A method for fabricating an active-matrix organic electroluminescent (OEL) display panel is described. A transparent conductive layer is formed on a substrate as a common anode for all organic light emitting diodes (OLED), and a passivation layer is formed on the transparent conductive layer. Thin film transistors are formed on the passivation layer to serve as an active matrix, and openings are formed in the passivation layer to expose portions of the transparent conductive layer and define pixel regions. An organic function layer is formed in each opening, and a metal electrode layer is formed on each organic function layer, wherein the metal electrode layer is electrically connected with the drain of the corresponding thin film transistor.
|
1. An active-matrix organic electroluminescent (OEL) display panel, comprising:
a substrate;
a transparent conductive layer on the substrate;
a first passivation layer on the transparent conductive layer, having a plurality of openings therein exposing portions of the transparent conductive layer, wherein each opening defines a pixel region;
a plurality of thin film transistors arranged as a matrix, wherein the thin film transistors are disposed on the first passivation layer;
a plurality of organic function layers disposed on the transparent conductive layer in the openings; and
a plurality of metal electrode layers disposed on the organic function layers and electrically connected to the corresponding thin film transistors.
11. An active-matrix organic electroluminescent (OEL) display panel, comprising:
a substrate;
a conductive layer disposed on the substrate;
a first passivation layer disposed on a portion of the conductive layer, wherein the first passivation layer has a plurality of openings therein exposing portions of the conductive layer, and each opening defines a pixel region;
a plurality of thin film transistors arranged as a matrix, wherein the thin film transistors are disposed on the first passivation layer;
a plurality of organic function layers disposed on the conductive layer in the openings; and
a plurality of electrode layers disposed on the organic function layers and electrically connected to the corresponding thin film transistors.
6. An active-matrix organic electroluminescent (OEL) display panel, comprising:
a substrate;
a metal layer on the substrate, having a plurality of opening therein exposing portions of the substrate;
a first passivation layer on the metal layer, having a plurality of openings therein aligned with the openings in the metal layer;
a plurality of thin film transistors arranged as a matrix, wherein the thin film transistors are disposed on the first passivation layer;
a plurality of transparent conductive layers disposed on the substrate in the openings;
a plurality of organic function layers disposed on the transparent conductive layers in the openings; and
a plurality of metal electrode layers disposed on the organic function layers and electrically connected to the corresponding thin film transistors.
2. The active-matrix OEL display panel of
3. The active-matrix OEL display panel of
4. The active-matrix OEL display panel of
5. The active-matrix OEL, display panel of
7. The active-matrix OEL display panel of
8. The active-matrix OEL display panel of
9. The active-matrix OEL display panel of
10. The active-matrix OEL display panel of
12. The active-matrix OEL display panel of
13. The active-matrix OEL display panel of
14. The active-matrix OEL display panel of
15. The active-matrix OEL display panel of
|
This application claims the priority benefit of Taiwan application serial no. 92107721, filed on Apr. 4, 2003.
1. Field of the Invention
The present invention relates to a structure of a display panel and a fabricating method of the same. More particularly, the present invention relates to a structure of an active-matrix organic electroluminescent display panel and a fabricating method of the same.
2. Description of the Related Art
Organic electroluminescent (OEL) displays are light, thin and readily portable like liquid crystal displays (LCD) are, but do not need an additional backlight source, and therefore are getting more and more attention in the market. OEL displays can be divided into active-matrix OEL displays and simple-matrix OEL displays, wherein the active-matrix ones are preferred because they emit light continuously and can be driven by lower voltages.
Among the active-matrix OEL displays, those utilizing a-Si thin film transistors (TFT) can be manufactured at lower cost, and in larger size because of the better uniformity in manufacturing processes. However, due to the low electrical conductivity of a-Si material, only N-type TFTs are formed in an active-matrix OEL display, and the design of circuit interconnection is therefore restricted. In one option, the source of a TFT is connected with the anode of an organic light-emitting diode (OLED). However, when the voltage across the TFT is shifted, the voltage on the gate electrode will affect the voltage on the source to cause an unstable current through the OLED. In another option, the drain of a TFT is connected with the cathode of an OLED, so the current through the OLED is not affected by the voltage on the drain.
The process for fabricating an OEL display element with the second option mentioned above is illustrated in
However, the OEL display element illustrated in
Conventionally, an OLED is formed by sequentially stacking a transparent conductive layer, a hole injection layer, an emitting layer, an electron transporting layer and a metal electrode layer, wherein the electron transporting layer usually includes Tri(8-Quinolinolato-N1O8)Aluminum (Alq3), and the metal electrode layer includes a LiF/Al composite layer. After the electron transporting layer and the metal electrode layer are formed, aluminum is usually formed on the metal electrode layer with a sputtering process. The sputtering energy is capable of driving lithium atoms from the LiF layer to the electron transporting layer, and the lithium atoms bond with the Alq3 complexes in the electron transporting layer to enhance the efficiency of electron injection.
However, when the structure illustrated in
In view of the foregoing, this invention provides an active-matrix organic electroluminescent display panel and a fabricating method of the same, wherein the cathode of an OLED is connected with the drain of the corresponding TFT to reduce the affection of the gate voltage to the current through the OLED when the voltage across the TFT is shifted.
This invention also intends to dispose/form the metal electrode layer on the organic function layer in an active-matrix OEL display panel and a fabricating method of the same, so that some metal atoms can be driven into the electron transporting layer during the sputtering process for forming the metal electrode layer. Therefore, the efficiency of electron injection in the OLEDs can be enhanced.
Moreover, in the active-matrix OEL display panels of this invention and the fabricating methods of the same, a transparent conductive layer is firstly formed covering the substrate to serve as a common anode for all OLEDs before the TFTs are formed.
A method for fabricating an active-matrix OEL display panel of this invention is described as follows. A transparent conductive layer is formed on a substrate to serve as a common anode for all OLEDs that will be formed later, and a passivation layer is formed on the transparent conductive layer. Gate electrodes are formed on the passivation layer, and a gate insulator is formed covering the gate electrodes. Thereafter, openings are formed in the gate insulator and the passivation layer to expose portions of the transparent conductive layer, wherein each opening defines a pixel region. A channel layer is formed on the gate insulator over each gate electrode, and a source and a drain is formed on each channel layer to complete the fabrication of thin film transistors. An organic function layer is formed in each opening, and a patterned metal electrode layer is formed on each organic function layer to serve as the cathode of the OLED, wherein the metal electrode layer is electrically connected to a corresponding drain.
An active-matrix OEL display panel of this invention includes a substrate, a transparent conductive layer, a passivation layer, thin film transistors, organic function layers and metal electrode layers. The transparent conductive layer is disposed on the substrate to serve as a common anode for all OLEDs, and the passivation layer is disposed on the transparent conductive layer with openings therein exposing portions of the transparent conductive layer. Each opening defines a pixel region, and each TFT including a gate electrode, a source and a drain is disposed on the passivation layer accompanied with an opening, while all TFTs are arranged in a matrix. Each organic function layer is disposed on the transparent conductive layer in an opening, and each metal electrode layer is disposed on an organic function layer to serve as the cathode of an OLED and to electrically connect with a corresponding drain.
Another active-matrix OEL display panel of this invention includes a substrate, a metal layer, a passivation layer, thin film transistors, transparent conductive layers, organic function layers and metal electrode layers. The metal layer is disposed on the substrate, and the passivation layer is disposed on the metal layer. The metal layer and the passivation layer have openings therein exposing portions of the substrate. Each opening defines a pixel region, and each TFT including a gate electrode, a source and a drain is disposed on the passivation layer accompanied with an opening, while all TFTs are arranged in a matrix. Each transparent conductive layer is disposed on the substrate in an opening, each organic function layer is disposed on a transparent conductive layer, and each metal electrode layer is disposed on an organic function layer to serve as the cathode of an OLED and to electrically connect a corresponding drain. The metal layer and the transparent conductive layer together constitute a common anode for all OLEDs.
In the active-matrix organic electroluminescent display panels of this invention and the fabricating methods of the same, the organic function layer can be formed by sequentially stacking a hole injection layer, a hole transporting layer, an emitting layer and an electron transporting layer. The metal electrode layer can be formed on the electron transporting layer with a sputtering process.
Moreover, another passivation layer can be formed on the TFTs after the TFTs are formed and before the metal electrode layers are formed. The additional passivation layer is capable of preventing a metal electrode layer from electrically connecting the source and the drain of the corresponding TFT when misalignment occurs during the patterning process of the metal electrode layers. Therefore, it is possible to prevent the source and the drain of a TFT from being shorted.
Since the cathode of an OLED is connected with the drain of a TFT in the active-matrix OEL display panels of this invention, the affection of the gate voltage to the current through the OLED can be reduced when the voltage across the TFT is shifted. Therefore, the stability of the current through the OLED can be improved.
Moreover, since an OLED in this invention can be formed by sequentially stacking a transparent conductive layer, a hole injection layer, a hole transporting layer, an emitting layer, an electron transporting layer and a metal electrode layer, some metal atoms can be driven from the metal electrode layer into the electron transporting layer during the sputtering process for forming the metal electrode layer. Therefore, the efficiency of electron injection in the OLED can be enhanced, and the luminescence efficiency of the OEL display panel can be improved.
In addition, this invention provides a new type of common anode, which consists of transparent conductive layers on the pixel regions of the substrate and a metal layer on the non-pixel region of the substrate. Therefore, the OEL display panel can make bottom light emission, and the electrical conductivity between the OLEDs can be enhanced because the metal layer has a low resistance.
It is to be understood that both the foregoing general description and the following detailed description are exemplary, and are intended to provide further explanation of the invention as claimed.
The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
It is noted that during the sputtering process for depositing aluminum, the sputtering energy is capable of driving some metal (Li) atoms from the metal electrode layer 216 into the electron transporting layer 218. The metal (Li) atoms bond with the material (such as Alq3) of the electron transporting layer 218 to enhance the efficiency of electron injection, so that the luminescence efficiency of the OEL display panel can be improved.
Refer to
The transparent conductive layer 228 is disposed on the substrate 200 as the anode of the OLED, and includes a transparent conductive material such as ITO or IZO. The passivation layer 230 is disposed on the transparent conductive layer 228 with an opening 232 therein exposing a portion of the transparent conductive layer 228 to define a pixel region. The TFT 210 is disposed on the passivation layer 230 beside the opening 232, including at least a gate electrode 202, a gate insulator 204, a channel layer 206, a source 208a and a drain 208b, and the organic function layer 226 is disposed on the transparent conductive layer 228 in the opening 232. The metal electrode layer 216 is disposed on the organic function layer 226 as the cathode of the OLED, and is electrically connected to the drain 208b. The metal electrode layer 216 is, for example, a LiF/Al composite layer.
It is noted that the transparent conductive layer 228 covering the substrate 200 before the TFT 210 is formed can serve as a common anode for all OLEDs on the substrate 200. Moreover, the cathode of the OLED is electrically connected to the drain 208b of the TFT 210 in this embodiment, so the affection of a gate voltage shift to the current through the OLED can be reduced to maintain the stability of the current through the OLED.
The other preferred embodiments of this invention are described as follows.
The metal layer 236 is disposed on the substrate 200 as a part of the common anode for all OLEDs, and is composed of a low-resistance metallic material, for example. The metal layer 236 has an opening 238 therein, in which a transparent conductive layer 228 is disposed. The metal layer 236 and all transparent conductive layers 228 together constitute a common anode of the display panel. The passivation layer 230 is disposed on the transparent conductive layers 228 and the metal layer 236, and has an opening 232 therein exposing most of the transparent conductive layer 228. The TFT 210 is disposed on the passivation layer 230, including a gate electrode 202, a gate insulator 204, a channel layer 206, and a pair of source 208a and drain 208b that are stacked sequentially. The organic function layer 226 and the metal electrode layer 216 are sequentially stacked on the transparent conductive layer 228 in the opening 232, wherein the metal electrode layer 216 is electrically connected to the drain 208b.
It is noted that the common anode consists of the transparent conductive layers 228 on the pixel regions of the substrate 200 and the metal layer 236 on the non-pixel region of the substrate 200. Therefore, the OEL display element can make bottom light emission, and the electrical conductivity between the OEL display elements can be enhanced.
Furthermore, as illustrated in
Though the above-mentioned preferred embodiments of this invention is explained with bottom-gate TFTs, this invention is not restricted to use bottom-gate TFTs. The bottom-gate TFTs may be replaced by top-gate TFTs fabricated based on a low-temperature polysilicon (LTPS) process.
Since the cathode of an OLED is connected with the drain of a TFT in the active-matrix OEL display panels in this invention, the affection of the gate voltage to the current through the OLED can be reduced when the voltage across the TFT is shifted. Therefore, the stability of the current through the OLED can be improved.
Moreover, since an OLED in this invention can be formed by sequentially stacking a transparent conductive layer, a hole injection layer, a hole transporting layer, an emitting layer, an electron transporting layer and a metal electrode layer, some metal atoms can be driven from the metal electrode layer into the electron transporting layer during the sputtering process for forming the metal electrode layer. Therefore, the efficiency of electron injection in the OLED can be enhanced, and the luminescence efficiency of the OEL display panel can be improved.
In addition, this invention provides a new structure of common anode, which consists of transparent conductive layers on the pixel regions of the substrate and a metal layer on the non-pixel region of the substrate. Therefore, the OEL display panel can make bottom light emission, and the electrical conductivity between the OLEDs can be enhanced because the metal layer has a low resistance.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention covers modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Patent | Priority | Assignee | Title |
10847745, | Feb 24 2015 | Samsung Display Co., Ltd. | Light emitting display device with conductive protection layers that are apart from each other |
11611055, | Feb 24 2015 | Samsung Display Co., Ltd. | Organic light emitting display device with conductive protection layers that are spaced apart from each other and method of manufacturing the same |
7488629, | Apr 04 2003 | AU Optronics Corporation | Fabricating method of an active-matrix organic electroluminescent display panel |
7491969, | Sep 15 2005 | OPTRONIC SCIENCES LLC | Organic light emitting diode display |
7501658, | Jul 18 2003 | SAMSUNG DISPLAY CO , LTD | Electro-luminescence device including a thin film transistor and method of fabricating an electro-luminescence device |
7935959, | Aug 04 2006 | RiTdisplay Corporation | Active matrix organic electro-luminescence display panel |
8284125, | Nov 24 2006 | RiTdisplay Corporation | Active matrix organic electro-luminescence display panel and fabrication method thereof |
Patent | Priority | Assignee | Title |
6771328, | Jul 25 2001 | LG DISPLAY CO , LTD | Active matrix organic electroluminescent device simplifying a fabricating process and a fabricating method thereof |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 19 2004 | LIN, CHIAO-JU | AU Optronics Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014370 | /0247 | |
Feb 26 2004 | AU Optronics Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jun 14 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 14 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 31 2018 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Dec 12 2009 | 4 years fee payment window open |
Jun 12 2010 | 6 months grace period start (w surcharge) |
Dec 12 2010 | patent expiry (for year 4) |
Dec 12 2012 | 2 years to revive unintentionally abandoned end. (for year 4) |
Dec 12 2013 | 8 years fee payment window open |
Jun 12 2014 | 6 months grace period start (w surcharge) |
Dec 12 2014 | patent expiry (for year 8) |
Dec 12 2016 | 2 years to revive unintentionally abandoned end. (for year 8) |
Dec 12 2017 | 12 years fee payment window open |
Jun 12 2018 | 6 months grace period start (w surcharge) |
Dec 12 2018 | patent expiry (for year 12) |
Dec 12 2020 | 2 years to revive unintentionally abandoned end. (for year 12) |