The present invention is directed to a textile material comprising yarns wherein the material is textured by subjecting specified regions of the material to incremental strains sufficient to cause yarn failures or yarn elongation in yarns running in one direction within the specified regions. The yarns in a direction orthogonal to the direction of the failed or elongated yarns will generally have substantially unaltered physical properties and are redistributed within the specified regions. Typically, the yarn failures or elongation will be in the fill direction and yarns in the warp direction will have unaltered physical properties and be redistributed within the specified regions. Also included in the present invention is a method of manufacturing the textured textile material.
|
12. A method of manufacturing a woven or knit fabric containing yarns comprising the step of subjecting specified regions of the material to incremental strains sufficient to cause failure or permanent elongation of yarns in a cd direction and redistribution of yarns running in a direction orthogonal to the failed or permanently elongated yarns.
11. A method of manufacturing a woven or knit fabric containing yarns comprising the step of subjecting specified regions of the material to incremental strains sufficient to cause failure or permanent elongation of yarns running in a cd direction within the specified region wherein yarns running in a direction orthogonal to the failed or permanently elongated yarns within the specified regions have substantially unaltered physical properties.
1. A textile material selected from the group consisting of wovens, knit fabrics, and combinations thereof, said textile material having a md direction and a cd direction, said textile material comprising yarns wherein the material is textured by subjecting specified regions of the material to incremental strains sufficient to cause yarn failures in yarns running in the cd direction within the specified regions, wherein yarns in the md direction within the specified regions have substantially unaltered physical properties.
6. A textile material selected from the group consisting of wovens, knit fabrics, and combinations thereof, said textile material having a md direction and a cd direction, said textile material comprising yarns wherein the material is textured by subjecting specified regions of the material to incremental strains sufficient to cause permanent elongation of yarns running in the cd direction within the specified regions, wherein yarns in the md direction within the specified regions have substantially unaltered physical properties.
2. The textile material of
4. The textile material of
5. The textile material of
7. The textile material of
9. The textile material of
10. The textile material of
|
This application claims the benefit of U.S. Provisional Application No. 60/349,486, filed Nov. 7, 2001.
The present invention is directed to textile materials having a texture created by a post-processing technique. It also relates to the methods for modifying the textile materials.
Many types of treatments or modification of fabrics have been developed. Fabrics at various times during manufacture have been treated to alter existing characteristics to obtain a fabric that is desired by the consumer. Known practices include modifying fabrics by laundering, beating, chemical treatment, shearing fibers, embossing, selective heating, selective dyeing or bleaching, thermal calendaring, abrading, and treating with jets of hot fluids or air, among others. Different methods, such as shearing fibers, treating with hot fluid jets or using heated drums or patterned rolls are employed to create textured or sculptured effects. By use of these techniques, yarns in the fabrics are selectively cut, crushed, melted, or softened so that a patterned or sculptured effect is formed in the treated location.
Cutting or shearing methods are commonly used in the textile industry to create tuffs of material. The shearing action typically occurs by a blade or sharp implement. This is a very precise method and requires specific equipment to ensure that the yarns are not cut too severely or that more yarns than intended are not cut. When cutting occurs, all yarns in a weave in the area where the material contacts the blade will be cut. Additionally, the blades will need to be frequently sharpened depending upon the fabric used.
Other methods used to create texture in a textile material include the use of heat and/or chemicals. One example of this is embossing. Embossing occurs through a heated calendaring process where the fabric is engraved in specified areas to cause Z plane deformation without substantial movement or displacement of yarns in the X and/or Y direction. Embossing is a macro displacement process that generally involves multiple yarns in each engraved area.
The lack of X and/or Y direction displacement can be seen by examining an embossed material with an optical microscope using only back light. Removal of reflective light will eliminate the visual affects caused by shadowing and will bring emphasis to the weave pattern. In embossed fabrics, the weave spacing remains the same in both embossed and unembossed areas.
Texturizing of fabrics or textiles can be achieved during initial formation of fabrics by knitting, weaving, flocking or tufting techniques. The desired texture or pattern can also be achieved through finishing process. With a finishing process, the same starting fabric can be used to create many different textured fabrics. This allows for easily changing a pattern to meet changing consumer needs without excessive inventory.
Therefore, it is an object of the present invention to provide a textile material that has been textured through a finishing process. It is also an object of the invention to provide an economical and efficient process to achieve the texturing of a textile material.
The present invention is directed to a textile material comprising yarns wherein the material is textured by subjecting specified regions of the material to incremental strains sufficient to cause yarn failures or yarn elongation in yarns running in one direction within the specified regions. The yarns in a direction orthogonal to the direction of the failed or elongated yarns will generally have substantially unaltered physical properties and are often redistributed within the specified regions. Typically, the yarn failures or elongation will be in the fill direction and yarns in the warp direction will have unaltered physical properties and be redistributed within the specified regions.
Also included in the present invention is a method of manufacturing the textured textile material. The method comprises the steps of providing a base textile material, providing an incremental stretching means, and subjecting the base textile material to incremental strains by the incremental stretching means causing a strain sufficient to cause yarn failure or permanent elongation in specified regions of the textile material.
Textile
The present invention relates to textile materials. Textile is defined as a woven or knit fabric. The textile material may consist of cotton, polyester, acetate, wool, silk, rayon, nylon, lycra, polypropylene, polyethylene, and combinations thereof. It is preferred that the fiber elasticity of the material is not high enough to recover from the entire strain. The material may be an undyed natural color or may be dyed prior to processing. The material may also be printed with a particular design or pattern before the texturizing. Yarns in the textile material may be yarns of natural or synthetic fiber or blends thereof. Stitch bonded nonwovens and Neotis™ fabrics (elastically recoverable or non-elastic) available from DuPont are all suitable textile materials. Composites of textiles, nonwovens, films, felts, foams, foils, leather, batting, scrim, and combinations thereof may all be used.
The textile material may be a weave. Materials of tight woven construction and high thread count are preferred. The textile material will have a plurality of yarns preferably oriented in a first direction and a plurality of yarns oriented in a second direction preferably perpendicular to the said first yarn direction. The textile may be of plain, twill, or satin weave, or any variation thereof.
When the textile material is a knit it is preferred that the knit chosen be of a controlled construction designed to minimize the elasticity of the fabric. If the knit's loop structure allows for large amounts of elastic recovery it will be difficult to create durable deformation through applied strain.
Yarns
The textile material will contain many yarns. The yarns may also be referred to as threads. In the woven textile material, the yarns will form a weave. Yarns that run lengthwise in a bolt of material are said to run in the warp direction. During processing, this direction is typically referred to as the MD, machine direction. The yarns which run orthogonal or perpendicular to the warp direction are said to run in the weft direction. These yarns are also called fill yarns, or wales. This direction is typically the CD, cross direction, during processing. The textile material can have different yarns in the weft and warp direction. Additionally, yarns in the weft or warp direction may each comprise different materials and have different properties. For example, the yarns may have different yarn denier, elongation, material compositions, colors, reflective properties, and other differences found in fabrics. A yarn itself may be comprised of different material compositions. A weave having different colors in the warp and weft directions may result in a marble effect after the textile material is processed. This aesthetic effect is created by a new color distribution formed when the weft yarns are torn and/or pushed through the warp yarns. The texturizing process may also alter the reflection of reflective yarns and or fibers contained in textile materials.
Texture
The textile material of the present invention is textured. Textured may also be described as patterned or marked. Textured means the material is purposely altered in the X and/or Y direction to create Z direction deformation. Three dimensional texturing or patterning occurs by redistributing, elongating, or tearing selected yarns of the textile material. The texture or pattern developed may be any size, shape, or density. Specified regions of the material within the pattern will have different texture than other regions of the material. The texture may create a tufted appearance where yarns are displaced or torn. The texture may create a different color effect. The selection of pattern is unlimited and may be stripes, checks, diamonds, or isolated pattern areas of any shape. Preferably, the density, size, shape, or type of the protrusions creating the pattern are limited to allow for a finite number of continuous yarns to extend in both the warp and weft directions of the fabric. This will ensure fabric failure does not occur. For patterns with a high density of protrusions, a fabric with tight weave spacing may be desired. This will enable enough yarn intersections to remain to lock or hold torn yarns and maintain fabric strength and stability. If all yarns in one direction across the width of the fabric are destroyed at some location, the fabric may still remain in tact if a large number of yarn intersections between textured areas remain. Alternatively, a nonwoven, film, or separate woven article may be bonded to the back of a textured fabric prior to or after texturing to ensure that sufficient strength and stability is maintained.
Incremental Strains
The yarns in the textile material will be subjected to incremental strains. The incremental strains or elongation will be applied to a specified region of the material. Certain yarns in the specified regions will be physically altered. A sufficient strain will be applied so that the yarns in one direction will be strained until yarn failure or elongation of the yarn occurs. The amount of strain necessary to cause yarn failure or elongation will depend upon many properties including the material composition, weave type, yarn count, depth of engagement of teeth, footprint of deformation, and processing speed. Generally, the yarn failures or elongation will only occur in yarns running in one direction. Failures or elongation of yarns in only one direction means that yarns in one direction are substantially torn, elongated to failure, or permanently elongated within specified areas.
Yarn failure can mean tearing or breaking under applied strain. When a yarn tears, the friction lock on that yarn is lost and the yarn is free to retract into the remaining matrix. Yarn failure does not include cutting, shearing, or severing of the yarns due to a sharp blade-like implement. Elongation of yarns occurs when the yarn is strained to a point that is does not return to its previous length without the application of heat or other treatment to reverse polymeric deformation.
Unaltered, Displaced Yarns
Yarns orthogonal or perpendicular to the direction in which the yarn failures or permanent elongation of yarns occurs remain substantially physically unaltered. Substantially unaltered physical properties of the yarns means that the yarns will have the same mechanical strength and elongation to break and substantially the same number of fibers per yarn. Although small amounts of fibers within the physically unaltered yarns may be torn or strained to failure, the yarn itself remains substantially intact. However, in limited cases, a small number of these yarns may be torn or elongated as long as the appearance, strength, and usefulness of the textile material is not substantially changed.
The yarns in the orthogonal direction to the yarn failures or permanent elongation will typically be redistributed. Redistributed means that the yarn is bunched, gathered, or moved to a new location due to the yarn sliding over obtrusions. The yarns will typically have substantially unaltered physical properties and be redistributed. Without the restraining force of the now torn yarns, the remaining elements of the orthogonal yarns may spread into a relaxed state that appears crimped due to deformation caused by being held in the weave.
For example, when a strain is applied in a specified region, the yarns in the weft direction may tear or elongate. The yarns in the warp direction will remain substantially physically unaltered but will likely be redistributed.
The texture created on the material may be permanent or durable. This depends on the material, pattern created, and treatment of the fabric. For example, the texture is not removed by normal use and laundering, but a hot iron or high tensile forces can reduce or eliminate the texture. Torn yarns will create a permanent texture.
The present invention also relates to the process for the addition of texture or patterning to textile materials. The invention involves trapping a textile material between two engaging patterned rolls that are driven in a rotating motion. The rolls have corresponding teeth and groves that create an incremental unidirectional strain upon any material that passes between the two teeth. When the composition or construction of the material prevents these localized areas from extending to meet this strain, discrete failure results. Each failure is marked by discrete yarn tears that permanently mark or texture the fabric. Yarn tears and elongation are mostly limited to the direction perpendicular to the tooth. Yarns parallel with each tooth are either friction locked onto the tooth or pushed off of the side of the tooth creating a slight redistribution of the yarns.
Tooth radius or thickness can be similar in size to the yarn thickness. Depth of engagement is typically from about 0.020 to 0.250 inches and preferably from about 0.050 to about 0.090 inches. The pitch, distance between teeth, is typically from about 0.040 to about 0.300 inches and preferably from about 0.60 to about 0.200 inches. One having ordinary skill in the art will need to select the appropriate range of depth of engagement for a specific pitch to produce the desired result. Material characteristics must also be considered in the selection.
When a yarn is torn, the friction lock over the tooth is lost and the yarn may be drawn in the neighboring matrix by local strains caused by additional protruding teeth. It is believed that when deformation in the X and Y direction occurs, yarn redistribution that occurs on or directly beside the engaging tooth depends on the location of the closest warp yarn to the tooth. When the warp yarn is friction locked onto the tooth, the deformation occurs directly beside the tooth. When the tooth hits a space directly between two warp yarns, the redistribution occurs directly on the tooth.
The resulting textured textile material appearance is attributed to the composition of the material, the yarn spacing and relative angle between the warp and fill yarns. The relative spacing, number, and size of the protruding teeth or pattern, along with the depth of the protrusion and speed of the rotating rolls are also influential to the final appearance of the material.
This process does not require chemical treatment or heat. It is understood though that such treatment could aid the process and final material characteristics.
There are several known methods of providing incremental stretching. One method for forming textile materials of the present invention uses a means of mating plates or rolls. Referring to
Plate 402 includes toothed regions 407 and grooved regions 408. Within toothed regions 407 of plate 402 there are a plurality of teeth 404. Plate 401 includes teeth 403 that mesh with teeth 404 of plate 402. When a textile material is formed between plates 401, 402, the portions of the textile material which are positioned within grooved regions 408 of plate 402 and teeth 403 on plate 401 remain unstrained. These regions correspond to the regions 60 of textile material 52 shown in
In
Referring now to
Strube, John Brian, Curro, John Joseph, Lloyd, Susan Nicole, Hoying, Jody Lynn
Patent | Priority | Assignee | Title |
7938635, | Dec 20 2002 | The Procter & Gamble Company; Procter & Gamble Company, The | Apparatus for producing a web substrate having indicia disposed thereon and elastic-like behavior imparted thereto |
8343411, | Apr 23 2010 | The Procter & Gamble Company | Method of producing a web substrate having activated color regions in deformed regions |
8440587, | Apr 23 2010 | The Procter & Gamble Company | Method of producing color change in a web substrate |
8460597, | Mar 22 2011 | The Procter & Gamble Company | Method of producing color change in a substrate |
8637430, | Apr 23 2010 | The Procter & Gamble Company | Web substrate having activated color regions in topical additive regions |
8975210, | Apr 23 2010 | The Procter & Gamble Company | Web substrate having activated color regions in deformed regions |
D789697, | May 11 2015 | POLY-AMERICA, L P | Film with embossing pattern |
D843119, | Sep 09 2016 | The Glad Products Company | Film with pattern |
D857402, | Sep 01 2016 | JOYSON SAFETY SYSTEMS JAPAN G K | Seat belt material |
D858112, | Sep 01 2016 | JOYSON SAFETY SYSTEMS JAPAN G K | Seat belt material |
Patent | Priority | Assignee | Title |
1059200, | |||
2252123, | |||
2424124, | |||
3641635, | |||
3714687, | |||
3803672, | |||
3810280, | |||
4000342, | Aug 06 1975 | FIELD CREST CANNON, INC | Patterned woven fabric |
4223063, | Jul 30 1976 | SABEE PRODUCTS, INC A CORP OF WI | Pattern drawing of webs, and product produced thereby |
4323068, | Jul 24 1978 | The Procter & Gamble Company | Diaper with embossed textile sheet |
4364156, | Jan 23 1981 | Milliken Research Corporation | Apparatus for heated pressurized fluid stream treatment of substrate material |
4393562, | Jan 23 1981 | Milliken Research Corporation | Apparatus for imparting visual surface effects to relatively moving materials |
4471514, | Jul 10 1981 | MILLIKEN RESEARCH CORPORATION, SPARTANBURG, A SC CORP | Apparatus for imparting visual surface effects to relatively moving materials |
4499637, | Dec 14 1979 | Milliken Research Corporation | Method for the production of materials having visual surface effects |
4810558, | Mar 21 1988 | Milliken Research Corporation | Three dimensional patterning process |
4951366, | Feb 07 1989 | Method for modifying fabrics to produce varied effects | |
4953270, | Sep 04 1987 | Milliken Research Corporation | Method for marking textile substrates |
5035031, | Apr 23 1990 | Milliken Research Corporation | Method and apparatus for heated pressurized fluid stream treatment of substrate material |
5080952, | Sep 28 1984 | Milliken Research Corporation | Hydraulic napping process and product |
5148583, | Jan 07 1938 | Milliken Research Corporation | Method and apparatus for patterning of substrates |
5400485, | Mar 30 1992 | TERPEL, S A DE C V | Apparatus for manufacturing imitation jacquard fabric |
5404626, | Oct 25 1993 | Milliken Research Corporation | Method and apparatus to create an improved moire fabric by utilizing pressurized heated gas |
5425162, | Nov 22 1993 | Milliken Research Corporation | Method and apparatus to create an improved moire' fabric |
5616405, | Mar 02 1992 | Toray Industries, Inc. | Cloth prepreg, process for producing the same and reinforcing fabric |
5628097, | Sep 29 1995 | Procter & Gamble Company, The | Method for selectively aperturing a nonwoven web |
5647937, | Dec 08 1994 | RONAI, MONICA | Textile manufacturing apparatus and method |
5752300, | Oct 29 1996 | Milliken Research Corporation | Method and apparatus to loosen and cut the wrapper fibers of spun yarns in woven fabric |
6195854, | Dec 19 1997 | Apparatus and method for softening a fabric web material | |
EP7221, | |||
EP57999, | |||
EP59029, | |||
EP99639, | |||
EP120709, | |||
EP351065, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jan 24 2002 | HOYING, JODY LYNN | PROCTOR & GAMBLE COMPANY, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013864 | /0630 | |
Jan 24 2002 | CURRO, JOHN JOSEPH | PROCTOR & GAMBLE COMPANY, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013864 | /0630 | |
Jan 24 2002 | LLOYD, SUSAN NICOLE | PROCTOR & GAMBLE COMPANY, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013864 | /0630 | |
Jan 24 2002 | STRUBE, JOHN BRIAN | PROCTOR & GAMBLE COMPANY, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 013864 | /0630 | |
Nov 07 2002 | The Procter & Gamble Company | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Jan 22 2007 | ASPN: Payor Number Assigned. |
Jul 02 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 25 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 15 2018 | REM: Maintenance Fee Reminder Mailed. |
Apr 01 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 27 2010 | 4 years fee payment window open |
Aug 27 2010 | 6 months grace period start (w surcharge) |
Feb 27 2011 | patent expiry (for year 4) |
Feb 27 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 27 2014 | 8 years fee payment window open |
Aug 27 2014 | 6 months grace period start (w surcharge) |
Feb 27 2015 | patent expiry (for year 8) |
Feb 27 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 27 2018 | 12 years fee payment window open |
Aug 27 2018 | 6 months grace period start (w surcharge) |
Feb 27 2019 | patent expiry (for year 12) |
Feb 27 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |