A vehicular screen antenna includes a conductor extending on a dielectric, such as a window. The conductor is configured as a loop having entry and exit segments, the loop being positioned generally centrally on the dielectric. The entry and exit segments extend proximate each other from the loop towards a first edge of the dielectric and are oriented on the dielectric so as to extend generally vertically when the dielectric is fitted to a vehicle.
|
1. A vehicular screen antenna comprising a dielectric sheet and a conductor extending on the sheet, a portion of the conductor being generally configured as a rectilinear loop with edges extending generally parallel to the edges of the sheet, the sheet being adapted to be fitted to a vehicle so as to extend generally vertically, the conductor also having a loop-entry segment and a loop-exit segment extending proximate each other on the sheet and being oriented on the sheet such that, after fitting of the sheet to the vehicle, the segments extend generally vertically and have first ends connected to proximate spaced positions on the loop and second ends positioned proximate a first edge of the sheet, the second end of the loop-entry segment being connectable to a signal feedline and the second end of the loop-exit segment being connectable to ground through reactive coupling;
wherein the loop and segments are relatively sized such that, during operation of the antenna, a horizontally-polarized component of a linearly-polarized signal on the antenna has a magnitude at least approximating that of a vertically-polarized component of the signal.
2. The screen antenna of
3. The screen antenna of
4. The screen antenna of
5. The screen antenna of
6. The screen antenna of
7. The screen antenna of
8. The screen antenna of
9. The screen antenna of
10. The screen antenna of
11. The screen antenna of
12. The screen antenna of
14. The screen antenna of
15. The screen antenna of
16. The screen antenna of
18. The screen antenna of
19. The screen antenna of
|
The present invention relates to a vehicular antenna system and, more particularly, to a system that includes a configuration for a loop antenna which enhances reception performance.
Antennas integrated into parts of a vehicle are known. One approach is to use the de-misting heater grid on the rear screen as part of the antenna; see Japanese Patent Application No. 48-132005. Such an arrangement may be used with a separate element for AM reception; see EP Patent Application No. 0 155 647.
Some vehicles provide a suitable dielectric surface onto which a dedicated antenna element pattern can be formed. One example is the rear quarter window on a station wagon (estate car). Such windows are fixed, which allows the printing of a suitable antenna pattern. For example, the use of separate patterns to provide FM and AM radio reception was proposed in U.S. Pat. No. 3,771,159. Combining a pattern on a side window with elements on other windows to improve pattern coverage was proposed in EP Application No. 0 854 533.
A major problem with implementation of an antenna element on a rear quarter window of a vehicle is polarisation. Often the signal feedline needs to connect to the bottom of the window because of space limitations at the top and sides of the window frame. This means that the primary antenna currents are extending vertically, and there then exists correspondingly less horizontal polarisation (“horizontal polarisation” here signifying the horizontally-polarized component of the antenna signal). This causes problems for markets where broadcast signals are predominantly horizontally-polarised.
The present invention is a loop-type screen antenna that at least in its preferred embodiments is intended to address the foregoing problems.
A vehicular screen antenna of the invention is adapted to be fitted to a vehicle so as to extend generally vertically, and includes a conductor extending on a dielectric. The conductor is configured as a loop having entry and exit segments that extend proximate each other from the loop towards an edge of the dielectric and are oriented on the dielectric so as to extend generally vertically when the dielectric is fitted to a vehicle. During use of the antenna, a horizontally-polarized component of a linearly-polarized signal on the antenna has a magnitude at least approximating that of a vertically-polarized component of the signal. The words “generally vertically” are intended to be interpreted broadly herein to mean “at a substantial angle to the horizontal”.
Preferably, the entry and exit segments join the loop proximate each other and a corner of the loop.
Preferably, when the dielectric is fitted to the vehicle, the first edge of the dielectric is a bottom edge. In such arrangement, the entry and exit segments may join the loop proximate each other and a corner of the loop.
Preferably, the dielectric is a window of the vehicle.
In a first embodiment, at the first edge of the dielectric the entry segment may be adapted to connect to a feedline, and the exit segment adapted to connect to vehicle ground.
In a second embodiment, at the first edge of the dielectric the entry segment may be adapted to connect to a feedline, and the exit segment to connect to a stub segment that extends generally parallel to the first edge of the dielectric for capacitive coupling to vehicle ground. In this embodiment, the stub segment may be adapted to be separated less than approximately 5 mm from a vehicle ground surface proximate the first edge of the dielectric. The length of the stub segment and its separation distance from the vehicle ground surface may be selected such that the stub segment is able to receive low-frequency broadcast signals (LW/MW/SW) typically described as “AM” (below 6 MHz).
In a third embodiment, at the first edge of the dielectric the entry segment may be adapted to connect to a feedline, and the exit segment to connect to one end of resonator circuitry the other end of which connects to vehicle ground. The resonator circuitry may be formed by a discrete electronic circuit that includes an inductor means and a capacitor means connected in series. The resonator circuitry may also include a tuning means.
Preferably, the antenna includes a switch means for disconnecting the exit segment from a signal ground and connecting it instead to the entry segment.
The loop may have a generally rectilinear configuration. Preferably, the loop is generally configured as a rectangle having its longer sides extending generally horizontally when the dielectric is fitted to the vehicle. More preferably, when the dielectric is fitted to the vehicle, the loop is extends at between approximately 50 mm and approximately 100 mm from the edges of the dielectric.
The loop may be positioned generally centrally on the dielectric.
Preferably, the dielectric is a rear window or a rear quarter window of a station wagon. More preferably, a signal feedline connectable to the entry segment is positioned on the body of the vehicle so as to be below a body aperture adapted to receive the respective rear window or rear quarter window and so as to be proximate a corner of the vehicle body.
The antenna of the subject invention is what is known in the art as an “electrically small” antenna, meaning that the operative length of the antenna is less than one-half wavelength of received signals. The antenna of the preferred embodiments of the invention is particularly intended for broadcast frequency-modulated (“FM”) signal reception, and more generally for handling signals with wavelengths 5 to 10 times the operative antenna length, which brings this antenna well within the classification of an electrically-small antenna. Electrically-small antennas are adapted to receive or transmit signals having vertical and/or horizontal polarization rather than circularly-polarized signals.
Preferred features of the present invention will now be described, by way of example only, with reference to the accompanying drawings, in which:
One conventional type of screen antenna has an antenna element formed on a dielectric surface in an aperture of a vehicle body, as illustrated in
Another conventional type of screen antenna has an antenna element formed on a surface of a dielectric 8, as illustrated in
Comparing the conventional structure of
Although the elements of the antenna loop have been described as being essentially horizontal and vertical, they might be angled for styling without major detriment. The antenna loop should be spaced away from the vehicle body to reduce excessive capacitive loading, yet be made as large as possible to increase bandwidth and reduce impedance. The separation between loop and car body needs to be optimized for each application, but is typically 50 mm to 100 mm.
Typical resulting currents are shown in
The excitation current of the loop element of the invention is actually a combination of two current modes. The first current mode is the “odd” mode, which is similar to the conventional element of
A second embodiment of the invention is illustrated in
If AM reception is not required, then stub antenna element 26 is not present. This is a third embodiment of the invention, illustrated in
It has been found that if the loop antenna of the invention is placed in the rear quarter window of a car, improved omni-directionality can be obtained by placing the feed point to the rear. Horizontal components of the ground current can then flow onto the rear of the vehicle body, below the window, and these enhance the horizontal component in the plane orthogonal to the window, thereby achieving good omni-directionality for both horizontal and vertical polarisation.
Practically, the length of the antenna element on the dielectric is less than a wavelength, i.e. is less than the resonant length. This translates to a narrower bandwidth, as illustrated in the return loss graph of
While the present invention has been described in its preferred embodiments, it is to be understood that the words which have been used are words of description rather than limitation, and that changes may be made to the invention without departing from its scope as defined by the appended claims.
Each feature disclosed in this specification (which term includes the claims) and/or shown in the drawings may be incorporated in the invention independently of other disclosed and/or illustrated features.
The text of the abstract filed herewith is repeated here as part of the specification.
A vehicular screen antenna includes a conductor extending on a dielectric, such as a window. The conductor is configured as a loop having entry and exit segments, the loop being positioned generally centrally on the dielectric. The entry and exit segments extend proximate each other from the loop towards a first edge of the dielectric and are oriented on the dielectric so as to extend generally vertically when the dielectric is fitted to a vehicle.
Randall, John, Callaghan, Peter, Leelaratne, Dedimuni Rusiru Vinodaka
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
3766563, | |||
3771159, | |||
5565876, | Nov 21 1990 | Nippon Sheet Glass Co., Ltd. | Window glass antenna |
6160518, | Apr 02 1999 | THE BANK OF NEW YORK MELLON, AS ADMINISTRATIVE AGENT | Dual-loop multiband reception antenna for terrestrial digital audio broadcasts |
DE19726949, | |||
DE4000381, | |||
EP155647, | |||
EP806808, | |||
EP854533, | |||
JP48132005, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 24 2003 | Harada Industry Co., Ltd. | (assignment on the face of the patent) | / | |||
Feb 19 2005 | RANDALL, JOHN | HARADA INDUSTRY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017467 | /0879 | |
Feb 22 2005 | LEELARATNE, DEDIMUNI RUSIRU VINODAKA | HARADA INDUSTRY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017467 | /0879 | |
Feb 22 2005 | CALLAGHAN, PETER | HARADA INDUSTRY CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017467 | /0879 |
Date | Maintenance Fee Events |
Aug 04 2010 | ASPN: Payor Number Assigned. |
Sep 30 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 12 2014 | REM: Maintenance Fee Reminder Mailed. |
May 01 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 01 2010 | 4 years fee payment window open |
Nov 01 2010 | 6 months grace period start (w surcharge) |
May 01 2011 | patent expiry (for year 4) |
May 01 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 01 2014 | 8 years fee payment window open |
Nov 01 2014 | 6 months grace period start (w surcharge) |
May 01 2015 | patent expiry (for year 8) |
May 01 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 01 2018 | 12 years fee payment window open |
Nov 01 2018 | 6 months grace period start (w surcharge) |
May 01 2019 | patent expiry (for year 12) |
May 01 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |