer 319. As shown in
As shown in
Portions of the conductive under bump metallurgy layer 329 not covered by the bumping material 335 (including relatively thick and thin portions 335a–b) and/or the second barrier layer 332 can be removed. More particularly, portions of the conductive under bump metallurgy layer 329 can be removed using an etch chemistry that removes the conductive under bump metallurgy layer 329 preferentially with respect to the first barrier layer 327. Accordingly, the first barrier layer 327 may protect the metal layer 323 while removing portions of the under bump metallurgy layer 329. With a conductive under bump metallurgy layer 329 of copper (Cu) and a first barrier layer 327 of titanium-tungsten (TiW), Ammonium Hydroxide may be used to selectively remove the conductive under bump metallurgy layer 329 while maintaining the metal layer 323.
Portions of the first barrier layer 327 not covered by the bumping material 335, the second barrier layer 332, and/or remaining portions of the under bump metallurgy layer 329 can then be removed using an etch chemistry that removes the first barrier layer 327 preferentially with respect to the metal layer 323. Accordingly, the first barrier layer 327 may be removed without significantly damaging the metal layer 323. With a first barrier layer 327 of titanium-tungsten (TiW) and a metal layer 323 of aluminum (Al), portions of the first barrier layer 327 may be removed using a mixture including:
Redistribution routing conductors are discussed, for example, in U.S. Pat. No. 5,892,179, U.S. Pat. No. 6,329,608, and/or U.S. Pat. No. 6,389,691. The disclosures of each of these patents are hereby incorporated herein in their entirety by reference.
In an alternative, portions of the under bump metallurgy layer 327 and the first barrier layer 329 not covered by the second barrier layer 332 and/or the bumping material 335 of
With a tin based solder bumping material, for example, the bumping material 335 may be fluxed, reflowed, and cleaned to provide the ball of bumping material 335 of
As shown in
Accordingly, the bumping material 335 can be used to provide electrical and/or mechanical coupling to another substrate (such as another integrated circuit semiconductor device and/or a printed circuit board) while the metal layer 323 is exposed. Accordingly, the metal layer 323 may be burned, cut, probed, and/or wire bonded after forming the bumping material 335 and/or after bonding the bumping material 335 to another substrate.
Fourth embodiments of the present invention are discussed below with reference to
The metal layer 423a, for example, may provide an input/output pad for electronic devices of the substrate 421 to be used as an input/output pad for subsequent wire bonding. In an alternative, the metal layer 423 may provide a fuse that can be cut mechanically and/or with a laser to provide coupling/decoupling of redundant circuitry on the substrate 421. In another alternative, the metal layer 423 may provide a pad for electrical probing of circuitry on the substrate 421. The metal layer 423b may provide an input/output pad for electronic devices of the substrate 421. The metal layers 423a–b may both include aluminum.
The first passivation layer 425a may include an inorganic material (such as silicon dioxide and/or silicon nitride) and/or an organic material (such as polyimide). As shown, holes in the first passivation layer 425a may expose portions of the metal layers 423a–b. More particularly, the first passivation layer 425a may be formed over the metal layers 423a–b, and then portions of the first passivation layer 425a may be selectively removed to expose portions of the metal layers 423a–b. By providing that portions of the metal layer 423a are exposed, the metal layer 423a may be subsequently probed, cut, and/or used as a wire bonding pad.
An interconnection layer 419 may then be formed on the first passivation layer 425a and on portions of the second metal layer 423b. More particularly, the interconnection layer 419 may extend from exposed portions of the second metal layer 423b to provide electrical connection with subsequently formed bumping material that is offset from the metal layer 423b. The metal layers 423a–b and the interconnection layer 419 may both include aluminum.
In addition, a second passivation layer 425b may be formed on the interconnection layer 419, on the first passivation layer 425a, and on exposed portions of the first metal layer 423a. Holes may then be formed in the second passivation layer 425b to expose portions of the interconnection layer 419 and the first metal layer 423a. The second passivation layer 425b may include an inorganic material (such as silicon dioxide and/or silicon nitride) and/or an organic material (such as polyimide). The interconnection layer 419 may provide electrical and mechanical interconnection through a bumping material to a next level substrate (such as a printed circuit board or an integrated circuit device) as discussed in greater detail below.
A first barrier layer 427 (such as a layer of TiW, TiN, and/or combinations thereof may be formed on the second passivation layer 425b, and on exposed portions of the interconnection layer 419, the first passivation layer 425a, and the first metal layer 423a, for example, using sputtering, evaporation, and/or chemical vapor deposition (CVD). The exposed surface of the first barrier layer 427 may be subjected to cleaning using wet and/or dry cleaning operations before a subsequent step of forming under bump metallurgy layer 429. The first barrier layer 427 may be selected to provide adhesion between the under bump metallurgy layer 429 and the passivation layers 425a and/or 425b; to provide adhesion between the under bump metallurgy layer 429 and the interconnection layer 419; to provide electrical conduction of signals between under bump metallurgy layer 429 and the substrate 421; and/or to provide an etch selectivity with respect to the first metal layer 423a. Accordingly, the first barrier layer 427 may be removed from the first metal layer 423a without significantly damaging the metal layer 423a.
The conductive under bump metallurgy layer 429 may then be formed on the barrier layer 427 opposite the substrate 421, the first metal layer 423a, and the interconnection layer 419. More particularly, the conductive under bump metallurgy layer 429 may include copper (Cu). A mask layer 431 (such as a layer of photoresist and/or polymer) may be formed on the conductive under bump metallurgy layer 429, and a hole 433 may be formed in the mask layer 431 to provide a plating template exposing portions of the under bump metallurgy layer 429 offset from the interconnection layer 419. More particularly, the mask layer 431 may be a layer of photoresist that has been selectively exposed and developed using photolithographic techniques to form the hole 433.
A second barrier layer 432 (such as a layer of nickel) and a bumping material 435 (such as a tin based solder, gold, and/or copper) may then be selectively formed on portions of the conductive under bump metallurgy layer 429 exposed by the hole 433. For example, the second barrier layer 432 and the bumping material 435 may be electroplated with the under bump metallurgy layer 429 providing a plating electrode and a current path under the mask 431. In an alternative, electroless plating may be used so that a current path under the mask is not needed during plating. Other deposition techniques may also be used.
After forming the second barrier layer 432 and the bumping material 435, the mask 431 can be stripped, for example, using a dry and/or wet process chemistry. As shown in
Portions of the first barrier layer 427 not covered by the bumping material 435, the second barrier layer 432, and/or remaining portions of the under bump metallurgy layer 429 can then be removed using an etch chemistry that removes the first barrier layer 427 preferentially with respect to the first metal layer 423a. Accordingly, the first barrier layer 427 may be removed without significantly damaging the first metal layer 423a. With a first barrier layer 427 of titanium-tungsten (TiW) and a first metal layer 423a of aluminum (Al), portions of the first barrier layer 427 may be removed using a mixture including:
The structure of
Accordingly, the bumping material 435 can be used to provide electrical and/or mechanical coupling to another substrate (such as another integrated circuit semiconductor device and/or a printed circuit board) while the first metal layer 423a is exposed. Accordingly, the first metal layer 413a may be burned, cut, probed, and/or wire bonded after forming the bumping material 435 and/or after bonding the bumping material 435 to another substrate.
Each support structure 651, for example, may include a first barrier layer (such as a layer of TiW, TiN, and/or combinations thereof, an under bump metallurgy layer (such as a layer of copper) on the first barrier layer, and a layer of a second barrier layer (such as a layer of nickel). Each bump 635, for example, may be a tin based solder bump, a gold bump, and/or a copper bump. Moreover, one or more of the bumps 635, for example, may be on a support structure 651 opposite an input/output pad of the substrate 621 as discussed above with respect to
As shown in
As shown in
In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.
Chiu, Sao-Ling, Kung, Ling-Chen, Jan, Jong-Rong, Lu, Tsai-Hua
Patent | Priority | Assignee | Title |
10515874, | Nov 30 2017 | Taiwan Semiconductor Manufacturing Company, Ltd | Semiconductor device and method of manufacture |
10818623, | Oct 12 2016 | International Business Machines Corporation | Mixed UBM and mixed pitch on a single die |
10930580, | Nov 30 2017 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method of manufacture |
11270964, | Oct 12 2016 | International Business Machines Corporation | Mixed UBM and mixed pitch on a single die |
11462458, | Nov 30 2017 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method of manufacture |
11791243, | Nov 30 2017 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor device and method of manufacture |
7176117, | Sep 23 2003 | Advanced Semiconductor Engineering Inc. | Method for mounting passive components on wafer |
7241678, | Jan 06 2005 | United Microelectronics Corp. | Integrated die bumping process |
7375032, | Sep 30 2004 | Advanced Micro Devices, Inc. | Semiconductor substrate thinning method for manufacturing thinned die |
7381634, | Apr 13 2005 | JCET SEMICONDUCTOR SHAOXING CO , LTD | Integrated circuit system for bonding |
7399695, | Jan 06 2005 | United Microelectronics Corp. | Integrated die bumping process |
7410833, | Mar 31 2004 | ULTRATECH, INC | Interconnections for flip-chip using lead-free solders and having reaction barrier layers |
7443039, | May 13 2004 | JCET SEMICONDUCTOR SHAOXING CO , LTD | System for different bond pads in an integrated circuit package |
7498251, | Jan 15 2007 | Chipmos Technologies (Bermuda) Ltd. | Redistribution circuit structure |
7669752, | Dec 30 2004 | Harima Chemicals, Inc. | Flux for soldering and circuit board |
7682961, | Jun 08 2006 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Methods of forming solder connections and structure thereof |
7705385, | Sep 12 2005 | GLOBALFOUNDRIES Inc | Selective deposition of germanium spacers on nitride |
7859604, | Sep 30 2005 | SAMSUNG DISPLAY CO , LTD | Pad area and method of fabricating the same |
7879651, | Feb 16 2007 | Chipmos Technologies Inc. | Packaging conductive structure and method for forming the same |
7888241, | Sep 12 2005 | GLOBALFOUNDRIES Inc | Selective deposition of germanium spacers on nitride |
7923849, | Mar 31 2004 | ULTRATECH, INC | Interconnections for flip-chip using lead-free solders and having reaction barrier layers |
8026613, | Mar 31 2004 | ULTRATECH, INC | Interconnections for flip-chip using lead-free solders and having reaction barrier layers |
8164188, | Jun 08 2006 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Methods of forming solder connections and structure thereof |
8440272, | Dec 04 2006 | Qualcomm Incorporated | Method for forming post passivation Au layer with clean surface |
8492892, | Dec 08 2010 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Solder bump connections |
8735276, | Jan 22 2008 | Samsung Electronics Co., Ltd. | Semiconductor packages and methods of manufacturing the same |
8778792, | Dec 08 2010 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Solder bump connections |
8900961, | Sep 12 2005 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Selective deposition of germanium spacers on nitride |
Patent | Priority | Assignee | Title |
3105869, | |||
3244947, | |||
3259814, | |||
3274458, | |||
3316465, | |||
3458925, | |||
3461357, | |||
3489965, | |||
3501681, | |||
3625837, | |||
3663184, | |||
3760238, | |||
3770874, | |||
3839727, | |||
3871015, | |||
3897871, | |||
3916080, | |||
3942187, | Jan 02 1969 | U.S. Philips Corporation | Semiconductor device with multi-layered metal interconnections |
3959577, | Jun 10 1974 | ABB POWER T&D COMPANY, INC , A DE CORP | Hermetic seals for insulating-casing structures |
3986255, | Nov 29 1974 | Itek Corporation | Process for electrically interconnecting chips with substrates employing gold alloy bumps and magnetic materials therein |
3993123, | Oct 28 1975 | International Business Machines Corporation | Gas encapsulated cooling module |
4074342, | Dec 20 1974 | International Business Machines Corporation | Electrical package for LSI devices and assembly process therefor |
4113578, | May 31 1973 | SAMSUNG ELECTRONICS CO , LTD | Microcircuit device metallization |
4113587, | Aug 05 1974 | Agency of Industrial Science and Technology | Method for electrochemical machining |
4168480, | Feb 13 1978 | Torr Laboratories, Inc. | Relay assembly |
4244002, | Oct 19 1977 | Nippon Electric Co., Ltd. | Semiconductor device having bump terminal electrodes |
4257905, | Sep 06 1977 | The United States of America as represented by the United States | Gaseous insulators for high voltage electrical equipment |
4266282, | Mar 12 1979 | International Business Machines Corporation | Vertical semiconductor integrated circuit chip packaging |
4273859, | Dec 31 1979 | Honeywell Information Systems Inc. | Method of forming solder bump terminals on semiconductor elements |
4382517, | Feb 20 1981 | METRO INDUSTRIES INC | Panels for holding printed circuit boards |
4449580, | Jun 30 1981 | International Business Machines Corporation | Vertical wall elevated pressure heat dissipation system |
4473263, | Jan 21 1981 | Circuit board mounting device and associated components | |
4505029, | Mar 23 1981 | Fairchild Semiconductor Corporation | Semiconductor device with built-up low resistance contact |
4511873, | Jul 19 1982 | BBC Brown, Boveri and Company, Limited | Current transformer insulated by pressurized gas |
4532576, | Aug 29 1983 | AG COMMUNICATION SYSTEMS CORPORATION, 2500 W UTOPIA RD , PHOENIX, AZ 85027, A DE CORP | Printed wiring board file and method of utilizing the same |
4545610, | Nov 25 1983 | International Business Machines Corporation | Method for forming elongated solder connections between a semiconductor device and a supporting substrate |
4563697, | Feb 25 1982 | FUJI ELECTRIC COMPANY, LTD , A CORP OF JAPAN | Semiconductor pressure sensor |
4565901, | Jun 14 1983 | Mitsubishi Denki Kabushiki Kaisha | Gas-insulated electric device |
4657146, | Nov 06 1985 | Adjustable printed circuit board rack for supporting printed circuit boards in a horizontal or a vertical position | |
4661375, | Apr 22 1985 | CHASE MANHATTAN BANK, AS ADMINISTRATIVE AGENT, THE | Method for increasing the height of solder bumps |
4673772, | Oct 05 1984 | Hitachi, Ltd. | Electronic circuit device and method of producing the same |
4733813, | Oct 01 1985 | BULL S A , PARIS, FRANCE, A CORP OF FRANCE | Method and apparatus for soldering elements on the corresponding pads of a wafer, in particular a wafer having high-density integrated circuits |
4752027, | Feb 20 1987 | Hewlett-Packard Company | Method and apparatus for solder bumping of printed circuit boards |
4763829, | Jun 04 1986 | American Telephone and Telegraph Company, AT&T Bell Laboratories; Bell Telephone Laboratories, Incorporated; American Telephone and Telegraph Company | Soldering of electronic components |
4783722, | Jul 16 1985 | Nippon Telegraph and Telephone Corporation | Interboard connection terminal and method of manufacturing the same |
4817850, | Mar 28 1988 | Hughes Aircraft Company | Repairable flip-chip bumping |
4830264, | Oct 08 1986 | International Business Machines Corporation | Method of forming solder terminals for a pinless ceramic module |
4840302, | Apr 15 1988 | International Business Machines Corporation | Chromium-titanium alloy |
4855809, | Nov 24 1987 | Texas Instruments Incorporated | Orthogonal chip mount system module and method |
4878611, | May 30 1986 | American Telephone and Telegraph Company, AT&T Bell Laboratories | Process for controlling solder joint geometry when surface mounting a leadless integrated circuit package on a substrate |
4893403, | Apr 15 1988 | Hewlett-Packard Company | Chip alignment method |
4897508, | Feb 10 1988 | Advanced Technology Interconnect Incorporated | Metal electronic package |
4897918, | Jul 16 1985 | Nippon Telegraph and Telephone | Method of manufacturing an interboard connection terminal |
4927505, | Jul 05 1988 | Freescale Semiconductor, Inc | Metallization scheme providing adhesion and barrier properties |
4931410, | Aug 25 1987 | HITACHI, LTD , | Process for producing semiconductor integrated circuit device having copper interconnections and/or wirings, and device produced |
4940181, | Apr 06 1989 | Motorola, Inc. | Pad grid array for receiving a solder bumped chip carrier |
4948754, | Sep 02 1987 | Nippondenso Co., Ltd. | Method for making a semiconductor device |
4950623, | Aug 02 1988 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method of building solder bumps |
4962058, | Apr 14 1989 | International Business Machines Corporation | Process for fabricating multi-level integrated circuit wiring structure from a single metal deposit |
4972988, | Jul 25 1989 | Mitsubishi Denki Kabushiki Kaisha | Method of soldering semiconductor substrate on supporting plate |
5019943, | Feb 14 1990 | Unisys Corporation | High density chip stack having a zigzag-shaped face which accommodates connections between chips |
5022580, | Mar 16 1988 | Intarsia Corporation | Vernier structure for flip chip bonded devices |
5024372, | Jan 03 1989 | Freescale Semiconductor, Inc | Method of making high density solder bumps and a substrate socket for high density solder bumps |
5046161, | Feb 23 1988 | NEC Electronics Corporation | Flip chip type semiconductor device |
5048747, | Jun 27 1989 | AT&T Bell Laboratories | Solder assembly of components |
5113314, | Jan 24 1991 | Hewlett-Packard Company | High-speed, high-density chip mounting |
5130275, | Jul 02 1990 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Post fabrication processing of semiconductor chips |
5130779, | Jun 19 1990 | International Business Machines Corporation | Solder mass having conductive encapsulating arrangement |
5135155, | Aug 25 1989 | International Business Machines Corporation | Thermocompression bonding in integrated circuit packaging |
5147084, | Jul 18 1990 | International Business Machines Corporation | Interconnection structure and test method |
5152451, | Apr 01 1991 | Motorola, Inc. | Controlled solder oxidation process |
5154341, | Dec 06 1990 | Motorola Inc. | Noncollapsing multisolder interconnection |
5160409, | Aug 05 1991 | Freescale Semiconductor, Inc | Solder plate reflow method for forming a solder bump on a circuit trace intersection |
5162257, | Sep 13 1991 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Solder bump fabrication method |
5171711, | Oct 18 1990 | Mitsubishi Denki Kabushi Kaisha | Method of manufacturing integrated circuit devices |
5194137, | Aug 05 1991 | Freescale Semiconductor, Inc | Solder plate reflow method for forming solder-bumped terminals |
5211807, | Jul 02 1991 | Microelectronics Computer & Technology | Titanium-tungsten etching solutions |
5216280, | Dec 02 1989 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device having pads at periphery of semiconductor chip |
5227664, | Feb 26 1988 | Hitachi, Ltd.; Hitachi Tobu Semiconductor | Semiconductor device having particular mounting arrangement |
5234149, | Aug 28 1992 | AGERE Systems Inc | Debondable metallic bonding method |
5239447, | Sep 13 1991 | International Business Machines Corporation | Stepped electronic device package |
5240881, | Jul 05 1991 | Thomson-CSF | Method of wiring between package outputs and hybrid elements |
5250843, | Mar 27 1991 | Integrated System Assemblies Corp. | Multichip integrated circuit modules |
5251806, | Jun 19 1990 | International Business Machines Corporation | Method of forming dual height solder interconnections |
5289925, | Mar 16 1992 | Organizational display for compact disc jewel boxes | |
5293006, | Sep 13 1991 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Solder bump including circular lip |
5325265, | Nov 10 1988 | MCNC; IBM Corporation; Northern Telecom Limited | High performance integrated circuit chip package |
5327013, | Apr 30 1992 | Freescale Semiconductor, Inc | Solder bumping of integrated circuit die |
5327327, | Oct 30 1992 | Texas Instruments Incorporated | Three dimensional assembly of integrated circuit chips |
5329068, | Jun 10 1992 | Kabushiki Kaisha Toshiba | Semiconductor device |
5335795, | Aug 28 1991 | Storage rack for cassettes and compact discs | |
5347428, | Dec 03 1992 | TALON RESEARCH, LLC | Module comprising IC memory stack dedicated to and structurally combined with an IC microprocessor chip |
5354711, | Jun 26 1990 | Commissariat a l'Energie Atomique | Process for etching and depositing integrated circuit interconnections and contacts |
5381946, | Mar 04 1992 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Method of forming differing volume solder bumps |
5391514, | Apr 19 1994 | ULTRATECH, INC | Low temperature ternary C4 flip chip bonding method |
5406701, | Oct 02 1992 | APROLASE DEVELOPMENT CO , LLC | Fabrication of dense parallel solder bump connections |
5409862, | Mar 24 1992 | Kabushiki Kaisha Toshiba | Method for making aluminum single crystal interconnections on insulators |
5424920, | May 15 1992 | APROLASE DEVELOPMENT CO , LLC | Non-conductive end layer for integrated stack of IC chips |
5432729, | Apr 23 1993 | APROLASE DEVELOPMENT CO , LLC | Electronic module comprising a stack of IC chips each interacting with an IC chip secured to the stack |
5453582, | Mar 11 1993 | The Furukawa Electric Co., Ltd.; Harima Chemicals, Inc. | Circuit board to be precoated with solder layers and solder circuit board |
5462638, | Jun 15 1994 | International Business Machines Corporation | Selective etching of TiW for C4 fabrication |
5470787, | May 02 1994 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Semiconductor device solder bump having intrinsic potential for forming an extended eutectic region and method for making and using the same |
5471092, | Sep 15 1992 | International Business Machines Corporation | Metallurgical joint including a stress release layer |
5475280, | Mar 04 1992 | ALLIGATOR HOLDINGS, INC | Vertical microelectronic field emission devices |
5492235, | Dec 01 1994 | Intel Corporation | Process for single mask C4 solder bump fabrication |
5539186, | Dec 09 1992 | International Business Machines Corporation | Temperature controlled multi-layer module |
5542174, | Sep 15 1994 | Intel Corporation | Method and apparatus for forming solder balls and solder columns |
5547740, | Mar 23 1995 | FLIPCHIP INTERNATIONAL | Solderable contacts for flip chip integrated circuit devices |
5551627, | Sep 29 1994 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Alloy solder connect assembly and method of connection |
5553769, | Nov 12 1992 | International Business Machine Corporation | Interconnection of a carrier substrate and a semiconductor device |
5557502, | Mar 02 1995 | Intel Corporation | Structure of a thermally and electrically enhanced plastic ball grid array package |
5609287, | Oct 04 1991 | Mitsubishi Denki Kabushiki Kaisha | Solder material, junctioning method, junction material, and semiconductor device |
5616962, | Jan 24 1992 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit devices having particular terminal geometry |
5627396, | Feb 01 1993 | THE BANK OF NEW YORK TRUST COMPANY, N A | Micromachined relay and method of forming the relay |
5634268, | Jun 07 1995 | International Business Machines Corporation | Method for making direct chip attach circuit card |
5680296, | Nov 07 1995 | Oracle America, Inc | Card guide with groove having a base portion and ramped portion which restrains an electronic card |
5736456, | Mar 07 1996 | Micron Technology, Inc. | Method of forming conductive bumps on die for flip chip applications |
5739053, | Oct 27 1992 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Process for bonding a semiconductor to a circuit substrate including a solder bump transferring step |
5744382, | May 13 1992 | Matsushita Electric Industrial Co., Ltd. | Method of packaging electronic chip component and method of bonding of electrode thereof |
5751556, | Mar 29 1996 | Intel Corporation | Method and apparatus for reducing warpage of an assembly substrate |
5759437, | Oct 31 1996 | International Business Machines Corporation | Etching of Ti-W for C4 rework |
5773359, | Dec 26 1995 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Interconnect system and method of fabrication |
5793116, | May 29 1996 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Microelectronic packaging using arched solder columns |
5796168, | Jun 06 1996 | International Business Machines Corporation | Metallic interconnect pad, and integrated circuit structure using same, with reduced undercut |
5796591, | Jun 07 1995 | International Business Machines Corporation | Direct chip attach circuit card |
5812378, | Jun 07 1994 | Tessera, Inc. | Microelectronic connector for engaging bump leads |
5851911, | Mar 07 1996 | Round Rock Research, LLC | Mask repattern process |
5859470, | Nov 12 1992 | International Business Machines Corporation | Interconnection of a carrier substrate and a semiconductor device |
5886393, | Nov 07 1997 | National Semiconductor Corporation | Bonding wire inductor for use in an integrated circuit package and method |
5891756, | Jun 27 1997 | Apple Inc | Process for converting a wire bond pad to a flip chip solder bump pad and pad formed thereby |
5892179, | Apr 05 1995 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Solder bumps and structures for integrated redistribution routing conductors |
5898574, | Sep 02 1997 | MOTOROLA, INC , A CORP OF DE | Self aligning electrical component |
5902686, | Nov 21 1996 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Methods for forming an intermetallic region between a solder bump and an under bump metallurgy layer and related structures |
5906312, | Dec 02 1994 | Franunhofer-Gesellschaft zur Foerde-rung der angwandten Forschung e.V. | Solder bump for flip chip assembly and method of its fabrication |
5920125, | Nov 12 1992 | International Business Machines Corporation | Interconnection of a carrier substrate and a semiconductor device |
5923539, | Jan 16 1992 | Hitachi, Ltd. | Multilayer circuit substrate with circuit repairing function, and electronic circuit device |
5937320, | Apr 08 1998 | International Business Machines Corporation | Barrier layers for electroplated SnPb eutectic solder joints |
5963793, | May 29 1996 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Microelectronic packaging using arched solder columns |
5990472, | Sep 29 1997 | Research Triangle Institute | Microelectronic radiation detectors for detecting and emitting radiation signals |
6015505, | Oct 30 1997 | GLOBALFOUNDRIES Inc | Process improvements for titanium-tungsten etching in the presence of electroplated C4's |
6027957, | Jun 27 1996 | National Security Agency | Controlled solder interdiffusion for high power semiconductor laser diode die bonding |
6083773, | Sep 16 1997 | Round Rock Research, LLC | Methods of forming flip chip bumps and related flip chip bump constructions |
6117299, | May 09 1997 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Methods of electroplating solder bumps of uniform height on integrated circuit substrates |
6121069, | Apr 10 1997 | GLOBALFOUNDRIES Inc | Interconnect structure for joining a chip to a circuit card |
6130170, | Oct 30 1997 | GLOBALFOUNDRIES Inc | Process improvements for titanium-tungsten etching in the presence of electroplated C4's |
6133065, | Mar 06 1997 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Multi-chip module employing carrier substrate with micromachined alignment structures and method of forming |
6134120, | Sep 04 1998 | Trane International Inc | Low profile circuit board mounting arrangement |
6162652, | Dec 31 1997 | Intel Corporation | Process for sort testing C4 bumped wafers |
6169325, | Dec 17 1997 | Longitude Licensing Limited | Semiconductor device |
6208018, | May 29 1997 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Piggyback multiple dice assembly |
6221682, | May 28 1999 | M-RED INC | Method and apparatus for evaluating a known good die using both wire bond and flip-chip interconnects |
6222279, | Nov 05 1996 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Solder bump fabrication methods and structures including a titanium barrier layer |
6224690, | Dec 22 1995 | ULTRATECH, INC | Flip-Chip interconnections using lead-free solders |
6231743, | Jan 03 2000 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Method for forming a semiconductor device |
6238951, | May 28 1993 | Commissariat a l'Energie Atomique | Process for producing a sealing and mechanical strength ring between a substrate and a chip hybridized by bumps on the substrate |
6281106, | Nov 25 1999 | FLIPCHIP INTERNATIONAL | Method of solder bumping a circuit component |
6320262, | Dec 05 1997 | Ricoh Company, LTD | Semiconductor device and manufacturing method thereof |
6329608, | Apr 05 1995 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Key-shaped solder bumps and under bump metallurgy |
6332988, | Jun 02 1999 | International Business Machines Corporation; International Businees Machines Corporation | Rework process |
6335104, | Feb 22 2000 | Invensas Corporation | Method for preparing a conductive pad for electrical connection and conductive pad formed |
6346469, | Jan 03 2000 | SHENZHEN XINGUODU TECHNOLOGY CO , LTD | Semiconductor device and a process for forming the semiconductor device |
6380555, | Dec 24 1999 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Bumped semiconductor component having test pads, and method and system for testing bumped semiconductor components |
6388203, | Apr 05 1995 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Controlled-shaped solder reservoirs for increasing the volume of solder bumps, and structures formed thereby |
6389691, | Apr 05 1995 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Methods for forming integrated redistribution routing conductors and solder bumps |
6392163, | Apr 04 1995 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Controlled-shaped solder reservoirs for increasing the volume of solder bumps |
6415974, | Aug 01 2000 | Siliconware Precision Industries Co., Ltd. | Structure of solder bumps with improved coplanarity and method of forming solder bumps with improved coplanarity |
6418033, | Nov 16 2000 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Microelectronic packages in which second microelectronic substrates are oriented relative to first microelectronic substrates at acute angles |
6419974, | May 27 1999 | General Mills, Inc. | Dairy products and method of preparation |
6440291, | Nov 30 2000 | Novellus Systems, Inc. | Controlled induction by use of power supply trigger in electrochemical processing |
6441487, | Oct 20 1997 | FlipChip International, LLC | Chip scale package using large ductile solder balls |
6452270, | Jan 19 2001 | Advanced Semiconductor Engineering, Inc. | Semiconductor device having bump electrode |
6452271, | Jul 31 1998 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Interconnect component for a semiconductor die including a ruthenium layer and a method for its fabrication |
6475896, | Dec 04 1996 | Seiko Epson Corporation | Electronic component and semiconductor device, method of making the same and method of mounting the same, circuit board, and electronic instrument |
6492197, | May 23 2000 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Trilayer/bilayer solder bumps and fabrication methods therefor |
6495018, | Mar 15 2000 | TDAO Limited | Electro-plating apparatus and method |
6521996, | Jun 30 2000 | Intel Corporation | Ball limiting metallurgy for input/outputs and methods of fabrication |
6620722, | Jun 21 2001 | Taiwan Semiconductor Manufacturing Co., Ltd | Bumping process |
6622907, | Feb 19 2002 | GLOBALFOUNDRIES U S INC | Sacrificial seed layer process for forming C4 solder bumps |
6668449, | Jun 25 2001 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Method of making a semiconductor device having an opening in a solder mask |
6762122, | Sep 27 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Methods of forming metallurgy structures for wire and solder bonding |
6793792, | Jan 12 2001 | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | Electroplating methods including maintaining a determined electroplating voltage and related systems |
6835643, | Jun 14 1999 | Round Rock Research, LLC | Method of improving copper interconnects of semiconductor devices for bonding |
6853076, | Sep 21 2001 | Intel Corporation | Copper-containing C4 ball-limiting metallurgy stack for enhanced reliability of packaged structures and method of making same |
20010011764, | |||
20010020745, | |||
20010042918, | |||
20020000665, | |||
20020056742, | |||
20020079576, | |||
20020086520, | |||
20020093098, | |||
20020096764, | |||
20020197842, | |||
20030000738, | |||
20030027379, | |||
20030060040, | |||
20030107137, | |||
20030124833, | |||
20030143830, | |||
20030186487, | |||
20040053483, | |||
CN1269607, | |||
DE19741436, | |||
DE4205029, | |||
DE4223799, | |||
EP355478, | |||
EP603296, | |||
EP609062, | |||
EP736972, | |||
EP757386, | |||
EP782191, | |||
EP907207, | |||
EP1146552, | |||
EP1148548, | |||
FR2406893, | |||
FR2688628, | |||
FR2705832, | |||
GB1288564, | |||
GB2062963, | |||
GB2194387, | |||
JP2000349111, | |||
JP2002203868, | |||
JP4133330, | |||
JP4150033, | |||
JP54050269, | |||
JP54128669, | |||
JP55111127, | |||
JP57197838, | |||
JP5773952, | |||
JP59154041, | |||
JP6116552, | |||
JP63099558, | |||
JP63222445, | |||
JP7066207, | |||
JP7226400, | |||
WO203461, | |||
WO9302831, | |||
WO9322475, | |||
WO9630933, | |||
WO9631905, | |||
WO9703465, | |||
WO9745871, | |||
WO9806118, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 17 2004 | Unitive Electronics Inc. | (assignment on the face of the patent) | ||||
Feb 18 2004 | KUNG, LING-CHEN | UNITIVE ELECTRONICS INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015462 | 0684 | |
Feb 18 2004 | CHIU, SAO-LING | UNITIVE ELECTRONICS INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015462 | 0684 | |
Feb 18 2004 | LU, TSAI-HUA | UNITIVE ELECTRONICS INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015462 | 0684 | |
Feb 18 2004 | JAN, JONG-RONG | UNITIVE ELECTRONICS INC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015462 | 0684 | |
Jun 14 2006 | UNITIVE ELECTRONICS INC | Unitive International Limited | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017846 | 0057 | |
Dec 19 2012 | UNITIVE INTERNATIONAL, LTD | Amkor Technology, Inc | NUNC PRO TUNC ASSIGNMENT SEE DOCUMENT FOR DETAILS EFFECTIVE 11 01 2012 | 029597 | 0452 | |
Apr 09 2015 | Amkor Technology, Inc | BANK OF AMERICA, N A | PATENT SECURITY AGREEMENT | 035613 | 0592 | |
Jul 13 2018 | Amkor Technology, Inc | BANK OF AMERICA, N A , AS AGENT | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 046683 | 0139 | |
Nov 19 2019 | Amkor Technology, Inc | AMKOR TECHNOLOGY SINGAPORE HOLDING PTE LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 054067 | 0135 |
Date | Maintenance Fee Events |
Jan 25 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 27 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 25 2018 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 25 2009 | 4 years fee payment window open |
Jan 25 2010 | 6 months grace period start (w surcharge) |
Jul 25 2010 | patent expiry (for year 4) |
Jul 25 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 25 2013 | 8 years fee payment window open |
Jan 25 2014 | 6 months grace period start (w surcharge) |
Jul 25 2014 | patent expiry (for year 8) |
Jul 25 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 25 2017 | 12 years fee payment window open |
Jan 25 2018 | 6 months grace period start (w surcharge) |
Jul 25 2018 | patent expiry (for year 12) |
Jul 25 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |