A compressor having a housing and mutually engaged stationary and orbiting scrolls. A crankcase is disposed between a motor and the orbiting scroll. A shaft is operably connected with the orbiting scroll and extends through the crankcase and the motor. The end of the shaft extending from the motor is rotatably supported by a bearing mounted in a bearing support. A counterweight is rotationally coupled with the shaft proximate the bearing support. An oil sump is disposed within the housing and an oil shield is fixed to the bearing support. The oil shield has a cylindrical portion with an open end which encircles the counterweight and may include a plurality of flexible members having inwardly bent portions which engage a groove on the bearing support.
|
11. A compressor assembly comprising:
a housing;
a compressor mechanism disposed within said housing;
a shaft rotatable about a shaft axis, said shaft operably coupled to said compressor mechanism;
a bearing support member mounted within said housing, said bearing support member rotatably supporting said shaft;
a counterweight rotationally coupled with said shaft;
said housing defining an interior plenum wherein lubricating oil is pooled in a bottom portion of said interior plenum, said bearing support member, said counterweight and said shaft all being at least partially disposed within said interior plenum; and
an oil shield, said oil shield having a plurality of flexible members mounting said oil shield to said bearing support, said counterweight being at least partially disposed within said oil shield;
wherein each of said plurality of flexible members has a distal end with a radially inwardly projecting portion, wherein said bearing support member defines a groove, and wherein said inwardly projecting portions are engaged with said groove.
6. A compressor assembly comprising:
a housing;
a stationary scroll member fixed within said housing;
an orbiting scroll member disposed within said housing and engaged with said stationary scroll member;
a motor;
a crankcase disposed between said motor and said orbiting scroll;
a bearing support member fixed within said housing and having a bearing mounted thereto, said bearing support including a recess;
an elongate shaft rotatable about a shaft axis and having a first end and an opposite second end, said shaft extending through said crankcase and said motor, said first end operably coupled with said orbiting scroll, said bearing rotatably supporting said shaft proximate said second end, said shaft axis disposed substantially horizontally during operation of said compressor;
a counterweight rotationally coupled with said shaft proximate said bearing support member;
an oil sump disposed within an interior plenum defined by said housing; and
an oil shield, said oil shield having a plurality of flexible members mounting said oil shield to said bearing support, said flexible members engaged with said bearing support recess, said oil shield having a substantially cylindrical portion extending outwardly from said bearing support and encircling at least a portion of said counterweight.
1. A compressor assembly comprising:
a housing;
a compressor mechanism disposed within said housing;
a bearing support mounted within said housing, said bearing support including a recess;
a shaft rotatable about a shaft axis, said shaft axis being disposed substantially horizontally during operation of said compressor assembly, said shaft having first and second opposed ends, said first end operably coupled to said compressor mechanism;
a bearing mounted on said bearing support and rotatably supporting said shaft proximate said second end of said shaft;
a counterweight rotationally coupled with said shaft and disposed proximate said second end of said shaft;
said housing defining an interior plenum wherein lubricating oil is pooled in a bottom portion of said interior plenum; said bearing support, said bearing, said counterweight and said shaft all being disposed within said interior plenum; and
an oil shield, said oil shield having a plurality of flexible members mounting said oil shield to said bearing support proximate said bearing, said flexible members engaged with said bearing support recess, said oil shield having a substantially cylindrical portion extending outwardly from said bearing support, said counterweight being at least partially disposed within said substantially cylindrical portion of said oil shield.
9. A compressor assembly comprising:
a housing;
a stationary scroll member fixed within said housing;
an orbiting scroll member disposed within said housing and engaged with said stationary scroll member;
a motor;
a crankcase disposed between said motor and said orbiting scroll;
a bearing support member fixed within said housing and having a bearing mounted thereto;
an elongate shaft rotatable about a shaft axis and having a first end and an opposite second end, said shaft extending through said crankcase and said motor, said first end operably coupled with said orbiting scroll, said bearing rotatably supporting said shaft proximate said second end, said shaft axis disposed substantially horizontally during operation of said compressor;
a counterweight rotationally coupled with said shaft proximate said bearing support member;
an oil sump disposed within an interior plenum defined by said housing; and
an oil shield, said oil shield having a plurality of flexible members mounting said oil shield to said bearing support, said oil shield having a substantially cylindrical portion extending outwardly from said bearing support and encircling at least a portion of said counterweight,
wherein said bearing support member includes a substantially cylindrical central portion, said bearing being mounted within said central portion, said oil shield fixedly engaging an outer surface of said central portion.
4. A compressor assembly comprising:
a housing;
a compressor mechanism disposed within said housing;
a bearing support mounted within said housing;
a shaft rotatable about a shaft axis, said shaft axis being disposed substantially horizontally during operation of said compressor assembly, said shaft having first and second opposed ends, said first end operably coupled to said compressor mechanism;
a bearing mounted on said bearing support and rotatably supporting said shaft proximate said second end of said shaft;
a counterweight rotationally coupled with said shaft and disposed proximate said second end of said shaft;
said housing defining an interior plenum wherein lubricating oil is pooled in a bottom portion of said interior plenum; said bearing support, said bearing, said counterweight and said shaft all being disposed within said interior plenum; and
an oil shield, said oil shield having a plurality of flexible members mounting said oil shield to said bearing support proximate said bearing, said oil shield having a substantially cylindrical portion extending outwardly from said bearing support, said counterweight being at least partially disposed within said substantially cylindrical portion of said oil shield,
wherein said bearing support includes a substantially cylindrical central portion, said bearing being mounted within said central portion, said oil shield fixedly engaging an outer surface of said central portion.
8. A compressor assembly comprising:
a housing;
a stationary scroll member fixed within said housing;
an orbiting scroll member disposed within said housing and engaged with said stationary scroll member;
a motor;
a crankcase disposed between said motor and said orbiting scroll;
a bearing support member fixed within said housing and having a bearing mounted thereto;
an elongate shaft rotatable about a shaft axis and having a first end and an opposite second end, said shaft extending through said crankcase and said motor, said first end operably coupled with said orbiting scroll, said bearing rotatably supporting said shaft proximate said second end, said shaft axis disposed substantially horizontally during operation of said compressor;
a counterweight rotationally coupled with said shaft proximate said bearing support member;
an oil sump disposed within an interior plenum defined by said housing; and
an oil shield, said oil shield having a plurality of flexible members mounting said oil shield to said bearing support, said oil shield having a substantially cylindrical portion extending outwardly from said bearing support and encircling at least a portion of said counterweight,
wherein each of said plurality of flexible members has a distal end with a radially inwardly projecting portion and said bearing support member defines a groove proximate said bearing, said inwardly projecting portions being engageable with said groove.
3. A compressor assembly comprising;
a housing;
a compressor mechanism disposed within said housing;
a bearing support mounted within said housing;
a shaft rotatable about a shaft axis, said shaft axis being disposed substantially horizontally during operation of said compressor assembly, said shaft having first and second opposed ends, said first end operably coupled to said compressor mechanism;
a bearing mounted on said bearing support and rotatably supporting said shaft proximate said second end of said shaft;
a counterweight rotationally coupled with said shaft and disposed proximate said second end of said shaft;
said housing defining an interior plenum wherein lubricating oil is pooled in a bottom portion of said interior plenum; said bearing support, said bearing, said counterweight and said shaft all being disposed within said interior plenum; and
an oil shield, said oil shield having a plurality of flexible members mounting said oil shield to said bearing support proximate said bearing, said oil shield having a substantially cylindrical portion extending outwardly from said bearing support, said counterweight being at least partially disposed within said substantially cylindrical portion of said oil shield,
wherein each of said plurality of flexible members has a distal end with a radially inwardly projecting portion, and said bearing support defines a groove proximate said bearing, said inwardly projecting portions being engageable with said groove.
2. The compressor assembly of
5. The compressor assembly of
7. The compressor assembly of
10. The compressor assembly of
12. The compressor assembly of
13. The compressor assembly of
|
This application claims priority under 35 U.S.C. 119(e) of U.S. provisional patent application Ser. No. 60/412,838 filed on Sep. 23, 2002 entitled COMPRESSOR HAVING COUNTERWEIGHT SHIELD the disclosure of which is hereby incorporated by reference.
1. Field of the Invention
The present invention relates to compressors and, more particularly, compressors having a rotatable counterweight with a shield surrounding the counterweight.
2. Description of the Related Art
Conventional compressor designs often include a rotating shaft which is eccentrically loaded, such as a shaft coupled to the orbiting scroll in a scroll compressor. Such eccentrically loaded shafts typically include counterweights which may be mounted directly to the shaft or located on the rotor of a motor which is coupled to the shaft. Although shielding for such counterweights is known, an improved shielding assembly for such counterweights is desirable.
The present invention provides a compressor having an improved shielding assembly for counterweight wherein the shielding is mounted to a bearing support for the shaft and has a generally cylindrical section for surrounding a counterweight. The shielding may include flexible tabs having inwardly bent portions for engaging a groove or recess on the bearing support and thereby mounting the shield to the bearing support.
The invention comprises, in one form thereof, a compressor assembly. The compressor assembly includes a housing, a compressor mechanism disposed within the housing and a bearing support mounted within the housing. A shaft, rotatable about a shaft axis which is disposed substantially horizontally during operation of the compressor assembly, is also provided. The shaft has first and second opposed ends wherein the first end is operably coupled to the compressor mechanism. A bearing is mounted on the bearing support and rotatably supports the shaft proximate the second end of the shaft. A counterweight is rotationally coupled with the shaft and disposed proximate the second end of the shaft. The housing defines an interior plenum wherein lubricating oil is pooled in a bottom portion of the interior plenum and wherein the bearing support, the bearing, the counterweight and the shaft are all disposed within the interior plenum. The assembly also includes an oil shield having a plurality of flexible members which mount the oil shield to the bearing support proximate the bearing. The oil shield has a substantially cylindrical portion extending outwardly from the bearing support and the counterweight is at least partially disposed within the substantially cylindrical portion of the oil shield.
The invention comprises, in another form thereof, a compressor assembly which includes a housing, a stationary scroll member fixed within the housing, and an orbiting scroll member disposed within the housing and engaged with the stationary scroll member. The assembly also includes a motor and a crankcase with the crankcase being disposed between the motor and the orbiting scroll member. A bearing support member is fixed within the housing and has a bearing mounted thereto. An elongate shaft rotatable about a shaft axis and having a first end and an opposite second end extends through the crankcase and the motor. The first end of the shaft is operably coupled with the orbiting scroll member and the bearing rotatably supports the shaft proximate the second end. The shaft axis is disposed substantially horizontally during operation of the compressor. A counterweight is rotationally coupled with the shaft proximate the bearing support member and an oil sump is disposed within an interior plenum defined by the housing. An oil shield having a plurality of flexible members mounting the oil shield to the bearing support is also provided. The oil shield has a substantially cylindrical portion extending outwardly from the bearing support and encircling at least a portion of the counterweight.
In such compressor assemblies, each of the plurality of flexible members may have has a distal end with a radially inwardly projecting portion wherein the inwardly projecting portions are engageable with a groove or recess defined by the bearing support and located proximate the bearing. The bearing support may also include a substantially cylindrical central portion wherein the bearing is mounted within the central portion and the oil shield fixedly engages an outer surface of the central portion. A groove or recess for engaging inwardly projecting portions of the flexible members may be located on the outer surface of the central portion. The counterweight may be disposed on a rotor rotationally coupled to the shaft.
An advantage of the present invention is that it provides a shield which is readily attachable to a bearing support that prevents the fanning action of a counterweight from agitating oil pooled within the compressor housing proximate the counterweight.
The above mentioned and other features and objects of this invention, and the manner of attaining them, will become more apparent and the invention itself will be better understood by reference to the following description of an embodiment of the invention taken in conjunction with the accompanying drawings, wherein:
Corresponding reference characters indicate corresponding parts throughout the several views. Although the exemplification set out herein illustrates an embodiment of the invention, the embodiment disclosed below is not intended to be exhaustive or to be construed as limiting the scope of the invention to the precise form disclosed.
In accordance with the present invention, a scroll compressor 20 is shown in an exploded view in
A one-way valve allows compressed refrigerant to be discharged into a discharge chamber or plenum 38 and prevents compressed refrigerant located in discharge plenum 38 from reentering discharge port 30. The valve includes an exhaust valve leaf 32 which sealingly engages fixed scroll member 22 at discharge port 30 and an exhaust valve retainer 34. Valve leaf 32 is secured between fixed scroll member 22 and valve retainer 34. Valve retainer 34 has a bend at its distal end which allows valve leaf 32 to flex outwardly away from discharge port 30 when gas is compressed between scroll members 22, 24 and thereby permit the passage of high pressure gas into discharge plenum 38. Valve retainer 34 limits the extent to which valve leaf 32 may flex outwardly away from discharge port 30 to prevent damage from excessive flexing of valve leaf 32. A threaded fastener 36 secures valve retainer 34 and valve leaf 32 to fixed scroll member 22. An alternative valve that may be used with compressor 20 is described by Haller et al. in U.S. Provisional Patent Application Ser. No. 60/412,905 entitled COMPRESSOR HAVING DISCHARGE VALVE filed on Sep. 23, 2002 which is hereby incorporated herein by reference. Pressure relief valve 27 is positioned between scroll members 22, 24 to allow discharge pressure gas to be directed into the suction pressure inlet in the event of overpressurization.
An Oldham ring 44 is disposed between fixed scroll member 22 and orbiting scroll member 24 to control the relative motion between orbiting scroll member 24 and fixed scroll member 22. Orbiting scroll 24 is mounted on an eccentrically positioned extension 48 on shaft 46 and rotation of shaft 46 imparts a relative orbital movement between orbiting scroll 24 and fixed scroll 22. The use of shafts having eccentrically positioned extensions and Oldham rings to impart a relative orbital motion between scroll members of a compressor is well known to those having ordinary skill in the art.
A counterweight 50 (
Two roller bearings 60 are positioned on shaft 46 where shaft 46 respectively engages orbiting scroll 24 and crankcase 62. A ball bearing 64 is positioned near the opposite end of shaft 46 and is mounted within bearing support 66. Shaft 46 may be supported in a manner similar to that described by Haller et al. in U.S. patent application Ser. No. 09/964,241 filed Sep. 26, 2001 entitled SHAFT AXIAL COMPLIANCE MECHANISM which is hereby incorporated herein by reference.
Crankcase 62 is secured to fixed scroll 22 with threaded fasteners 72 which pass through apertures 74 located in fixed scroll 22 and engage threaded bores 76 in crankcase 62. Crankcase 62 includes a thrust surface 68 which slidably engages orbiting scroll 24 and restricts movement of orbiting scroll 24 away from fixed scroll 22. Crankcase 62 also includes four legs 78 which secure the crankcase to stator 92 as described in greater detail below. Shaft 46 extends through opening 80 in crankcase 62. Crankcase 62 includes a shroud portion 70 which is disposed between legs 78 in the lower portion of the horizontal compressor housing and partially encloses a space within which counterweight 50 rotates. Shroud 70 includes an opening 81 along its upper portion which permits the equalization of pressure between the space partially enclosed by shroud 70 and the remainder of the low pressure chamber or plenum 39 of compressor 20. Low pressure plenum 39 includes that space within compressor housing 88 located between orbiting scroll 24 and end cap 168 and receives the suction pressure refrigerant which is returned to compressor 20 through inlet tube 86.
A suction baffle 82 (
A motor 90 is disposed adjacent crankcase 62 and includes a stator 92 and a rotor 94. Bushings 96 are used to properly position stator 92 with respect to crankcase 62 and bearing support 66 when assembling compressor 20. During assembly, crankcase 62, motor 90 and bearing support 66 must have their respective bores through which shaft 46 is inserted precisely aligned. Smooth bore pilot holes 100, 102, 104 which are precisely located relative to these bores are provided in crankcase 62, motor 90 and bearing support 66. Alignment bushings 96 fit tightly within the pilot holes to properly align crankcase 62, motor 90 and bearing support 66. Bolts 98 (
A terminal pin cluster 108 is located on motor 90 and wiring (not shown) connects cluster 108 with a second terminal pin cluster 110 mounted in end cap 168 and through which electrical power is supplied to motor 90. A terminal guard or fence 111 is welded to end cap 168 and surrounds terminal cluster 110. Shaft 46 extends through the bore of rotor 94 and is rotationally secured thereto by a shrink fit whereby rotation of rotor 94 also rotates shaft 46. Rotor 94 includes a counterweight 106 at its end proximate bearing support 66. Similar to counterweight 50, counterweight 106 located on rotor 94 acts to counterbalance the eccentric load placed on shaft 46 by orbiting scroll 24. Although counterweight 106 is not directly mounted to shaft 46, rotor 94 is rotationally secured to shaft 46 and counterweight 106 rotates with shaft 46, i.e., counterweight 106 is rotationally coupled to shaft 46.
As can be seen in
As mentioned above, shaft 46 is rotatably supported by ball bearing 64 which is mounted in bearing support 66. Bearing support 66 includes a substantially cylindrical central portion or boss 112 which defines a substantially cylindrical opening 114 in which ball bearing 64 is mounted. A retaining ring 118 is fitted within a groove 116 located in the interior of opening 114 to retain ball bearing 64 within boss 112. An oil shield 120 is secured to boss 112 and has a cylindrical portion 122 which extends towards motor 90 therefrom. Counterweight 106 is disposed within the space circumscribed by cylindrical portion 122 and is thereby shielded from the oil located in oil sump 58, although it is expected that the oil level 123 will be below oil shield 120 under most circumstances, as shown in
A second embodiment of a bearing support 66′ which may be used with the present invention is shown in
Oil shield 120 may be manufactured using a polymer material and machining operations. One suitable polymer material which may be used when shield 120 will be machined is Hydex 4101 available from ALRO Plastics having a place of business in Jackson, Mich. Oil shield 120 may also be injection molded and a polymer suitable for use in the injection molding of oil shield 120 is Valox 310 available from General Electric.
Support arms 134 extend between boss 112 and outer ring 136 of bearing support 66. The outer perimeter of ring 136 is press fit into engagement with housing 88 to secure bearing support 66 therein. The interior perimeter of outer ring 136 faces the windings of stator 92 when bearing support 66 is engaged with motor 90. Flats 138 are located on the outer perimeter of ring 136 and the upper flat 138 facilitates the equalization of pressure within interior plenum by allowing refrigerant to pass between outer ring 136 and housing 88. Flat 138 located along the bottom of ring 136 allows oil in oil sump 58 to pass between ring 136 and housing 88. A notch 140 located on the interior perimeter of outer ring 136 may be used to locate bearing support 66 during machining of bearing support 66 and also facilitates the equalization of pressure within suction plenum 39 by allowing refrigerant to pass between stator 92 and ring 136. The outer perimeter of stator 92 also includes flats to provide passages between stator 92 and housing 88 through which lubricating oil and refrigerant may be communicated.
Support arms 134 are positioned such that the two lowermost arms 134 form an angle of approximately 120 degrees to limit the extent to which the two lowermost arms 134 extend into the oil in sump 58 and thereby limit the displacement of oil within oil sump 58 by such arms 134. A sleeve 142 projects rearwardly from bearing support 66 and provides for uptake of lubricating oil from oil sump 58. An oil pick up tube 144 is secured to sleeve 142 with a threaded fastener 146. An O-ring 148 provides a seal between oil pick up tube 144 and sleeve 142. As shown in
As can be seen in
After the compressor and motor subassembly is assembled and shrink-fitted into cylindrical housing shell 166, fixed scroll member 22 is positioned within discharge end cap 160 and tightly engages the interior surface of end cap 160. Discharge plenum 38 is formed between discharge end cap 160 and fixed scroll member 22. As compressed refrigerant is discharged through discharge port 30 it enters discharge plenum 38 and is subsequently discharged from compressor 20 through discharge tube 164. Compressed refrigerant carries oil with it as it enters discharge plenum 38. Some of this oil will separate from the refrigerant and accumulate in the bottom portion of discharge plenum 38. Discharge tube 164 is located near the bottom portion of discharge plenum 38 so that the vapor flow discharged through tube 164 will carry with it oil which has settled to the bottom portion of discharge plenum 38 and thereby limit the quantity of oil which can accumulate in discharge plenum 38. Although the disclosed embodiment utilizes a short, straight length of tubing to provide discharge tube 164, alternative embodiments of the discharge outlet may also be used. A discharge plenum configuration which may be used with compressor 20 is described by Skinner in U.S. Provisional Patent Application Ser. No. 60/412,871 entitled COMPRESSOR DISCHARGE ASSEMBLY filed on Sep. 23, 2002 which is hereby incorporated herein by reference.
Mounting brackets 206 and 208 are welded to housing 88 and support compressor 20 in a generally horizontal orientation. As can be seen in
While this invention has been described as having an exemplary design, the present invention may be further modified within the spirit and scope of this disclosure. This application is therefore intended to cover any variations, uses, or adaptations of the invention using its general principles.
Patent | Priority | Assignee | Title |
10197311, | Sep 04 2012 | Carrier Corporation | Reciprocating refrigeration compressor wrist pin retention |
10823468, | Sep 04 2012 | Carrier Corporation | Reciprocating refrigeration compressor wrist pin retention |
10823469, | Sep 04 2012 | Carrier Corporation | Reciprocating refrigeration compressor wrist pin retention |
10928108, | Sep 13 2012 | Emerson Climate Technologies, Inc. | Compressor assembly with directed suction |
10995974, | Sep 13 2012 | Emerson Climate Technologies, Inc. | Compressor assembly with directed suction |
11209000, | Jul 11 2019 | Emerson Climate Technologies, Inc. | Compressor having capacity modulation |
11236748, | Mar 29 2019 | Emerson Climate Technologies, Inc. | Compressor having directed suction |
11248605, | Jul 28 2020 | Emerson Climate Technologies, Inc.; EMERSON CLIMATE TECHNOLOGIES, INC | Compressor having shell fitting |
11619228, | Jan 27 2021 | Emerson Climate Technologies, Inc. | Compressor having directed suction |
11767838, | Jun 14 2019 | COPELAND LP | Compressor having suction fitting |
7389582, | Sep 23 2002 | Tecumseh Products Company | Compressor mounting bracket and method of making |
8303278, | Jul 08 2008 | Tecumseh Products Company | Scroll compressor utilizing liquid or vapor injection |
8485789, | May 18 2007 | EMERSON CLIMATE TECHNOLOGIES, INC | Capacity modulated scroll compressor system and method |
8974198, | Aug 10 2009 | EMERSON CLIMATE TECHNOLOGIES, INC | Compressor having counterweight cover |
9442003, | Jun 11 2014 | Raytheon Company | Derotation assembly and method for a scanning sensor |
RE41955, | Apr 25 2001 | Emerson Climate Technologies, Inc. | Capacity modulation for plural compressors |
Patent | Priority | Assignee | Title |
2661172, | |||
3039725, | |||
3145960, | |||
3749340, | |||
3785167, | |||
4089613, | Feb 09 1977 | CATERPILLAR INC , A CORP OF DE | Eccentric pin and bushing means for mounting misaligned components |
4244680, | Aug 19 1978 | Diesel Kiki Co., Ltd. | Rotary vane compressor with oil separating means |
4389171, | Jan 15 1981 | AMERICAN STANDARD INTERNATIONAL INC | Gas compressor of the scroll type having reduced starting torque |
4416594, | Aug 17 1979 | Sawafuji Electric Company, Ltd. | Horizontal type vibrating compressor |
4497615, | Jul 25 1983 | Copeland Corporation | Scroll-type machine |
4518276, | Feb 27 1984 | CATERPILLAR INC , A CORP OF DE | Method and apparatus for repeatably aligning adjacent member |
4552518, | Feb 21 1984 | AMERICAN STANDARD INTERNATIONAL INC | Scroll machine with discharge passage through orbiting scroll plate and associated lubrication system |
4557677, | Apr 30 1981 | Tokyo Shibaura Denki Kabushiki Kaisha | Valveless lubricant pump for a lateral rotary compressor |
4685188, | Feb 24 1986 | Alsthom | Method of coupling two flanged shaft ends |
4767293, | Aug 22 1986 | Copeland Corporation | Scroll-type machine with axially compliant mounting |
4792288, | Nov 28 1986 | Siemens Aktiengesellschaft | Encapsulated compressor |
4818198, | Nov 26 1986 | Hitachi, Ltd. | Scroll fluid machine with oil feed passages |
4877382, | Aug 22 1986 | Copeland Corporation | Scroll-type machine with axially compliant mounting |
4895496, | Jun 08 1988 | Copeland Corporation | Refrigeration compressor |
4992033, | Aug 22 1986 | Copeland Corporation | Scroll-type machine having compact Oldham coupling |
5012896, | Feb 17 1989 | EMPRESA BRASILEIRA DE COMPRESSORES S A | Lubricating system for rotary horizontal crankshaft hermetic compressor |
5055010, | Oct 01 1990 | Copeland Corporation | Suction baffle for refrigeration compressor |
5062779, | Mar 09 1989 | Expressa Brasileira de Compressores S.A.-Embraco | Outlet valve for a rolling piston rotary compressor |
5064356, | Oct 01 1990 | Copeland Corporation | Counterweight shield for refrigeration compressor |
5110268, | Dec 04 1989 | Hitachi, Ltd. | Lubricant supply system of a scroll fluid machine |
5114322, | Aug 22 1986 | Copeland Corporation | Scroll-type machine having an inlet port baffle |
5137437, | Jan 08 1990 | Hitachi, Ltd. | Scroll compressor with improved bearing |
5176506, | Jul 31 1990 | Copeland Corporation | Vented compressor lubrication system |
5211031, | May 24 1990 | Hitachi, Ltd. | Scroll type compressor and refrigeration cycle using the same |
5219281, | Aug 22 1986 | Copeland Corporation | Fluid compressor with liquid separating baffle overlying the inlet port |
5222885, | May 12 1992 | Tecumseh Products Company | Horizontal rotary compressor oiling system |
5224845, | Jan 31 1992 | Matsushita Refrigeration Company | Refrigerant circulation pump for air-conditioner |
5240391, | May 21 1992 | Carrier Corporation | Compressor suction inlet duct |
5247738, | Oct 24 1991 | Sanden Corporation | Method for assembling motor driven fluid compressor |
5312234, | Oct 24 1991 | Sanden Corporation | Scroll compressor formed of three sub-assemblies |
5345785, | Oct 30 1991 | Hitachi, Ltd. | Scroll compressor and air conditioner using the same |
5345970, | Sep 02 1993 | Carrier Corporation | Virtual valve stop |
5346375, | Dec 11 1991 | Mitsubishi Denki Kabushiki Kaisha | Delivery valve for a scroll compressor |
5348455, | May 24 1993 | Tecumseh Products Company | Rotary compressor with rotation preventing pin |
5370156, | Nov 22 1993 | CARRIER CORPORATION STEPHEN REVIS | Reduced noise valve stop |
5372490, | Jun 28 1993 | Copeland Corporation | Scroll compressor oil pumping system |
5391066, | Nov 14 1991 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Motor compressor with lubricant separation |
5427511, | Aug 22 1986 | Copeland Corporation | Scroll compressor having a partition defining a discharge chamber |
5474433, | Jul 21 1994 | Industrial Technology Research Institute | Axial sealing mechanism of volute compressor |
5487648, | Nov 12 1993 | NECCHI COMPRESSORI S R L | Shell configuration for a hermetic compressor |
5522715, | Jun 09 1994 | Mitsubishi Jukogyo Kabushiki Kaisha | Horizontal scroll compressor having oil path extending to upper part of thrust face of compressor structure |
5531577, | Jan 26 1993 | Hitachi, Ltd. | Scroll type fluid machine having a lever driving mechanism |
5533875, | Apr 07 1995 | Trane International Inc | Scroll compressor having a frame and open sleeve for controlling gas and lubricant flow |
5579651, | Feb 10 1994 | Kabushiki Kaisha Toshiba | Closed-type compressor, and refrigerating unit, refrigerator and air conditioner each utilizing the compressor |
5580233, | Sep 16 1994 | Hitachi, Ltd. | Compressor with self-aligning rotational bearing |
5597293, | Dec 11 1995 | Carrier Corporation | Counterweight drag eliminator |
5597296, | Nov 30 1994 | Matsushita Electric Industrial Co., Ltd. | Scroll compressor having a check valve received in a stationary scroll member recess |
5634781, | Nov 10 1993 | Kabushiki Kaisha Toyoda Jigoshokki Seisakusho; Nippondenso Co., Ltd. | Scroll-type compressor having bolted housings |
5645408, | Jan 17 1995 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Scroll compressor having optimized oil passages |
5660539, | Oct 24 1994 | HITACHI,LTD | Scroll compressor |
5683237, | Jun 24 1994 | Daikin Industries, Ltd. | Horizontal type scroll compressor having inlet ports at an upper level of the casing |
5695326, | Jun 05 1995 | Matsushita Electric Industrial Co., Ltd. | Compressor for a refrigeration machine having a thrust bearing |
5716202, | Sep 20 1994 | Hitachi, Ltd. | Scroll compressor with oiling mechanism |
5720601, | Apr 20 1995 | LG Electronics Inc. | Valve apparatus of hermetic type compressor |
5745992, | Aug 22 1986 | Copeland Corporation | Method of making a scroll-type machine |
5752688, | Sep 10 1996 | Emerson Electric Co | Support assembly that is selectively repositionable and attachable to different sides of an air cooled machine housing |
5769126, | Sep 12 1996 | Samsung Electronics Co., Ltd. | Discharge valve assembly in a reciprocating compressor |
5772411, | Apr 07 1995 | Trane International Inc | Gas flow and lubrication of a scroll compressor |
5772416, | Aug 22 1986 | Copeland Corporation | Scroll-type machine having lubricant passages |
5775894, | Nov 05 1996 | Tecumseh Products Company | Compressor ball valve |
5810572, | Jan 23 1995 | Matsushita Electric Industrial Co., Ltd. | Scroll compressor having an auxiliary bearing for the crankshaft |
5829959, | Sep 16 1994 | Hitachi, Ltd. | Scroll compressor |
5863190, | Jan 23 1995 | MATSUSHITA ELECTRIC INDUSTRIAL CO , LTD | Scroll compressor |
5913892, | Dec 27 1996 | Daewoo Electronics Corporation | Compressor fixture structure for a refrigerator |
5931649, | Aug 22 1986 | Copeland Corporation | Scroll-type machine having a bearing assembly for the drive shaft |
5931650, | Jun 04 1997 | Matsushita Electric Industrial Co., Ltd. | Hermetic electric scroll compressor having a lubricating passage in the orbiting scroll |
5947709, | Sep 20 1994 | Hitachi, Ltd. | Scroll compressor with oiling mechanism |
5964581, | Nov 16 1990 | Hitachi, Ltd. | Refrigerant compressor |
6000917, | Nov 06 1997 | Trane International Inc | Control of suction gas and lubricant flow in a scroll compressor |
6011336, | Mar 16 1998 | STA-RITE INDUSTRIES, INC | Cost-efficient vibration-isolating mounting for motors |
6027321, | Feb 09 1996 | FINETEC CENTURY CORP | Scroll-type compressor having an axially displaceable scroll plate |
6039551, | Jun 07 1996 | Matsushita Electric Industrial Co., Ltd. | Gear pump for use in an electrically-operated sealed compressor |
6050794, | May 23 1996 | Sanyo Electric Co., Ltd. | Compressor having a pump with two adjacent rocking rotors |
6056523, | Feb 09 1996 | FINETEC CENTURY CORP | Scroll-type compressor having securing blocks and multiple discharge ports |
6106254, | Dec 18 1997 | Mitsubishi Heavy Industries, Ltd. | Closed-type scroll compressor |
6132191, | May 15 1998 | Scroll Technologies | Check valve for scroll compressor |
6139291, | Mar 23 1999 | Copeland Corporation | Scroll machine with discharge valve |
6156106, | Jul 07 1997 | W C BRADLEY ZEBCO HOLDINGS, INC D B A ZEBCO | Gas-liquid separator having a curved collision surface opposed to a gas inlet port |
6162035, | Oct 03 1997 | Kabushiki Kaisha Toshiba | Helical-blade fluid machine |
6167719, | Apr 08 1998 | Matsushita Electric Industrial Co., Ltd. | Compressor for refrigeration cycle |
6171076, | Jun 10 1998 | Tecumseh Products Company | Hermetic compressor assembly having a suction chamber and twin axially disposed discharge chambers |
6179589, | Jan 04 1999 | Copeland Corporation | Scroll machine with discus discharge valve |
6186753, | May 10 1999 | Scroll Technologies | Apparatus for minimizing oil leakage during reverse running of a scroll compressor |
6224356, | Jan 05 2000 | Scroll Technologies | Check valve stop and ports |
6227830, | Aug 04 1999 | Scroll Technologies | Check valve mounted adjacent scroll compressor outlet |
6247910, | Sep 09 1998 | Sanden Holdings Corporation | Scroll type compressor which requires no flange portions or holes for solely positioning purposes |
6261073, | Sep 10 1998 | Kabushiki Kaisha Toshiba | Rotary compressor having bearing member with discharge valve element |
6264446, | Feb 02 2000 | Copeland Corporation | Horizontal scroll compressor |
6280154, | Feb 02 2000 | Copeland Corporation | Scroll compressor |
6299423, | Mar 23 1999 | Copeland Corporation | Scroll machine with discharge valve |
6305912, | Apr 09 1999 | Danfoss Compressors GmbH | Refrigerant compressor and method for assembling |
6322339, | Sep 17 1997 | SANYO ELECTRIC CO , LTD | Scroll compressor |
6402485, | Jan 04 2000 | LG Electronics Inc. | Compressor |
20010006603, | |||
20010055536, | |||
FR2755477, | |||
JP2001020881, | |||
JP2001271752, | |||
JP2002021729, | |||
JP2002098056, | |||
JP402061382, | |||
JP407259764, | |||
JP410148191, | |||
JP5180178, | |||
JP5288171, | |||
JP61087994, | |||
JP6235387, | |||
25569, | |||
RE34297, | Jan 23 1992 | Copeland Corporation | Refrigeration compressor |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Aug 29 2003 | SKINNER, ROBIN G | Tecumseh Products Company | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014482 | /0654 | |
Sep 08 2003 | Tecumseh Products Company | (assignment on the face of the patent) | / | |||
Sep 30 2005 | Tecumseh Products Company | JPMORGAN CHASE BANK, N A | SECURITY AGREEMENT | 016641 | /0380 | |
Feb 06 2006 | FASCO INDUSTRIES, INC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | Little Giant Pump Company | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | MANUFACTURING DATA SYSTEMS, INC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | M P PUMPS, INC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | TECUMSEH CANADA HOLDING COMPANY | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | TECUMSEH COMPRESSOR COMPANY | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | Tecumseh Power Company | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | TECUMSEH PUMP COMPANY | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | Von Weise Gear Company | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | EUROMOTOT, INC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | HAYTON PROPERTY COMPANY LLC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | EVERGY, INC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | TECUMSEH TRADING COMPANY | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | CONVERGENT TECHNOLOGIES INTERNATIONAL, INC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | TECUMSEH DO BRASIL USA, LLC | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Feb 06 2006 | Tecumseh Products Company | CITICORP USA, INC | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 017606 | /0644 | |
Oct 31 2006 | FASCO INDUSTRIES, INC | CITICORP USA, INC | SECURITY AGREEMENT | 018590 | /0460 | |
Oct 31 2006 | Tecumseh Products Company | CITICORP USA, INC | SECURITY AGREEMENT | 018590 | /0460 | |
Mar 20 2008 | TECUMSEH DO BRAZIL USA, LLC | JPMORGAN CHASE BANK, N A | SECURITY AGREEMENT | 020995 | /0940 | |
Mar 20 2008 | Tecumseh Products Company | JPMORGAN CHASE BANK, N A | SECURITY AGREEMENT | 020995 | /0940 | |
Mar 20 2008 | TECUMSEH COMPRESSOR COMPANY | JPMORGAN CHASE BANK, N A | SECURITY AGREEMENT | 020995 | /0940 | |
Mar 20 2008 | VON WEISE USA, INC | JPMORGAN CHASE BANK, N A | SECURITY AGREEMENT | 020995 | /0940 | |
Mar 20 2008 | DATA DIVESTCO, INC | JPMORGAN CHASE BANK, N A | SECURITY AGREEMENT | 020995 | /0940 | |
Mar 20 2008 | EVERGY, INC | JPMORGAN CHASE BANK, N A | SECURITY AGREEMENT | 020995 | /0940 | |
Mar 20 2008 | TECUMSEH TRADING COMPANY | JPMORGAN CHASE BANK, N A | SECURITY AGREEMENT | 020995 | /0940 | |
Mar 20 2008 | M P PUMPS, INC | JPMORGAN CHASE BANK, N A | SECURITY AGREEMENT | 020995 | /0940 |
Date | Maintenance Fee Events |
Feb 22 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Apr 04 2014 | REM: Maintenance Fee Reminder Mailed. |
Aug 22 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Aug 22 2009 | 4 years fee payment window open |
Feb 22 2010 | 6 months grace period start (w surcharge) |
Aug 22 2010 | patent expiry (for year 4) |
Aug 22 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Aug 22 2013 | 8 years fee payment window open |
Feb 22 2014 | 6 months grace period start (w surcharge) |
Aug 22 2014 | patent expiry (for year 8) |
Aug 22 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Aug 22 2017 | 12 years fee payment window open |
Feb 22 2018 | 6 months grace period start (w surcharge) |
Aug 22 2018 | patent expiry (for year 12) |
Aug 22 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |