Apparatus and methods are provided for repairing semiconductor memory devices having an open bit line sense amplifier architecture with cell array blocks having memory blocks formed of edge sub-blocks, main sub-blocks, dummy sub-blocks. row defects can be processed using a straight edge block when DQ data are outputted by enabling three word lines such that a repair process for the memory device in an edge sub-block or a dummy sub-block has the same repair efficiency as that of a case where defects occur in a main sub-block.
|
1. A method of repairing a semiconductor memory device having an open bit line architecture when three word lines of a cell array block are enabled substantially at the same time, the method comprising:
selecting a redundancy cell for replacing a defective memory cell coupled to one of the three word lines;
determining whether to enable a word line coupled to the defective memory cell;
disabling a sense amplifier coupled to the defective memory cell;
determining whether to enable a word line of a memory cell corresponding to a bit line that is repeatedly selected due to a replacement by the redundancy cell;
disabling a sense amplifier of the memory cell corresponding to the repeatedly selected bit line; and
disabling the redundancy cell.
17. An apparatus for repairing a semiconductor memory device having an open bit line architecture when three word lines of a cell array block are enabled substantially at the same time, the cell array block including a first block having a first edge sub-block and a first main sub-block, a second block having a second edge sub-block and a second main sub-block, and a dummy sub-block, the apparatus comprising:
a first edge sub-block control circuit which generates a first word line control signal to disable a first word line of the first edge sub-block, and which generates a first sense amplifier control signal to disable a first sense amplifier coupled to the first word line of the first edge sub-block, based on a row address and a redundancy select signal for selecting a redundancy cell for replacing a defective memory cell;
a dummy sub-block control circuit which generates a second word line control signal to disable a second word line of the dummy sub-block, and which generates a second sense amplifier control signal to disable a second sense amplifier coupled to a second word line of the dummy sub-block, based on the row address and the redundancy select signal;
a word line control circuit of the second edge sub-block, which generates a third word line control signal to determine if a third word line of the second edge sub-block should be enabled; and
a sense amplifier control circuit of the second edge sub-block, which generates a third sense amplifier control signal to disable a third sense amplifier coupled to a first side of the third word line of the second edge sub-block, and which generates a fourth sense amplifier control signal to disable a fourth sense amplifier coupled to a second side of the third word line of the second edge sub-block.
2. The method of
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
enabling the redundancy cell selected in the first main sub-block;
disabling a word line of a defective memory cell of the first edge sub-block in response to the row address and the redundancy select signal;
disabling a sense amplifier of the defective memory cell of the first edge sub-block in response to the row address and the redundancy select signal;
enabling a word line of a first memory cell in the second edge sub-block corresponding to a bit line overlapping with the bit line coupled to the redundancy cell for a defective memory cell of the first edge sub-block; and
disabling a sense amplifier of the first memory cell.
13. The method of
enabling the redundancy cell selected in the second main sub-block;
disabling a word line of a defective memory cell of th dummy sub-block in response to the row address and the redundancy select signal;
disabling a sense amplifier of the defective memory cell of the dummy sub-block in response to the row address and the redundancy select signal;
enabling a word line of a first memory cell in the dummy sub-block corresponding to a bit line overlapping with a bit line coupled to a redundancy cell for a defective memory cell of the first edge sub-block; and
disabling a sense amplifier of the first memory cell.
14. The method of
enabling a first redundancy cell selected in the first main sub-block and enabling a second redundancy cell selected in the second main sub-block;
disabling a word line of a defective memory cell of the second edge sub-block in response to the row address and the redundancy select signal;
disabling a word line of a first memory cell in the first edge sub-block corresponding to a bit line overlapping with a bit line coupled to the first redundancy cell;
disabling a word line of a second memory cell in the dummy sub-block corresponding to a bit line overlapping with a bit line coupled to the second redundancy cell; and
disabling both sense amplifiers of a defective memory cell of the second edge sub-block.
15. The method of
enabling a first redundancy cell selected in the first main sub-block;
enabling a word line of a defective memory cell of the second edge sub-block in response to the row address and the redundancy select signal;
disabling a word line of a first memory cell in the first edge sub-block corresponding to a bit line overlapping with a bit line coupled to the first redundancy cell; and
disabling the one sense amplifier of a defective memory cell of the second edge sub-block.
16. The method of
18. The apparatus of
|
This application claims priority to Korean Patent Application No. 2004-91221 filed on Nov. 10, 2004, which is fully incorporated herein by reference.
The present invention relates to apparatus and methods for repairing semiconductor memory devices and, more particularly, to apparatus and methods for repairing semiconductor memory devices having open bit line architectures.
Generally, a redundancy device is a defect repair device that replaces a bit line connected to a possible defective cell of a cell array with a spare bit line. When an address corresponding to the defective cell is applied to a memory device, a normal path for selecting the defective cell is disconnected and the redundancy device operates to enable a bit line connected to a repaired cell so as to perform a redundancy operation.
The redundancy scheme is classified into either a row redundancy type or a column redundancy type according to the type of a spare memory cell used to replace a defective cell. The row redundancy technique replaces a defective cell with a spare row (or a redundant word line), and the column redundancy technique replaces a defective cell with a spare column (or a redundant bit line). The row redundancy technique is further classified as a folded bit line type or an open bit line type. In the folded bit line row redundancy technique, a bit line and a bit line bar, which are formed in one memory cell block, are connected to one sense amplifier. In the open bit line row redundancy technique, a bit line and a bit line bar, which are formed in different memory cell blocks, are connected to one sense amplifier.
Because one word line W/L is enabled within a refresh range of 8K in a normal W/L enable operation, two word lines W/L1 and W/L2 are enabled in one cell array block. Word lines W/Ls are enabled in all row blocks in the same way as above. Also, a row redundancy enable operation is processed in the same manner as the normal W/L enable operation.
When a row redundancy repair technique is applied to the conventional folded bit line sense amplifier, a defective W/L is replaced with a spare W/L on a 1:1 basis. For example, a spare W/L corresponding to a defective W/L is enabled in a refresh range of 8K in the same way as above, and thus two W/Ls are enabled.
However, in a memory device having an open bit line S/A architecture, a dummy bit line 20 exists at the last edge block of a memory bank. A dummy bit line processing method is generally classified into either a round edge block processing method or a straight edge block processing method.
Referring to
As illustrated in
However, when DQ data needs to be output using the first edge sub-blocks 10, the second edge sub-block 30 and the dummy sub-block 50, as shown in
Moreover, in case the dummy bit line of the memory device having the conventional open bit line architecture is processed through the straight edge block processing method, repair efficiency is degraded when a repair process is performed in a self-block.
Exemplary embodiments of the invention generally include methods for repairing semiconductor memory devices having an open bit line sense amplifier architecture, allowing possible row defects to be processed using a straight edge block when DQ data are outputted by enabling three word lines. In addition, exemplary embodiments of the invention include apparatus for repairing a semiconductor memory device having an open bit line sense amplifier architecture, allowing possible row defects to be processed using a straight edge block when DQ data are outputted by enabling three word lines.
In particular, a method for repairing a semiconductor memory device having an open bit line architecture when three word lines of a cell array block are enabled substantially at the same time, includes selecting a redundancy cell for replacing a defective memory cell coupled to one of the three word lines; determining whether to enable a word line coupled to the defective memory cell, disabling a sense amplifier coupled to the defective memory cell, determining whether to enable a word line of a memory cell corresponding to a bit line selected repeatedly due to a replacement by the redundancy cell, disabling a sense amplifier of the memory cell corresponding to the repeatedly selected bit line, and disabling the redundancy cell.
In another exemplary embodiment of the invention, an apparatus is provided for repairing a semiconductor memory device having an open bit line architecture, when three word lines of a cell array block are enabled substantially at the same time, where the cell array block includes a first block having a first edge sub-block and a first main sub-block, a second block having a second edge sub-block and a second main sub-block, and a dummy sub-block. The apparatus includes a first edge sub-block control circuit which generates a first word line control signal to disable a first word line of the first edge sub-block, and which generates a first sense amplifier control signal to disable a first sense amplifier coupled to the first word line of the first edge sub-block, based on a row address and a redundancy select signal for selecting a redundancy cell for replacing a defective memory cell. The apparatus includes a dummy sub-block control circuit which generates a second word line control signal to disable a second word line of the dummy sub-block, and which generates a second sense amplifier control signal to disable a second sense amplifier coupled to a second word line of the dummy sub-block, based on the row address and the redundancy select signal. The apparatus further includes a word line control circuit of the second edge sub-block, which generates a third word line control signal to determine if a third word line of the second edge sub-block should be enabled, and a sense amplifier control circuit of the second edge sub-block, which generates a third sense amplifier control signal to disable a third sense amplifier coupled to a first side of the third word line of the second edge sub-block, and which generates a fourth sense amplifier control signal to disable a fourth sense amplifier coupled to a second side of the third word line of the second edge sub-block.
These and other exemplary embodiments, features, aspects, and advantages of the present invention will be described and become more apparent from the following detailed description of exemplary embodiments when read in conjunction with accompanying drawings.
In the following description of exemplary embodiments, it is to be understood that, although the terms first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present invention. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items.
It is to be further understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present. Moreover, other words used to describe the relationship between elements should be interpreted in a like fashion (i.e., “between” versus “directly between”, “adjacent” versus “directly adjacent”, etc.).
The terminology used herein is solely for purposes of describing particular embodiments and is should not be construed as placing any undue limitation on the scope of the claimed inventions. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises”, “comprising,”, “includes” and/or “including”, when used herein, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or groups thereof.
Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. It will be further understood that terms, such as those defined in commonly used dictionaries, should be interpreted as having a meaning that is consistent with their meaning in the context of the relevant art and will not be interpreted in an idealized or overly formal sense unless expressly so defined herein.
It should also be noted that in some alternative implementations, the functions/acts noted in the blocks may occur out of the order noted in the flowcharts. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
Hereinafter, exemplary embodiments of the invention will be described in detail with reference to the accompanying drawings. Referring initially to
As depicted in
The first edge sub-block 100 is a sub-block that includes at least one first word line and is connected to an S/A disposed at the leftmost portion of the block A3, that is, an edge portion on which the block A3 and the block A4 do not border. Moreover, the second edge sub-block 120 is a sub-block including at least one second word line that is disposed at an edge portion of the block B3, on which the block B3 and the block A3 border, and is enabled by the same row address as the first edge sub-block 100.
The first main sub-block 110 is a sub-block of the block A3 excluding the first edge sub-block 100. The second main sub-block 130 is a sub-block of the block B3 excluding the second edge sub-block 120.
The dummy sub-block 140 is additionally disposed at the last edge sub-block, and is a sub-block including at least one third word line enabled by the same row address as the first edge sub-block 100. By way of example, in a ×8 mode, DQ data 0, 1, 2 and 3 of bit lines 0, 1, 2 and 3 are outputted in response to the activation of one W/L 114 within the first main sub-block 110, and DQ data 4, 5, 6 and 7 of bit lines 4, 5, 6 and 7 are outputted in response to the activation of one W/L 132 within the second main sub-block 130.
When defects occur at the first main sub-block 110 or the second main sub-block 130, a redundancy repair operation is processed in the same way as the repair process method of the memory device having the conventional folded bit line architecture.
That is, when defects (for example, defects of bit lines and/or sense amplifiers, etc) occur at a cell connected to a W/L 114 belonging to the first main sub-block 110 and an address corresponding to the defective cell is applied to the memory device, a normal path for selecting the defective cell through the W/L 114 is disconnected and a redundancy device operates to enable a bit line coupled to a W/L 112 connected to a spare cell, thereby performing a redundancy operation. In this case, when a redundancy repair operation is performed, two W/Ls 112 and 132 are enabled.
When a dummy bit line of the memory device having the open bit line S/A architecture is processed through the straight edge block method illustrated in
In accordance with exemplary embodiments of the invention, methods for performing a row redundancy repair operation in blocks other than the block having the defective cell when row defects occur at the first edge sub-block 100, the second edge sub-block 120, and/or the dummy sub-block 140 can be broadly classified based on the defect condition as follows: (1) where defects occur at the first edge sub-block 100 or the dummy sub-block 140; (2) where defects occur at a data path of data outputted from the second edge sub-block 120 through one of S/A coupled to the second edge sub-block 120, or; (3) where defects occur at both data paths of data outputted from the second edge sub-block 120 through both of S/As coupled to the second edge sub-block 120, each of which will be described in detail below.
For example,
Referring to
Therefore, a defective word line 111 of the first edge sub-block 100 is disabled, and an equalizer (not shown) and a left S/A (not shown) of the second edge sub-block 120 are disabled to inactivate a corresponding bit line M11, thereby blocking the DQ data 1 and 3 (as will be described in further detail below).
Each block A3 and B3 includes a block control circuit at every 32 sub-blocks, which will now be described with reference to the exemplary embodiments of
When a defective memory cell is selected by a row address in the first edge sub-block 100, a redundancy select signal for selecting a redundancy cell of the first main sub-block 110 is generated for replacing the defective memory cell. For example, the redundancy select signal may be a low-level fuse state signal PRREBL generated when a fuse of the redundancy cell is cut. A word line W/L 112 corresponding to a redundancy cell of the first main sub-block 110 is enabled based on a fuse state signal PRREBL.
The first edge sub-block control circuit 600 receives bits DXA8, 9 and 10 and DXA11 and 12 of a row address and the fuse state signal PRREBL, and generates a word line control signal PNWERESET for disabling a word line of the defective first edge sub-block 100 and an S/A control signal (or block select signal) PBLKSI for disabling an equalizer and an S/A of a corresponding block, i.e., the first edge sub-block 100. The bits DXA8–10 and DXA11–12 contain block information for selecting one of the 32 sub-blocks.
The NAND gate 603 outputs a logic level ‘HIGH’ according to the fuse state signal PRREBL of a logic level ‘LOW’ generated from the redundancy cell having a cut fuse, and thus the word line control signal PNWERESET becomes a logic level ‘HIGH’, thereby disabling a W/L of the defective first edge sub-block 100. Further, the fuse state signal PRREBL of a logic level ‘LOW’ causes the NOR gate 611 to output a logic level ‘LOW’, and thus the signal PBLKSI becomes a logic level ‘LOW’, thereby disabling an equalizer and an S/A of the defective first edge sub-block 100.
The circuit 700 of
The second edge sub-block control circuit 800 receives bits DXA8–10 and DXA11–12 of a row address and the fuse state signals PRREBL and PRREBR, and thus generates a word line control signal PNWERESET for disabling a word line of a defective second edge sub-block 120 and an S/A control signal (or block select signal) PBLKSI for disabling an equalizer and an S/A of a corresponding block, that is, the second edge sub-block 120.
When defects occur at both S/As of the second edge sub-block 120, the NOR gate 803 outputs a logic level ‘HIGH’ according to the fuse state signals PRREBL of a logic level ‘LOW’ and PRREBR of a logic level ‘LOW’ generated from the redundancy cell having a cut fuse and thus the word line control signal PNWERESET becomes a logic level ‘HIGH’, thereby disabling a W/L of the defective second edge sub-block 120. On the contrary, when defects occur at one S/A of the second edge sub-block 120, the NOR gate 803 outputs a logic level ‘LOW’ according to a low fuse state signal PRREBL and a high fuse state signal PRREBR (or a high fuse state signal PRREBL and a low fuse state signal PRREBR) and thus the word line control signal PNWERESET becomes a logic level ‘LOW’, thereby enabling a W/L of the defective second edge sub-block 120. Also, the fuse state signals PRREBL and PRREBR of a logic level ‘LOW’ cause the NOR gate 813 to output a logic level ‘LOW’, and thus the signal PBLKSI becomes a logic level ‘LOW’, thereby disabling an equalizer and an S/A of the defective second edge sub-block 100.
The signal PRREBL of a logic level ‘LOW’ is generated by cutting a fuse of the redundancy cell of the first main sub-block 110 (c-1). Referring to
Referring to
Referring to
Referring to
Consequently, the row redundancy repair method for a case where defects occur at the first edge sub-block 100 disables the equalizer and the left S/A of the second edge sub-block 120 while enabling the W/L of the second edge sub-block 120, so as to block the DQ data 1 and 3 overlapped due to the redundancy cell.
The dummy sub-block control circuit 700 is connected to the dummy sub-block 140, and the operation of the S/A of the second edge sub-block 120 is performed using the right S/A control circuit 1100 of the second edge sub-block in
In
Referring to
The signal PRREBL of a logic level ‘LOW’ is generated by cutting a fuse of the redundancy cell of the first main sub-block 110 (d-2), and the signal PRREBR of a logic level ‘LOW’ is generated by cutting a fuse of the redundancy cell of the second main sub-block 130 (b-2). The redundancy cells 112 and 132 are enabled (j-2).
Referring to
Referring to
Referring again to
Referring to
Referring to
Referring to
Consequently, the row redundancy repair method for a case where defects occur at the both S/As of the second edge sub-block 120 enables the W/L 111 of the first edge sub-block 100 and the W/L 142 of the dummy sub-block 140 and disables the equalizer and the left and right S/As of the second edge sub-block 120, so as to block the DQ data 1, 3, 4 and 6 overlapped due to the redundancy cell.
Referring to
The signal PRREBL of a logic level ‘LOW’ is generated by cutting a fuse of the redundancy cell of the first main sub-block 110 (c-3), and the signal PRREBR of a logic level ‘HIGH’ is generated by not cutting a fuse of the redundancy cell of the second main sub-block 130 (b-3). The redundancy cell is enabled (f-3).
Referring to
Referring again to
Referring to
Referring to
Referring to
With the above exemplary repair method, the first edge sub-block 100, the second edge sub-block 120 and the dummy sub-block 140 may not have a redundancy cell. Even when a redundancy cell is provided, it may be prevented from being used as a redundancy by not installing a fuse therein.
Also, when the second edge sub-block 120 is repaired, a redundancy cell is not used at the left/right neighboring sub-blocks of the second edge sub-block 120. The reason for this is that when the neighboring sub-blocks are used for the redundancy during the repairing of the second edge sub-block 120, the signal of a logic level ‘HIGH’ is generated at a fuse being used and thus the signal PBLKSIJ of the second edge sub-block 120 becomes a logic level ‘HIGH’, thereby enabling the S/A and the equalizer.
As described above, when defects occur at the edge sub-block or the dummy sub-block, the repair operation is performed using the redundancy cell of a block other than the edge sub-block and the dummy sub-block. When N redundancy cells exit in the edge sub-block or the dummy sub-block and defects more than the number N occur at the edge sub-block or the dummy sub-block, it is possible to prevent a decrease in repair efficiency due to a difficulty in the repair process. Consequently, it is possible to perform the repair process for the memory device in the edge sub-block or the dummy sub-block with the same repair efficiency as in a case where defects occur at the main sub-block.
While the present invention has been described with reference to the example embodiments, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.
Hwang, Hong-Sun, Jeong, Chang-Yeong
Patent | Priority | Assignee | Title |
11791010, | Aug 18 2020 | CHANGXIN MEMORY TECHNOLOGIES, INC. | Method and device for fail bit repairing |
11791012, | Mar 31 2021 | CHANGXIN MEMORY TECHNOLOGIES, INC. | Standby circuit dispatch method, apparatus, device and medium |
11797371, | Aug 18 2020 | CHANGXIN MEMORY TECHNOLOGIES, INC. | Method and device for determining fail bit repair scheme |
11853152, | Aug 18 2020 | CHANGXIN MEMORY TECHNOLOGIES, INC. | Fail bit repair method and device |
11881278, | Mar 31 2021 | CHANGXIN MEMORY TECHNOLOGIES, INC. | Redundant circuit assigning method and device, apparatus and medium |
11887685, | Aug 18 2020 | CHANGXIN MEMORY TECHNOLOGIES, INC. | Fail Bit repair method and device |
7447088, | Jan 25 2006 | Samsung Electronics Co., Ltd. | Semiconductor memory device having an open bit line structure, and method of testing the same |
7788528, | May 23 2008 | Himax Technologies Limited | Repair module for memory, repair device using the same and method thereof |
9761330, | May 13 2016 | SK Hynix Inc. | Semiconductor device |
Patent | Priority | Assignee | Title |
5608668, | Dec 22 1995 | Round Rock Research, LLC | Dram wtih open digit lines and array edge reference sensing |
6920057, | May 10 1999 | TOSHIBA MEMORY CORPORATION | Semiconductor device that enables simultaneous read and write/read operation |
6934214, | Jun 29 2000 | Longitude Licensing Limited | Semiconductor memory device having a hierarchical I/O structure |
JP2000090697, | |||
KR19960015903, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 09 2005 | Samsung Electronics Co., Ltd. | (assignment on the face of the patent) | / | |||
Nov 09 2005 | JEONG, CHANG-YEONG | SAMSUNG ELECTRONICS, CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017248 | /0194 | |
Nov 09 2005 | HWANG, HONG-SUN | SAMSUNG ELECTRONICS, CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017248 | /0194 |
Date | Maintenance Fee Events |
Mar 18 2008 | ASPN: Payor Number Assigned. |
Oct 27 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jan 09 2015 | REM: Maintenance Fee Reminder Mailed. |
May 29 2015 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
May 29 2010 | 4 years fee payment window open |
Nov 29 2010 | 6 months grace period start (w surcharge) |
May 29 2011 | patent expiry (for year 4) |
May 29 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 29 2014 | 8 years fee payment window open |
Nov 29 2014 | 6 months grace period start (w surcharge) |
May 29 2015 | patent expiry (for year 8) |
May 29 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 29 2018 | 12 years fee payment window open |
Nov 29 2018 | 6 months grace period start (w surcharge) |
May 29 2019 | patent expiry (for year 12) |
May 29 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |