computed tomography scanning systems and methods using a field emission x-ray source are disclosed. An exemplary micro-computed tomography scanner comprises a micro-focus field emission x-ray source, an x-ray detector, an object stage placed between the x-ray source and the detector, an electronic control system and a computer that control the x-ray radiation and detector data collection, and computer software that reconstructs the three dimension image of the object using a series of projection images collected from different projection angles. Exemplary methods obtain a computed tomography image of an object in oscillatory motion using the micro computed tomography scanner.
|
1. A micro computed tomography scanner, comprising:
a micro-focus field emission x-ray source comprising addressable nanostructure-containing electron field emission materials, a gate electrode and a metal anode, wherein voltage is applied between the gate electrode and the electron field emission materials to generate an electron beam to bombard the metal anode with electrons for generating x-ray radiation;
an x-ray detector configured to collect a projection image of an object formed by the x-ray radiation;
an object stage placed between the x-ray source and the detector for positioning the object in a plurality of predetermined positions with respect to the x-ray radiation;
an electronic control system and a computer that control generation of the x-ray radiation by the x-ray source and collection of a plurality of projection images from different projection angles by the x-ray detector; and
whereby the micro computer tomograghy scanner is configured for generating a three dimensional image of the object using the plurality of projection images collected from the different projection angles, wherein application of a voltage between the gate electrode and the electron field emission materials and positioning of the object in the predetermined positions are coordinated such that the plurality of projection images are collected by the x-ray detector.
2. The scanner of
an electron field emission cathode;
an x-ray transparent window;
a vacuum enclosure; and
electrical power supplies;
wherein the pate electrode comprises an electron extraction gate electrode; and
wherein the metal anode comprises a cooling mechanism.
3. The scanner of
4. The scanner of
at least one electron focusing electrode.
5. The scanner of
multiple field emission cathodes with different emission rates, wherein at any given time only one field emission cathode emits electrons, a spatial resolution of the x-ray source can be changed by selecting a field emission cathode with different emission area, wherein the cathode is selected with a large emission area for low-resolution and high x-ray flux purpose, and wherein the cathode is selected with a small area for high resolution imaging.
6. The scanner of
at least one filter used to absorb x-ray photons within a predetermined energy range.
7. The scanner of
wherein the electronic control system and the computer are configured to select x-ray photons within a predetermined energy range.
9. The scanner of
10. The scanner of
11. The scanner of
12. The scanner of
13. The scanner of
14. The scanner of
15. The scanner of
16. The scanner of
17. The scanner of
18. The scanner of
19. The scanner of
20. The scanner of
21. The scanner of
22. The scanner of
sending a signal to the object stage to rotate the object by a predetermined angular increment;
sending signals to the x-ray source and the detector to initiate x-ray radiation and data acquisition after the object is placed in position on the object stage;
a pulsed voltage being applied between the gate electrode and a cathode of the field emission x-ray tube such that a pulsed x-ray radiation with a fixed pulse width is generated;
the detector being activated to collect the image of the object formed by the x-ray radiation at a particular projection angle and the data being transferred to the computer;
after x-ray exposure and data collection, repeating at least one of the above steps until sufficient numbers of projection images are collected; and
computing the computed tomography images of the object using the collected projection images.
23. The scanner of
wherein the object stage is configured to detect the motion of the object under imaging and to output a signal that is related to the position of the object under imaging.
24. A method to obtain a computed tomography image of an object in oscillatory motion using the device of
a control program reading the position of the object in oscillatory motion from a readout device;
the control program activating the field emission x-ray source by sending a pulse voltage applied between a gate electrode and a cathode of the x-ray source and by sending a signal to the x-ray detector when the object reaches a predetermined position;
the field emission x-ray source producing a pulsed x-ray radiation with a predetermined pulse width defined by the width of the pulse voltage applied;
the x-ray detector being activated for a fixed dwell time to collect the transmission image of the object formed by the said x-ray pulse;
the x-ray source and detector then being switched off;
the control program sending a signal to the object stage to rotate the object by a predetermined angular increment;
repeating at least one of the above steps until a number of transmission images are collected from different viewing angles with the object in the same position in different periods of the motion; and
reconstructing the computed tomography image of the object using the collected projection images.
25. The method of
|
This application is a continuation-in-part of U.S. patent application Ser. No. 10/051,183, titled “Large Area Individually Addressable Multi-Beam X-Ray System and Method of Forming Same”, filed on Jan. 22, 2002, now U.S. Pat. No. 6,876,724, which is a continuation-in-part of U.S. patent application Ser. No. 09/679,303, titled “X-Ray Generating Mechanism Using Electron Field Emission Cathode”, filed on Oct. 6, 2000, now issued as U.S. Pat. No. 6,553,096 on Apr. 22, 2003, each of the above disclosures are incorporated here by reference in their entirety. This application also claims the benefit of U.S. Provisional Patent Application Ser. No. 60/544,420 filed in the United States on Feb. 13, 2004, the entire contents of which are incorporated herein by reference.
At least some aspects of this invention were made with Government support under contract no. N00014-98-1-0597. The Government may have certain rights in this invention.
The development of computed tomography (CT) technologies first pioneered by Hounsfield and Cormack were an important breakthrough in the field of radiology. CT scanners are now widely used for diagnostic medical imaging and industrial and security inspection applications. Micro-computed tomography (micro-CT) has recently emerged as a promising non-invasive imaging tool for biomedical research. It has been applied to the high-resolution imaging of bone structures and soft tissues (with the aid of contrast agents) of small animals. The typical design of a micro-CT scanner differs from other CT scanners in that typically the object, rather than the x-ray source, is rotated to collect the projection images for reconstruction. Cone-beam geometry and 2D x-ray detectors are commonly used such that the entire object can be directly reconstructed from a set of recorded 2D images.
The spatial resolution of the micro-CT scanner depends primarily on the x-ray focal spot size, the resolution of the detector, and the scanner geometry. The temporal resolution is determined by the x-ray exposure time and data collection speed of the detector. Although there have been significant innovations and improvements in the x-ray detection technology and imaging algorithms, the basic mechanism of generating x-ray radiation has remained the same. The limitations of the current micro-CT scanners, and to a large extent other CT systems, result primarily to the limitations of their x-ray sources.
Commercial x-ray sources typically use thermionic cathodes to generate the electrons used to produce x-ray radiation. The thermal process used in such devices has several inherent limitations including high operating temperature, slow response time, and the production of electrons having a random spatial distribution. The high operating temperature can result in a short cathode lifetime due to breakage of the cathode filament, and x-ray tubes requiring a large size. To provide the small focal spot size required for high spatial resolution, complicated electron optics are employed. As a result, micro-focus x-ray tubes are typically bulky, costly and have limited lifetime.
In addition to requiring high operating temperatures, thermionic emission is inherently a relatively slow emission process. Conventional x-ray tubes rely on mechanical shutters to switch on and off the x-ray exposure, which can result in slow response times. Grid-controlled x-ray tubes have been developed that provide improved response time and short x-ray pulse width, but the temporal resolution of such tubes is still limited and the x-ray waveform can not be easily programmed. The low temporal resolution and the large number of projection images required for reconstruction have prevented dynamic CT imaging of moving objects such as hearts which are important for diagnosis of coronary artery disease.
Although “ultra-fast” CT scanners such as the Dynamic Spatial Reconstructor and the electron-beam CT (EBCT) scanner with scanning time of less than 100 msec have been developed for such purposes, these systems can be much larger that other CT systems, limiting their availability for use. Recent research has shown that it is also possible to obtain dynamic information using conventional CT with spiral capability and fast rotation speed with electrocardiograph (ECG) triggering. But dynamic cardiac CT imaging has not been demonstrated using micro-CT scanners.
Electron field emission is a quantum process where under a sufficiently high external electrical field electrons can escape from the metal surface to the vacuum level by tunneling. Electron field emission is preferred to thermionic emission, as heating is not required and the emission current can be controlled by the external field to give instantaneous response time. In addition field emitted electrons are confined to a narrow cone angle along the electrical field direction, whereas thermal electrons can be spatially randomly distributed. The basic physics of field emission is summarized by the Fowler-Nordheim equation,
I=αV2exp(−bφ3/2/βV) (1)
which states that the emission current (I) increases exponentially with increasing voltage (V). For a metal with a flat surface, the threshold field required for electron emission is typically around 104V/μm, which is impractically high. Consequently, electron field emitters rely on field enhancement (β) at sharp tips or protrusions of the emitter. One way to fabricate sharp tipped field emitters is by a lithography process. Such emitters, called Spindt tip emitters, have not been used in practical devices because of low emission current, poor stability, and high cost.
X-ray tubes using field emission cathodes have been investigated in the past. In the early systems, metal tips were used as the cathodes. Electrons were extracted by applying a pulsed high voltage between the target and cathode using Max generators, which use a series of discharging capacitors to generate the required threshold field. X-ray radiation is generated when the field emitted electrons bombard on target. The advantages of field emission x-ray tubes as compared to thermionic x-ray tubes in terms of their resolution and required exposure time have been demonstrated in clinical studies. The metal-tip emitters of these early systems were shown to be inefficient. The x-ray tubes were shown to have a limited lifetime of about 200 to 300 exposures, and exhibited slow repetition rates. In addition, with the diode configuration of the tubes, the acceleration voltage and the tube current could not be independently controlled. Field emission x-ray tubes using other types of emitters, such as the Spindt tips described above and diamond emitters, have also been investigated. The highest electron current demonstrated in these x-ray tubes has only been on the order of micro amps.
The carbon nanotube (CNT) is a relatively new carbon allotrope discovered about a decade ago. A CNT includes either a single graphene shell, referred to as a single-walled carbon nanotube (SWNT), or multiple concentric graphene shells, referred to as multi-walled carbon nanotube (MWNT). CNTs are typically about 1–50 nm in diameter and 1–10 μm in length. Considerable progress has been made recently in the fabrication of CNTs with controlled structure and morphology. Technologies have been developed for assembly and integration of CNTs into device structures.
Research has shown that CNTs are promising electron field emitters. The atomically sharp tips and large aspect ratios (typically >103) of CNTs provide for large field enhancement factors (β), thus requiring lower threshold fields for emission than other types of emitters such as the Spindt tips. In addition, the field emitted electrons have been shown to have an energy spread of ˜0.5 eV and a spatial divergence angle in a direction parallel to the electrical field of less than 5° degree half angle. CNT emitters have been shown to be stable at high currents. For example, a stable emission current of >1 μA (>106 A/cm2 density) has been observed from an individual SWNT. Macroscopic cathodes have been demonstrated to emit stable emissions of over 200 mA from a 3 mm diameter sample under DC operating conditions, and a peak emission current of 3000 A from a 9 cm cathode at 1 μs pulse width at 200 KV anode voltage. These properties make the CNT emitters attractive for various device applications. For example, field emission flat panel displays (FEDs), lighting elements, and discharge tubes for over-voltage protection have been demonstrated having CNT-based “cold” cathode emitters.
Accordingly, a method and system are disclosed for computed tomography scanning system and method using a field emission x-ray source.
An exemplary micro computed tomography scanner comprises a micro-focus field emission x-ray source, an x-ray detector, an object stage placed between the x-ray source and the detector, an electronic control system and a computer that control the x-ray radiation and detector data collection, and computer software that reconstructs the three dimension image of the object using a series of projection images collected from different projection angles.
An exemplary method to obtain a computed tomography image of an object in oscillatory motion using the micro computed tomography scanner comprises at least the following steps: the control program reading the position of the object in oscillatory motion from a readout device, the control program activating the field emission x-ray source by sending a pulse voltage applied between the gate electrode and the cathode of the x-ray tube and by sending a signal to the x-ray detector when the object reaches a predetermined position, the field emission x-ray source producing a pulsed x-ray radiation with a predetermined pulse width defined by the width of the pulse voltage applied, the x-ray detector being activated for a fixed dwell time to collect the transmission image of the object formed by the said x-ray pulse, the x-ray source and detector then being switched off, the control program sending a signal to the object stage to rotate the object by a predetermined angular increment, repeating at least one of the above steps until a number of transmission images are collected from different viewing angles with the object in the same position in different periods of the motion, and reconstructing the computed tomography image of the object using the collected projection images.
The accompanying drawings provide visual representations which will be used to more fully describe the representative embodiments disclosed here and can be used by those skilled in the art to better understand them and their inherent advantages. In these drawings, like reference numerals identify corresponding elements, and:
Various aspects will now be described in connection with exemplary embodiments, including certain aspects described in terms of sequences of actions that can be performed by elements of a computer system. For example, it will be recognized that in each of the embodiments, the various actions can be performed by specialized circuits or circuitry (e.g., discrete and/or integrated logic gates interconnected to perform a specialized function), by program instructions being executed by one or more processors, or by a combination of both.
Thus, the various aspects can be embodied in many different forms, and all such forms are contemplated to be within the scope of what is described. For each of the various aspects, any such form of embodiment can be referred to here as “logic configured to” perform, or “logic that” performs a described action.
CNT-based field emission x-ray sources capable of producing sufficient flux for imaging human extremities are described in U.S. patent application Ser. Nos. 09/679,303 and 10/051,183. These field-emission x-ray tube sources include a triode-type structure with a CNT cathode, a gate electrode, and a metal target housed in a vacuum tube with a Be window. The electrons are extracted from the cathode by applying a gate voltage Vg between the cathode and gate, which are then accelerated by a high voltage Va between the gate and the target. The tube current and the acceleration voltage can be independently controlled. By replacing the DC gate voltage with an amplified signal from a function generator, electron emission and thus x-ray radiation having programmable waveform can be produced.
X-ray tubes having such designs can have the following characteristics:
These results demonstrate that a micro-focus x-ray source based on the field emission mechanism can offer advantages in several areas compared to thermionic emission micro-focus x-ray sources. These areas include:
Results show that the micro-CT described here can be used for dynamic cardiac and pulmonary imaging of small animals which can not be easily obtained using other micro-CT scanners. Compared to commercially available micro-CT scanners, advantages of this system include:
In addition, these commercially available micro-CT scanners typically use cone beam geometry and flat panel area detectors. A typical CMOS area detector can capture data at the maximum rate of 50 frames/second. Typical grid-controlled x-ray tubes operate at ˜100 ms pulse widths. Thus, it can be difficult to obtain dynamic cardiac CT images of small animals, such as mice, because during one exposure, the cardiac motion could undergo a full cycle of motion.
Using a system such as that described here, 10 μs x-ray pulses having rising/falling times of 1 μs are possible. Moreover, the described system can produce a field emission x-ray with 100 μm resolution that is, in turn, capable of generating CT-quality projection images of a mouse at 10 msec per frame at 45 kVp. The system x-ray source can deliver up to 1 mA anode current, enabling 1–10 msec per frame at 30 μm resolution. By combining ECG-gated triggering and the CMOS 2D x-ray detector, dynamic imaging of a full cycle of cardiac motion can be achieved in about 10 minutes.
According to an exemplary embodiment, a triode-type field-emission x-ray tube is described having a CNT-based electron field emission cathode in a dynamic vacuum chamber.
In one embodiment, cathodes 10 can have different emission areas with different emission rates. At any given time, only one field emission cathode emits electrons. A spatial resolution of x-ray source 2 can be changed by selecting a field emission cathode with a different emission area. The cathode is selected with a large emission area for low-resolution and high x-ray flux purpose. The cathode is selected with a small area for high resolution imaging.
Resolution
The field emitted electrons from the CNT cathode have a very small divergent angle. In the triode-configuration, there is a one-to-one correspondence between the cathode size and target area bombarded by the electrons without any focusing. This is attributed to the very small intrinsic divergence angle of the field emitted electrons which is an advantage of the field-emission x-ray tubes.
The focal spot size of the above x-ray tube was measured using radiographs of a thin tungsten wire following the method described by the European Standard EN 12543-5. A fine W wire of known diameter was placed between the x-ray source and the detector, such as between source 2 and detector 25 shown in
Energy Spectrum
Energy spectrum measurements for a molybdenum target without filtering at 40 kV are shown in
Tube Current (Flux)
The maximum emission current density that can be achieved depends on several factors, including the total emission area, current, and the lifetime and pulse width required. In general, a higher current density can be achieved from a smaller cathode because sample uniformity becomes less of a contributing factor. This can aid in the performance of a micro-focus x-ray system such as that described here. The system described here demonstrated a stable emission at 6 mA from a 1 mm diameter cathode (750 mA/cm2) at 40 KVp anode. This remains far below the theoretical limit of emission from CNTs. For example, experiments have been shown to produce 1 μs-width, 3000 Ampere current from a 9 cm diameter cathode at 220 KVp, albeit at a much reduced life-time.
High Voltage Stability
Due to hardware limitations, the maximum operating voltage of the current testing system used to characterize the described device is limited to 60 KVp anode voltage. Under these conditions, the emission current remains stable. No ion-sputtering related damage was observed. Measurements conducted at other facilities have demonstrated electron emission at 220 KVp anode voltage in the diode configuration with the described device.
Programs for controlling the entire operation of the micro-CT scanner can be written using any suitable control language program, such as Labview. These programs can control system parameters such as the gate voltage, acceleration voltage, exposure time, pulse rate, rotation stage, and data readout. Moreover, an image reconstruction method, such as Feldkamp's method, can be implemented for reconstructing the acquired images. The described field emission micro-CT scanner of
Small Animal Imaging
Dynamic Imaging
To demonstrate the dynamic imaging capability of the system, a computer cooling fan rotating at ˜1000 RPM was imaged using the system shown in
Gated imaging can be readily achieved in the current system with the field-emission x-ray source and the digital imaging sensor which enables time-resolved studies, such as cardiovascular dynamics. In addition multiple exposures can be accumulated to increase the signal-to-noise ratio. This capability was demonstrated using a rotating blade of fan. As shown in
The executable instructions of a computer program for controlling the system shown in
As used here, a “computer readable medium” can be any means that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device. The computer readable medium can be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium, such as a removable storage device. More specific examples (a non exhaustive list) of the computer readable medium can include the following: an electrical connection having one or more wires, a portable computer diskette, a random access memory (RAM), a read only memory (ROM), an erasable programmable read only memory (EPROM or Flash memory), an optical fiber, and a portable compact disc read only memory (CDROM).
It will be appreciated by those of ordinary skill in the art that the concepts and techniques described here can be embodied in various specific forms without departing from the essential characteristics thereof. The presently disclosed embodiments are considered in all respects to be illustrative and not restrictive. The scope of the invention is indicated by the appended claims, rather than the foregoing description, and all changes that come within the meaning and range of equivalence thereof are intended to be embraced.
Zhang, Jian, Cheng, Yuan, Zhou, Otto Z., Lu, Jianping, Lee, Yueh, Lin, Weili
Patent | Priority | Assignee | Title |
10080535, | Dec 23 2008 | PaloDEx Group OY | Image plate readout device |
10194877, | Nov 15 2016 | SIEMENS HEALTHINEERS AG | Generating X-ray pulses during X-ray imaging |
10242836, | Mar 16 2012 | NANO-X IMAGING LTD | Devices having an electron emitting structure |
10269527, | Nov 27 2013 | NANO-X IMAGING LTD | Electron emitting construct configured with ion bombardment resistant |
10470723, | Jun 30 2015 | KONINKLIJKE PHILIPS N V | X-ray device with reduced pile-up |
10517545, | Mar 31 2016 | General Electric Company | CT imaging apparatus and method, and X-ray transceiving component for CT imaging apparatus |
10688205, | Dec 21 2009 | PaloDEx Group OY | Cleaning system for an image plate readout device |
10737111, | Dec 16 2014 | Rensselaer Polytechnic Institute | X-optogenetics / U-optogenetics |
10835199, | Feb 01 2016 | The University of North Carolina at Chapel Hill | Optical geometry calibration devices, systems, and related methods for three dimensional x-ray imaging |
10980494, | Oct 20 2014 | The University of North Carolina at Chapel Hill | Systems and related methods for stationary digital chest tomosynthesis (s-DCT) imaging |
11409019, | Apr 19 2021 | MICRO-X LIMITED | Device for producing high resolution backscatter images |
11690587, | Feb 11 2020 | Electronics and Telecommunications Research Institute | Apparatus comprising data obtaining unit and image processing unit and method for processing X-ray image |
11778717, | Jun 30 2020 | VEC Imaging GmbH & Co. KG; VAREX IMAGING CORPORATION; VEC IMAGING GMBH & CO KG | X-ray source with multiple grids |
12174129, | Apr 28 2021 | The Boeing Company | X-ray tomography systems and methods for imaging an aircraft part |
7751528, | Jul 19 2007 | UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, THE | Stationary x-ray digital breast tomosynthesis systems and related methods |
8155262, | Apr 25 2005 | The University of North Carolina at Chapel Hill; Xintek, Inc. | Methods, systems, and computer program products for multiplexing computed tomography |
8189893, | May 19 2006 | North Carolina State University | Methods, systems, and computer program products for binary multiplexing x-ray radiography |
8358739, | Sep 03 2010 | UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, THE | Systems and methods for temporal multiplexing X-ray imaging |
8600003, | Jan 16 2009 | UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, THE | Compact microbeam radiation therapy systems and methods for cancer treatment and research |
8876985, | Dec 21 2009 | PaloDEx Group OY | Cleaning system for an image plate readout device |
8891726, | Feb 14 2008 | Koninklijke Philips N.V. | Multiple-source imaging system with flat-panel detector |
8995608, | Jan 15 2010 | The University of North Carolina at Chapel Hill | Compact microbeam radiation therapy systems and methods for cancer treatment and research |
9066648, | Dec 23 2008 | PaloDEx Group OY | Image plate readout device |
9271689, | Jan 20 2010 | General Electric Company | Apparatus for wide coverage computed tomography and method of constructing same |
9636072, | Aug 23 2007 | FISCHER IMAGING, INC | Computed tomography breast imaging and biopsy system |
9665752, | Dec 23 2008 | PaloDEx Group OY | Image plate readout device |
9770522, | Dec 21 2009 | PaloDEx Group OY | Cleaning system for an image plate readout device |
9782136, | Jun 17 2014 | XINVIVO, INC | Intraoral tomosynthesis systems, methods, and computer readable media for dental imaging |
9907520, | Jun 17 2014 | XINVIVO, INC | Digital tomosynthesis systems, methods, and computer readable media for intraoral dental tomosynthesis imaging |
9922793, | Aug 16 2012 | NANO-X IMAGING LTD | Image capture device |
Patent | Priority | Assignee | Title |
2842706, | |||
3733484, | |||
3753020, | |||
3783288, | |||
3921022, | |||
4012656, | Dec 09 1974 | X-ray tube | |
4253221, | Jun 14 1979 | Georgia Tech Research Institute | Method of producing low voltage field emission cathode structure |
4289969, | Jul 10 1978 | PICKER MEDICAL SYSTEMS LTD | Radiation imaging apparatus |
4958365, | Oct 21 1981 | PICKER MEDICAL SYSTEMS LTD | Medical imaging device using triggered plasma cathode flash X-ray source |
5129850, | Aug 20 1991 | MOTOROLA SOLUTIONS, INC | Method of making a molded field emission electron emitter employing a diamond coating |
5138237, | Aug 20 1991 | Motorola, Inc. | Field emission electron device employing a modulatable diamond semiconductor emitter |
5305363, | Jan 06 1992 | Picker International, Inc. | Computerized tomographic scanner having a toroidal x-ray tube with a stationary annular anode and a rotating cathode assembly |
5371778, | Nov 29 1991 | Picker International, Inc. | Concurrent display and adjustment of 3D projection, coronal slice, sagittal slice, and transverse slice images |
5377249, | Nov 28 1991 | Siemens Aktiengesellschaft | Computer tomography apparatus having a partial ring x-ray source and a partial ring detector |
5424054, | May 21 1993 | International Business Machines Corporation | Carbon fibers and method for their production |
5616368, | Jan 31 1995 | Bell Semiconductor, LLC | Field emission devices employing activated diamond particle emitters and methods for making same |
5623180, | Oct 31 1994 | Bell Semiconductor, LLC | Electron field emitters comprising particles cooled with low voltage emitting material |
5637950, | Oct 31 1994 | Bell Semiconductor, LLC | Field emission devices employing enhanced diamond field emitters |
5648699, | Nov 09 1995 | Bell Semiconductor, LLC | Field emission devices employing improved emitters on metal foil and methods for making such devices |
5726524, | May 31 1996 | Minnesota Mining and Manufacturing Company | Field emission device having nanostructured emitters |
5773834, | Feb 13 1996 | Director-General of Agency of Industrial Science and Technology | Method of forming carbon nanotubes on a carbonaceous body, composite material obtained thereby and electron beam source element using same |
5773921, | Feb 23 1994 | Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge | |
5844963, | Aug 28 1997 | VAREX IMAGING CORPORATION | Electron beam superimposition method and apparatus |
5910974, | Mar 20 1995 | Siemens Aktiengesellschaft | Method for operating an x-ray tube |
5973444, | Dec 20 1995 | NANTERO, INC | Carbon fiber-based field emission devices |
5976444, | Sep 24 1996 | The United States of America as represented by the Secretary of the Navy; NAVY, UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY | Nanochannel glass replica membranes |
6019656, | Nov 29 1997 | Electronics and Telecommunications Research Institute | Method of fabricating a field emission device by using carbon nano-tubes |
6057637, | Sep 13 1996 | The Regents of the University of California | Field emission electron source |
6087765, | Dec 03 1997 | MOTOROLA SOLUTIONS, INC | Electron emissive film |
6250984, | Jan 25 1999 | Bell Semiconductor, LLC | Article comprising enhanced nanotube emitter structure and process for fabricating article |
6259765, | Jun 13 1997 | Commissariat a l'Energie Atomique | X-ray tube comprising an electron source with microtips and magnetic guiding means |
6277318, | Aug 18 1999 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Method for fabrication of patterned carbon nanotube films |
6280697, | Mar 01 1999 | The University of North Carolina-Chapel Hill | Nanotube-based high energy material and method |
6297592, | Aug 04 2000 | TELEDYNE TECHNOLOGIES, INC | Microwave vacuum tube device employing grid-modulated cold cathode source having nanotube emitters |
6333968, | May 05 2000 | Vanderbilt University | Transmission cathode for X-ray production |
6334939, | Jun 15 2000 | The University of North Carolina at Chapel Hill | Nanostructure-based high energy capacity material |
6385292, | Dec 29 2000 | GE Medical Systems Global Technology Company, LLC | Solid-state CT system and method |
6440761, | May 24 1999 | SAMSUNG SDI CO , LTD | Carbon nanotube field emission array and method for fabricating the same |
6445122, | Feb 22 2000 | Industrial Technology Research Institute | Field emission display panel having cathode and anode on the same panel substrate |
6456691, | Mar 06 2000 | Rigaku Corporation | X-ray generator |
6459767, | Dec 12 2000 | Oxford Instruments, Inc. | Portable x-ray fluorescence spectrometer |
6470068, | Jan 19 2001 | X-ray computer tomography scanning system | |
6498349, | Feb 05 1997 | Teralux Corporation | Electrostatically focused addressable field emission array chips (AFEA's) for high-speed massively parallel maskless digital E-beam direct write lithography and scanning electron microscopy |
6553096, | Oct 06 2000 | UNIVERSITY OF NORTH CAROLINA-CHAPEL HILL, THE | X-ray generating mechanism using electron field emission cathode |
6630772, | Sep 21 1998 | AVAGO TECHNOLOGIES GENERAL IP SINGAPORE PTE LTD | Device comprising carbon nanotube field emitter structure and process for forming device |
6650730, | Jan 23 2001 | Fartech, Inc.; FARTECH, INC | Filter assembly for X-ray filter system for medical imaging contrast enhancement |
6674837, | Jun 15 2001 | Nan Crystal Imaging Corporation; Nanocrystal Imaging Corporation | X-ray imaging system incorporating pixelated X-ray source and synchronized detector |
6760407, | Apr 17 2002 | GE Medical Global Technology Company, LLC | X-ray source and method having cathode with curved emission surface |
6850595, | Oct 06 2000 | The University of North Carolina at Chapel Hill | X-ray generating mechanism using electron field emission cathode |
6852973, | Apr 10 2002 | SII NANOTECHNOLOGY INC | Scanning charged particle microscope |
6876724, | Oct 06 2000 | UNIVERSITY OF NORTH CAROLINA - CHAPEL HILL, THE | Large-area individually addressable multi-beam x-ray system and method of forming same |
6965199, | Mar 27 2001 | CommScope EMEA Limited; CommScope Technologies LLC | Coated electrode with enhanced electron emission and ignition characteristics |
20020085674, | |||
20020110996, | |||
20020140336, | |||
20020171357, | |||
20030002627, | |||
20030198318, | |||
20040028183, | |||
20040036402, | |||
20040114721, | |||
20040240616, | |||
20050175151, | |||
DE10164315, | |||
DE19700992, | |||
RE38223, | Feb 23 1994 | NANO-PROPRIETARY, INC | Field emission cathode having an electrically conducting material shaped of a narrow rod or knife edge |
WO51936, | |||
WO231857, | |||
WO3012816, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Feb 07 2005 | The University of North Carolina at Chapel Hill | (assignment on the face of the patent) | / | |||
Mar 29 2005 | CHENG, YUAN | UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016425 | /0929 | |
Mar 29 2005 | ZHANG, JIAN | UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016425 | /0929 | |
Mar 29 2005 | LEE, YUEH | UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016425 | /0929 | |
Apr 04 2005 | LU, JIANPING | UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016425 | /0929 | |
Apr 08 2005 | LIN, WEILI | UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016425 | /0929 | |
Apr 11 2005 | ZHOU, OTTO Z | UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, THE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016425 | /0929 | |
Sep 22 2005 | NORTH CAROLINA, UNIVERSITY OF | NAVY, UNITED STATES OF AMERICA, THE, AS REPRESENTED BY THE SECRETARY | CONFIRMATORY LICENSE SEE DOCUMENT FOR DETAILS | 017660 | /0112 | |
Jun 20 2007 | NORTH CAROLINA, UNIVERSITY OF | NAVY, SECRETARY OF THE, UNITED STATES OF AMERICA | CONFIRMATORY LICENSE SEE DOCUMENT FOR DETAILS | 019817 | /0687 |
Date | Maintenance Fee Events |
Nov 19 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Nov 11 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 18 2018 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 05 2010 | 4 years fee payment window open |
Dec 05 2010 | 6 months grace period start (w surcharge) |
Jun 05 2011 | patent expiry (for year 4) |
Jun 05 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 05 2014 | 8 years fee payment window open |
Dec 05 2014 | 6 months grace period start (w surcharge) |
Jun 05 2015 | patent expiry (for year 8) |
Jun 05 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 05 2018 | 12 years fee payment window open |
Dec 05 2018 | 6 months grace period start (w surcharge) |
Jun 05 2019 | patent expiry (for year 12) |
Jun 05 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |