The present invention is directed to a structure of a surface mounted resettable over-current protection device and a method for manufacturing the same. First, a raw material substrate having two ends is provided. On each of the two ends of the raw material substrate, a patterned conducting metal foil is formed. Then, the raw material substrate is cut to form a grid-shaped substrate having a plurality of strip-shaped structural parts. An insulating layer is formed to enclose the whole grid-shaped substrate, allowing parts of the patterned metal foil layers on the ends of the strip-shaped structural parts to be exposed. Next, the strip-shaped structural parts of the grid-shaped substrate are cut into a plurality of chips, each chip having two cut sections. Finally, two terminal electrodes are formed on the both cut sections of each chip.
|
1. A method of manufacturing a surface mounted resettable over-current protection device, comprising the steps of:
providing a raw material substrate having two ends, on each of the two ends of which a patterned conducting metal foil is arranged;
cutting the raw material substrate to form a grid-shaped substrate having a plurality of strip-shaped structural parts;
forming an insulating layer, the insulating layer enclosing the grid-shaped substrate, and allowing parts of the patterned metal foils adjacent to the both ends of the strip-shaped structural parts to be exposed;
cutting the strip-shaped structural parts of the grid-shaped substrate into a plurality of chips, each of the chips having two cut sections; and
forming two terminal electrodes on the two cut sections, respectively, the two terminal electrodes enclosing the insulating layer and the two cut sections exposing parts of the patterned conducting metal foils, the two terminal electrodes electrically connected to the two cut sections which exposes the parts of the patterned conducting metal foils.
2. The method as claimed in
3. The method as claimed in
4. The method as claimed in
5. The method as claimed in
6. The method as claimed in
7. The method as claimed in
8. The method as claimed in
coating a conducting paste on the two ends of the raw material substrate, the conducting paste electrically connected to one cut section which exposes the parts of the patterned conducting metal foils; and
forming a soldering layer on and electrically connected to the conducting paste, the soldering layer including a nickel layer and a tin/lead alloy layer.
10. A surface mounted resettable over-current protection device manufactured by the method of
11. The surface mounted resettable over-current protection device as claimed in
12. The surface mounted resettable over-current protection device as claimed in
13. The surface mounted resettable over-current protection device as claimed in
14. The surface mounted resettable over-current protection device as claimed in
a conducting paste, arranged on one end of the raw material substrate and electrically connected to the exposed cut section of the patterned conducting metal foil; and
a soldering layer, including a nickel layer and a tin/lead alloy layer and arranged on and electrically connected to the conducting paste.
|
This application is a divisional of U.S. Non-Provisional application Ser. No. 09/991,846, filed Nov. 16, 2001 now abandoned.
1. Field of the Invention
The invention relates to a structure of a surface mounted resettable over-current protection device and a method for manufacturing the same, and in particular to a surface mounted resettable over-current protection device formed without using through holes and electroplating process and having five-conducting surface terminal electrodes, and a method for manufacturing the same.
2. Description of the Related Art
To prevent electronic systems from over-current damages caused by an abnormal condition, more and more electronic systems are provided with over-current protection devices. With such an provision, damages can be confined to the over-current protection devices when an over-current problem occurs in the electronic systems. A further concept is that costs for after-sale services and maintenance are greatly reduced if the protection devices can perform protection functions once over-current occurs and then they return to the normal condition. For these reasons, a fusible over-current protection device is gradually replaced with a polymer positive temperature coefficient (PPTC) material-based resettable over-current protection device which is widely used in various electronic systems. For high-density integration applications of the electronic systems, a resettable over-current protection device can be divided into a DIP type and a surface mounted type. Both types are used in packaging, wherein the growth rate of the need for the surface mounted type prevails over that of the DIP type.
A feature of a resettable over-current protection device is that when a current flowing through a polymer positive temperature coefficient material is over an upper limit, the temperature of the device rises to cause the original lowest resistance to increase rapidly so as to limit the current flow. A simplest polymer positive temperature coefficient material structure utilizes a polymer positive temperature coefficient material, and like a conventional two-sided printed circuit board (PCB), each of the two opposite sides of which is provided with a conducting metal foil. Therefore, the development of a prior surface mounted resettable over-current protection device is based on a printed circuit board process, wherein electrodes are formed by electroplating through holes of a substrate.
Next, referring to
Referring to
Finally, referring to
The terminal electrodes of the conventional surface mounted resettable over-current protection devices are mainly formed by through holes and electroplating processes. Basically, the conducting metal foils on the two sides of the substrate are connected to each other via the conducting layers formed on the inner walls of the through holes. Due to the limitation on the sizes of the electrodes, the diameters of the though holes are limited, resulting in an effect on the performance of the resistance of the terminal electrodes.
In a process for forming conventional surface mounted resettable over-current protection devices, the area of a polymer positive temperature coefficient raw material substrate can only be enlarged to a certain level, and there still is a great difference in area as compared with a substrate used in a real printed circuit board process. Therefore, completely using a printed circuit board process to manufacture a surface mounted resettable over-current protection device should take adjustments in process and economics into consideration.
Furthermore, since automatic drilling and through holes electroplating apparatuses are required to form the terminal electrodes of the surface mounted resettable over-current protection devices, it incurs more costs spent therefor. Meanwhile, for a new process, re-learning is necessary.
In view of the above, an object of the invention is to provide a structure of a surface mounted resettable over-current protection device and a method for manufacturing the same. The terminal electrodes of the device can be formed without using through holes and electroplating processes. The device can be efficiently and economically manufactured by a process for manufacturing a passive resistor terminal electrodes structure which is already used for mass production.
To attain the above-stated object, in a structure of a surface mounted resettable over-current protection device and a method for manufacturing the same, a raw material substrate is provided. On each of the two sides of the raw material substrate, a patterned conducting metal foil is formed. Then, the raw material substrate is cut to form a grid-shaped substrate having a plurality of strip-shaped structural parts. An insulating layer is formed to enclose the whole grid-shaped substrate, allowing parts of the patterned metal foil layers on the terminals of the strip-shaped structural parts to be exposed. Next, the strip-shaped structural parts of the grid-shaped substrate are cut into a plurality of chips, each chip having two cut sections. Finally, two terminal electrodes are formed on the both cut sections of each chip. Each terminal electrode includes a conducting paste and a soldering layer. The soldering layer includes a nickel layer and a tin/lead alloy layer. The conducting paste is electrically connected to one cut section which exposes part of the conducting metal foil. The soldering layer is then electrically connected to the conducting paste. Each terminal electrode has five conducting surfaces.
In the present invention, a number of variations can be made on the two cut sections of each chip. For example, parts of the insulating layer on the edges of the chip adjacent to the cut sections are removed to expose parts of the patterned conducting metal foils. For subsequently-formed terminal electrodes, it increases the contact areas between the exposed conducting metal foils and the terminal electrodes. As a result, the performances of the device in resistance and adherence are greatly improved.
Furthermore, the terminal electrodes each having five contact surfaces of the present invention is completely different from that of the prior art. Since the structure of the terminal electrodes of the present invention greatly increases the contact areas of the terminal electrodes, the performances of the device in electricity and adherence are efficiently improved.
The present invention will become more fully understood from the detailed description given hereinbelow and the accompanying drawings, which are provided to illustrate preferred embodiments only and should not be construed as limiting the scope of the present invention.
Referring next to
Referring now to
Then, referring simultaneously to
Each chip 216 has two cut ends. As shown in
Next, referring to
Finally, referring to
The raw material substrate constructed by multiple polymer positive temperature coefficient material layers 200 and multiple conducting metal foils 202 are formed by pressing. Moreover, the complexity of the process is reduced thereby, meeting economical requirements.
In summary, a structure of a surface mounted resettable over-current protection device and a method of manufacturing the same according to the present invention have the following advantages:
Although the invention has been disclosed in terms of preferred embodiments, the disclosure is not intended to limit the invention. Those knowledgeable in the art can make modifications within the scope and spirit of the invention which is determined by the claims below.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
2864013, | |||
4786888, | Sep 20 1986 | Murata Manufacturing Co., Ltd. | Thermistor and method of producing the same |
4959505, | Feb 10 1988 | Siemens Aktiengesellschaft | Electrical component in chip structure and method for the manufacture thereof |
4993142, | Jun 19 1989 | VISHAY DALE ELECTRONICS, INC | Method of making a thermistor |
5351390, | May 18 1989 | Fujikura Ltd. | Manufacturing method for a PTC thermistor |
5831510, | May 16 1994 | Littelfuse, Inc | PTC electrical devices for installation on printed circuit boards |
5884391, | Jan 22 1996 | Littelfuse, Inc. | Process for manufacturing an electrical device comprising a PTC element |
5950070, | May 15 1997 | KULICKE AND SOFFA INDUSTRIES, INC | Method of forming a chip scale package, and a tool used in forming the chip scale package |
6223423, | Sep 03 1997 | Bourns Multifuse (Hong Kong) Ltd. | Multilayer conductive polymer positive temperature coefficient device |
6242997, | Mar 05 1998 | BOURNS, INC | Conductive polymer device and method of manufacturing same |
6285275, | Sep 15 2000 | FUZETEC TECHNOLOGY CO., LTD. | Surface mountable electrical device |
6297722, | Sep 15 2000 | FUZETEC TECHNOLOGY CO., LTD. | Surface mountable electrical device |
6420244, | Feb 21 2000 | Advanced Semiconductor Engineering, Inc. | Method of making wafer level chip scale package |
6429533, | Nov 23 1999 | BOURNS, INC | Conductive polymer device and method of manufacturing same |
6556123, | Mar 08 1999 | Littelfuse, Inc | Polymer chip PTC thermistor |
6609292, | Aug 10 2000 | ROHM CO , LTD | Method of making chip resistor |
6838972, | Feb 22 1999 | Littelfuse, Inc | PTC circuit protection devices |
20010000658, | |||
JP9260106, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Apr 14 2005 | Inpaq Technology Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 23 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 30 2014 | REM: Maintenance Fee Reminder Mailed. |
Oct 17 2014 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 17 2009 | 4 years fee payment window open |
Apr 17 2010 | 6 months grace period start (w surcharge) |
Oct 17 2010 | patent expiry (for year 4) |
Oct 17 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 17 2013 | 8 years fee payment window open |
Apr 17 2014 | 6 months grace period start (w surcharge) |
Oct 17 2014 | patent expiry (for year 8) |
Oct 17 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 17 2017 | 12 years fee payment window open |
Apr 17 2018 | 6 months grace period start (w surcharge) |
Oct 17 2018 | patent expiry (for year 12) |
Oct 17 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |