A method facilitates mass customization of an object by generating a template representing data common to the object; generating specific data to customize the object in conjunction with the template; and fabricating a customized version of the object.

Patent
   7245977
Priority
Jul 20 2000
Filed
Jul 20 2000
Issued
Jul 17 2007
Expiry
Sep 30 2022
Extension
802 days
Assg.orig
Entity
Large
47
187
all paid
12. A method for fabricating a customized object, the method comprising:
receiving a digital representation of a target path;
generating a mathematically smoothed version of the target path;
applying the smoothed target path to generate a secondary target path;
generating a streamlined tool path, based on the secondary target path; and
directing a tool along the tool path to fabricate the customized object, the customized object comprising a customized dental appliance having cavities shaped to receive and resiliently reposition a patient's teeth.
1. A method for facilitating mass customization of an object, the object comprising a dental appliance, the method comprising:
generating a template representing data common to a plurality of different dental appliances, the template comprising a source spline;
generating specific data to customize an appliance in conjunction with the template, the specific data comprising a target spline; wherein the source spline and the target spline define at least one tool path; and
directing at least one tool along the at least one tool path to fabricate a customized version of the appliance.
21. A method for facilitating mass customization of an object, the object comprising an article of manufacture, the method comprising:
generating a template representing data common to a plurality of different objects, the template comprising a source spline;
extracting the common data from a calculation process used in object fabrication;
generating specific data to customize the object in conjunction with the template, the specific data comprising a target spline; wherein the source spline and the target spline define at least one tool path; and
directing at least one tool along the at least one tool path to fabricate a customized version of the object.
2. The method of claim 1, wherein the tool path is represented as a spline.
3. The method of claim 1, wherein the object has an ideal model surface, wherein generating the specific data comprises creating an idealized tool path from the ideal model surface.
4. The method of claim 3, further comprising generating a mathematically smooth 3D spline using the idealized tool path.
5. The method of claim 4, further comprising generating surface normals from the ideal model surface at points distributed around the idealized tool path.
6. The method of claim 5, further comprising displacing each surface normal from its end to a nearest point on the smooth 3D spline.
7. The method of claim 6, further comprising creating a spline connecting each unattached end of each surface normal.
8. The method of claim 7, wherein the ends are attached sequentially in a loop.
9. The method of claim 1, wherein directing the tool comprises using a source spline to define motion of the tool by defining tool orientation vectors.
10. The method of claim 9, further comprising adjusting the source spline.
11. The method of claim 10, wherein the source spline is adjusted by moderately elevating or lowering an angle of a surface normal.
13. The method of claim 12, wherein the target path is represented as a spline.
14. The method of claim 12, wherein the object has an ideal model surface, further comprising creating an idealized tool path from the ideal model surface.
15. The method of claim 14, further comprising generating a mathematically smooth 3D spline using the idealized tool path.
16. The method of claim 15, further comprising generating surface normals from the ideal model surface at points distributed around the idealized tool path.
17. The method of claim 16, further comprising displacing each surface normal from its end to a nearest point on the smooth 3D spline.
18. The method of claim 17, further comprising creating a spline that connects each unattached end of each surface normal and wherein the ends are attached sequentially in a loop.
19. The method of claim 12, wherein directing the tool along the tool path comprises using a source spline to define motion of the tool by defining tool orientation vectors.
20. The method of claim 19, further comprising adjusting the source spline moderately elevating or lowering an angle of a surface normal.
22. The method claim 21, wherein the calculation process is a CAM process.
23. The method claim 21, wherein the object is an in incremental tooth adjustment appliance.
24. The method of claim 1, wherein the dental appliance comprises cavities shaped to receive and resiliently reposition a patient's teeth.
25. The method of claim 21, wherein the article of manufacture comprises a dental appliance having cavities shaped to receive and resiliently reposition a patient's teeth.

This invention relates to systems and methods for mass customization.

Mass customization is the application of mass production techniques to the production of parts that are different from each other and produced in rapid sequence. Mass-producing items that are generically similar to each other using production equipment that is rapidly modifiable or reprogrammable allows differences between these items. Typical limitations on the variability of product are inherent in the design of the manufacturing equipment; as an example, shoe-making machinery would not likely produce cars. Within limits, shoe-making machinery (for example) might produce different sizes, widths and even styles of shoes; this is possible with computer-controlled, automatic machinery. Such mass customization uses computer aided manufacturing (CAM) data that specifies process operations for each unique part.

Mass customization is especially suited for producing items that are based on, or made to work with organic forms. Organic, or natural shapes include plant and animal forms. Each of these forms is often a variation on a theme, either as a species or as an anatomical part. Typically moderate variations, in each organic category, are manageable by the adaptability of mass customization in making products to fit these forms. Examples of such products include apparel, surgical implants and prosthetic devices. The basic form of any of these products is common enough to be produced parametrically. Specific data, for each item produced, is entered into a table or template. The template represents the generic description, and the data entered into the template represents the specific description of the product.

Material removal or modification machinery is often controlled by a CAM program that requires specific information to define the geometry of the affected operation, the tool orientation, and the part being modified. Certain CAM programs automatically determine the entire machine operation mostly based on the desired final shape or condition of the part. Complex shapes, such as organic forms, generate very large descriptions of geometry in computerized formats, so CAM calculations are commensurately extensive for these shapes. These CAM calculations use surface geometry for tool orientation because material removal and modification are dependent on orientation of the tool axis in reference to the local surface. Also, surface transitions between convex and concave forms cause undulation of the tool and its motion system, when current CAM control is used. This complex mechanism motion is subject to accelerations that are limited by motor capacity and system stiffness, resulting in forces that cause wear; so accelerations are kept to moderate levels. Regulation of accelerations limits the average mechanism speed, an undesirable effect for rapid process execution. This process can be optimized by eliminating unnecessary accelerations by streamlining the path of mechanism motion.

CAM data flow and calculation speed are limited by file size, and tool progression speed is limited by undulation; so this whole process is very dependent on geometric complexity. CAM controlled machines operate at sub-optimal speed when they use organic surface geometry as a reference. For example, conventional CAM systems use surface data to define a toolpath, therefore, tool orientation is based on surface normals. Conventionally, the tool orientation will change radically to accommodate undulations that are prevalent in complex (organic) geometry, and this will require the tool head to move forward and backward along the toolpath, and generally to change direction erratically. This erratic motion is wasted motion, and it requires substantial positive & negative accelerations of the tool head.

In one aspect, a method facilitates mass customization of an object having an ideal model surface by generating a template representing data common to the object; generating specific data to customize the object in conjunction with the template; and fabricating a customized version of the object.

Implementations of the above aspect may include one or more of the following. The method includes generating a tool-path to customize the object. The target path may be represented as a spline. The method includes creating an idealized tool-path from the ideal model surface. A mathematically smooth 3D spline using the idealized toolpath can be generated. The method includes generating surface normals from the ideal model surface at points distributed around the idealized toolpath. Each surface normal can be displaced from its end to the nearest point on the smooth 3D spline. A spline can be created for connecting each unattached end of each surface normal. The ends are attached sequentially in a loop. A source spline can be used to define motion of the tool head by defining tool orientation vectors, and subsequent motion of a tool head. The source spline can be adjusted, such as by moderate elevation or lowering of the angle of the surface normal.

In another aspect, a method fabricates an object having an ideal model surface by receiving a digital representation of a target path; generating a mathematically smoothed version of the target path; applying the smoothed target path as a base to generate a secondary target path; and generating a streamlined tool-path to fabricate the object.

In yet another aspect, a method optimizes data flow, CAM calculation and mechanism motion by applying a statistical concept to the creation of toolpaths.

In another aspect, a template is used to generate a toolpath for laser cutting the margins of an object.

Advantages of the invention may include one or more of the following. The techniques support rapid mass customization with rapid execution of data streaming, CAM calculations, and process device actions. The amount of data required by CAM for processing instructions to control material removal or modification machinery is reduced. The technique is advantageous for rapid workpiece changing situations that use dissimilar, but generically related shapes for workpieces and where the depth of action is not critical. Appropriate processes include cutting, surface conditioning, trimming and welding with laser, plasma torch, and water jet as well as other projection-to-surface style devices.

In addition to reducing the processing and handling of data, the techniques also streamline the motion for the trim devices. These advantages can be attributed in part to the source spline. The source spline effectively reduces data requirements by extracting common data from the calculation process, and adding it back in as a template by incorporating it into the algorithm. Motion streamlining is achieved by eliminating undulated movement of the tool head along the source spline.

FIG. 1 is an elevational diagram showing the anatomical relationship of the jaws of a patient.

FIG. 2A illustrates in more detail the patient's lower jaw and provides a general indication of how teeth may be moved by the methods and apparatus of the present invention.

FIG. 2B illustrates a single tooth from FIG. 2A and defines how tooth movement distances are determined.

FIG. 2C illustrates the jaw of FIG. 2A together with an incremental position adjustment appliance.

FIG. 3 is a block diagram illustrating a process for producing incremental position adjustment appliances.

FIGS. 4A–4B are exemplary illustrations of trimming operations using splines.

FIG. 5 is an exemplary illustration of a smoothed 3D spline and an ideal toolpath.

FIG. 6 is a flow chart illustrating a process for smoothing splines.

FIG. 7 is a block diagram illustrating a system for generating appliances in accordance with the present invention.

FIG. 1 shows a skull 10 with an upper jaw bone 22 and a lower jaw bone 20. The lower jaw bone 20 hinges at a joint 30 to the skull 10. The joint 30 is called a temporal mandibular joint (TMJ). The upper jaw bone 22 is associated with an upper jaw 101, while the lower jaw bone 20 is associated with a lower jaw 100. A computer model of the jaws 100 and 101 is generated in accordance with the process of FIG. 3, and a computer simulation can model interactions among the teeth on the jaws 100 and 101. The computer simulation allows the system to focus on motions involving contacts between teeth mounted on the jaws. The computer simulation allows the system to render realistic jaw movements that are physically correct when the jaws 100 and 101 contact each other. The model of the jaw places the individual teeth in a treated position. Further, the model can be used to simulate jaw movements including protrusive motions, lateral motions, and “tooth guided” motions where the path of the lower jaw 100 is guided by teeth contacts rather than by anatomical limits of the jaws 100 and 101. Motions are applied to one jaw, but may also be applied to both jaws. Based on the occlusion determination, the final position of the teeth can be ascertained.

Referring now to FIG. 2A, the computer model of the lower jaw 100 includes a plurality of teeth 102, for example. At least some of these teeth may be moved from an initial tooth arrangement to a final tooth arrangement. As a frame of reference describing how a tooth may be moved, an arbitrary centerline (CL) may be drawn through the tooth 102. With reference to this centerline (CL), each tooth may be moved in orthogonal directions represented by axes 104, 106, and 108 (where 104 is the centerline). The centerline may be rotated about the axis 108 (root angulation) and the axis 104 (torque) as indicated by arrows 110 and 112, respectively. Additionally, the tooth may be rotated about the centerline, as represented by an arrow 114. Thus, all possible free-form motions of the tooth can be performed.

FIG. 2B shows how the magnitude of any tooth movement may be defined in terms of a maximum linear translation of any point P on a tooth 102. Each point P1 will undergo a cumulative translation as that tooth is moved in any of the orthogonal or rotational directions defined in FIG. 2A. That is, while the point will usually follow a nonlinear path, there is a linear distance between any point in the tooth when determined at any two times during the treatment. Thus, an arbitrary point P1 may in fact undergo a true side-to-side translation as indicated by arrow d1, while a second arbitration point P2 may travel along an arcuate path, resulting in a final translation d2. Many aspects of the present invention are defined in terms of the maximum permissible movement of a point P1 induced on any particular tooth. Such maximum tooth movement, in turn, is defined as the maximum linear translation of that point P1 on the tooth that undergoes the maximum movement for that tooth in any treatment step.

FIG. 2C shows one adjustment appliance 111 which can be worn by the patient in order to achieve an incremental repositioning of individual teeth in the jaw as described generally above. The appliance is a polymeric shell having a teeth-receiving cavity, as described in U.S. Pat. No. 5,975,893, entitled “Method and system for incrementally moving teeth,” the full disclosures of which are incorporated by reference.

As set forth in the prior applications, each polymeric shell may be configured so that its tooth-receiving cavity has a geometry corresponding to an intermediate or final tooth arrangement intended for the appliance. The patient's teeth are repositioned from their initial tooth arrangement to a final tooth arrangement by placing a series of incremental position adjustment appliances over the patient's teeth. The adjustment appliances are generated at the beginning of the treatment, and the patient wears each appliance until the pressure of each appliance on the teeth can no longer be felt. At that point, the patient replaces the current adjustment appliance with the next adjustment appliance in the series until no more appliances remain. Conveniently, the appliances are generally not affixed to the teeth and the patient may place and replace the appliances at any time during the procedure.

The polymeric shell 111 can fit over all teeth present in the upper or lower jaw. Often, only certain one(s) of the teeth will be repositioned while others of the teeth will provide a base or an anchor region for holding the appliance 111 in place as the appliance 111 applies a resilient repositioning force against the tooth or teeth to be repositioned. In complex cases, however, multiple teeth may be repositioned at some point during the treatment. In such cases, the moved teeth can also serve as a base or anchor region for holding the repositioning appliance.

The polymeric appliance 111 of FIG. 2C may be formed from a thin sheet of a suitable elastomeric polymer, such as Tru-Tain 0.03 in, thermal forming dental material, available from Tru-Tain Plastics, Rochester, Minn. Usually, no wires or other means will be provided for holding the appliance in place over the teeth. In some cases, however, it will be desirable or necessary to provide individual anchors on teeth with corresponding receptacles or apertures in the appliance 100 so that the appliance can apply an upward force on the tooth that would not be possible in the absence of such an anchor.

FIG. 3 shows a process 200 for producing the incremental position adjustment appliances for subsequent use by a patient to reposition the patient's teeth. The flow chart of FIG. 3 is for purpose of explanation and does not necessarily reflect all possible paths of control flow in the execution of the client program.

As a first step, an initial digital data set representing an initial tooth arrangement is obtained (step 202). The initial data set may be obtained in a variety of ways. For example, the patient's teeth may be scanned or imaged using X-rays, three dimensional X-rays, computer-aided tomographic images or data sets, or magnetic resonance images, among others. The teeth data may be generated by a destructive scanner, as described in the incorporated-by-reference U.S. application Ser. No. 09/169,034, filed Oct. 8, 1998. The initial data set is then manipulated using a computer having a suitable graphical user interface (GUI) and software appropriate for viewing and modifying the images. More specific aspects of this process will be described in detail below. Individual tooth and other components may be segmented or isolated in the model to permit their individual repositioning or removal from the digital model.

After segmenting or isolating the components, the teeth are moved based on rules and algorithms programmed into the computer. In this step, each stage of tooth movement is determined by an attraction model between selected points on adjacent teeth. This step is iterated until an acceptable result is achieved (step 206). In one embodiment, the system stops the movement when the relative positions of the teeth satisfy a predetermined target.

In step 206, positions for the upper and lower teeth in a masticatory system of a patient are determined by generating a computer representation of the masticatory system. An occlusion of the upper and lower teeth is computed from the computer representation; and a functional occlusion is computed based on interactions in the computer representation of the masticatory system. The occlusion may be determined by generating a set of ideal models of the teeth. Each ideal model in the set of ideal models is an abstract model of idealized teeth placement, which is customized to the patient's teeth, as discussed below. After applying the ideal model to the computer representation, the position of the teeth can be optimized to fit the ideal model. The ideal model may be specified by one or more arch forms, or may be specified using various features associated with the teeth.

Once the teeth arrangements are determined, a series of appliances that move the teeth in a specified sequence are generated (step 208). For example, the teeth models may be rotated until their roots are in the proper vertical position. Next, the teeth models may be rotated around their vertical axis into the proper orientation. The teeth models are then observed from the side, and translated vertically into their proper vertical position. Finally, the two arches are placed together, and the teeth models moved slightly to ensure that the upper and lower arches properly mesh together. The meshing of the upper and lower arches together can be visualized using a collision detection process to highlight the contacting points of the teeth.

During manufacturing, the appliances need to be cut or trimmed. The processes described below generate toolpaths from geometric input to define automated motion of a computer-controlled device to trim objects such as appliances. The application of this technique is more appropriate for complex, three-dimensional solid or surface geometry, both in reference to the toolpath and to the basic shape used to create the toolpath (i.e., the workpiece). However, the techniques can be applied to two-dimensional geometry as well.

FIGS. 4A, 4B, 5 and 6 show embodiments applied to defined automated motion of a computer-controlled device to generate a physical model based on a dental arch. FIG. 4A shows a ribbon 400 surrounding an object 402. In this embodiment, the object 402 is a model of a dental arch of teeth. The ribbon 400 represents a toolpath for a trimming operation, and the teeth model represents complex geometry that the toolpath is specifically generated for. The top edge of this ribbon 400 is a template or source spline 404 that is common to all toolpaths, whereas the bottom edge is the target spline, unique to each file that is downloaded to the CAM system. The template is a parametric table or form that can be customized to a specific object.

Information required to control the trim motion is contained in one or more ribbon components, including the source spline or template 404, a target spline 406, synchronization points 410 on the source spline or template 404, and target points 408 on the target spline 406. The ribbon surface and synchronization lines may be inferred from spline data and synchronization data.

The source spline 404 works in conjunction with the target spline 406. A physical or geometric relationship exists between the source spline 404 and the target spline 406 that defines a surface swept between the source spline 404 and the target spline 406. The geometric relationship is expressed as the tool path and represents the vectors for the tool. Exemplary vectors include the perimeter of a rotary tool such as a milling cutter or the center line of a beam of light from a laser or a beam of fluid from a water jet cutter.

During processing, synchronization lines 412 are projected from the synchronization point 410 to target point 408. The synchronization point 410 can be pre-established in position on the source spline or template 404. The target point 408 that correlates with the synchronization point 410 should be positioned on the target spline 406. In one embodiment, an orthogonal or plan view of FIG. 4A can be used to generate orientations for synchronization lines 412 that appear as surface normals to the target spline 406. The direction for each projection is from the source spline (404) to the target spline (406) and represents the equivalent of surface normals to the smoothed target spline 452 (mathematically smoothed 3D spline). The projection is done such that the synchronization lines 412 are substantially orthogonal to the mathematically smooth spline 452. The length of the surface normals is adjustable. Long normals tend to resemble the average more than short normals since angular changes from specific target splines change more radically with angular changes for short normals. Short normals tend to provide high resolution at the expense of more data having to flow through the CAM system. Alternatively, long normals would provide faster motion at the expense of precision and resolution because the angular changes have to be accurately controlled.

The template takes common information required for the CAM process as a standard for all cases in mass customization. By applying a relatively simple set of data that represents the differences between all of the different parts, the template 404 can be adapted for each object 402 to customize the output. The information embodied in the template may be streamlined. One optimization removes CAM calculations that are based on specific solid geometry from the toolpath generation process. In such an optimization, surface undulations are ignored. The optimization of tool head velocity can be achieved by minimizing the number, magnitudes and durations of accelerations because these parameters have deleterious effect on average velocity. The template minimizes these degradations of toolpath motions by ignoring their source.

In one embodiment, one or more generic files are categorized so that similar shapes are defined within parametric limits such as size or shape within a superset; for example, small dental arches are distinguished from large arches. In one implementation, code can be provided in the file for calling the template 404. In another embodiment, a hierarchical format is used to enhance the adaptability of CAM to fit a wide range of shapes that a specific process would be applied to; for example, modification of bone implants for different types of bones. The source spline shape and other parametric data can be grouped under headings or subheadings.

FIG. 4B is another view of FIG. 4A. FIG. 4B shows the object 402 resting on a support 430. FIG. 4B also shows a smooth path 432 for the motion of the system of the laser 404. In the exemplary embodiment of FIG. 4B, trim vectors 420 are approximately forty degrees relative to object surface normals. The object 402 bears a generalized relationship to the surface normals so that the angle is constant in this example. The surface normals of FIG. 4B follow a predetermined formula that is based on an idealized model of the object 402.

The motion system of FIGS. 4A and 4B follows the tool path has a motion that is generally smooth and constantly leading. As the motion system follows the source spline 404 or an equivalent of the source spline 404, its motion is smooth. Further, any vectors that relate to a position at any moment in time of the motion system at 404 as it moves forward also relates to a forward motion along the target spline (408). Thus, a correlated move generally exists in the forward direction between the motion system and the target object itself.

FIG. 5 shows in more detail the relationship between an idealized tool-path 450 and a mathematically smoothed spline 452. A transition or translation process mathematically converts the idealized tool path 450 into a spline 452 that is a mathematically smoothed 3D spline. The mathematically smoothed spline generally follows a monotonic curvature in all three dimensions. The mathematically smoothed 3D spline is used in an intermediate step that generates a set of synchronization lines which are all the same length and which have been adjusted specifically so that the other ends of the synchronization line are connectable together by another 3D spline that becomes a source spline. The mathematically smoothed spline is provided to a CNC controller that generates a smooth tool path and drives the tool head motion itself. An end-effector of the tool can articulate around the target object using a numerically controlled (NC) axis or rotary axis that changes the vector from any given points along the source spline 404.

In FIG. 5, synchronization lines 412 that descend from the top spline to the bottom spline are representative of the direction (vector) of the trim beam or tool axis at different positions around the path. The CAM interpolates the toolpath between synchronization lines. Due to the interpolation, the resulting motion of the source device (laser motion devices) is smooth and progressive without sharp turns or reversals. In embodiments where the source device is a laser or projected beam device where effective focus occurs with substantial focal depth, the source device does not need to track the target along the axis of the trim beam, even though the target spline articulates in this beam-axis direction.

FIG. 6 shows a process 450 to generate a smoothed spline for trimming an object. The smoothing of a spline such as a source spline first requires the creation of an ideal model surface or solid shape (step 452). In an embodiment, the ideal model surface or shape can be a 3D statistical mean. In another embodiment, the ideal surface or solid shape may represent all individual models, a dental arch in this example. After this ideal model is created, the process 450 creates an idealized toolpath (step 454). The idealized toolpath can consist of a 3D spline that is anchored to the surface of the model. This toolpath may follow a surface feature such as the gum line of this dental model, or follow a design feature. Next, the process 450 generates a (mathematically) smooth 3D spline using the idealized toolpath (equivalent to the target spline) from the ideal model surface (step 456). The process 450 then generates surface normals from the ideal model surface at points distributed around the idealized toolpath (step 458). These surface normals should be the same length, preferably matching the distance from the closest rotary axis of the motion system. Elevate or lower these normals by a consistent angle, if required; the example shows 40-degree elevation. The process 450 then displaces each surface normal from its end to the nearest point on the smooth 3D spline (step 460). Step 460 displaces the surface normals from the idealized spline which is rather curvy into the mathematically smoothed 3D spline to create a set of surface normals or synchronization lines that have an angular relationship to the surface normals. The endpoints are connectable with the smooth spline that then in turn creates the source spline.

A spline is created that connects each unattached end of all the surface normals sequentially in a loop (step 462). This spline will be the source spline that will define motion of the tool head by defining tool orientation vectors, and subsequent motion of the tool head itself. If this source spline is not smooth, it may be adjusted (step 464). In one embodiment, the adjustment includes a moderate elevation or lowering of the angle of each surface normal using the target spline intersection as a pivot axis, and alteration of the source spline. This adjustment will beneficially affect streamlining of the tool head motion and action of the tool on the surface of the workpiece.

The smoothed spline generated using the process 450 is then used to cut or trim the object. The source spline data is loaded as part of a template of a computer aided manufacturing (CAM) system. This makes the CAM system capable of accepting specific target spline data as a complement that fulfills most data requirements needed to generate a specific toolpath. The template can include data requirements, and part orientation information for fixturing the workpiece must be included in the template to assure the correlation of geometry between the device toolpath and the workpiece during operation. Part orientation is established with a three-axis Cartesian datum that is common between the ideal model and all specific models. Additional common data incorporated in the template may include other process parameters such as motion velocities, effecter power (flow rate, flow velocity, focus, etc.), temperature, and pulse rate. The template can also include algorithms for adjustment of process parameters that are triggered by special geometric conditions of the target spline or by special notation attached to the target spline file.

The target spline data is also loaded into the CAM system to generate coded instructions for the motion controller. This data describes the 3D spline and its reference datum. Additional information may be added for assisting control through the CAM program in a manner that distinguishes the specific file model from the ideal model, including part querying and verification of a match through machine vision or other similar means.

FIG. 6 is a simplified block diagram of a data processing system 500 for handling CAM operations. Data processing system 500 typically includes at least one processor 502 that communicates with a number of peripheral devices over bus subsystem 504. These peripheral devices typically include a storage subsystem 506 (volatile memory subsystem 508 and file storage subsystem 514), a set of user interface input and output devices 518, and an interface to outside networks 516, including the public switched telephone network. This interface is shown schematically as “Modems and Network Interface” block 516, and is coupled to corresponding interface devices in other data processing systems over communication network interface 524. Data processing system 500 may include a terminal or a low-end personal computer or a high-end personal computer, workstation or mainframe. The user interface input devices typically include a keyboard and may further include a pointing device and a scanner. The pointing device may be an indirect pointing device such as a mouse, trackball, touchpad, or graphics tablet, or a direct pointing device such as a touchscreen incorporated into the display. Other types of user interface input devices, such as voice recognition systems, may be used. User interface output devices may include a printer and a display subsystem, which includes a display controller and a display device coupled to the controller. The display device may be a cathode ray tube (CRT), a flat-panel device such as a liquid crystal display (LCD), or a projection device. The display subsystem may also provide nonvisual display such as audio output.

Storage subsystem 506 maintains the basic programming and data constructs that provide the functionality of the present invention. The software modules discussed above are typically stored in storage subsystem 506. Storage subsystem 506 typically comprises memory subsystem 508 and file storage subsystem 514. Memory subsystem 508 typically includes a number of memories including a main random access memory (RAM) 510 for storage of instructions and data during program execution and a read only memory (ROM) 512 in which fixed instructions are stored. In the case of Macintosh-compatible personal computers the ROM would include portions of the operating system; in the case of IBM-compatible personal computers, this would include the BIOS (basic input/output system). File storage subsystem 514 provides persistent (nonvolatile) storage for program and data files, and typically includes at least one hard disk drive and at least one floppy disk drive (with associated removable media). There may also be other devices such as a CD-ROM drive and optical drives (all with their associated removable media). Additionally, the system may include drives of the type with removable media cartridges. The removable media cartridges may, for example be hard disk cartridges, such as those marketed by Syquest and others, and flexible disk cartridges, such as those marketed by Iomega. One or more of the drives may be located at a remote location, such as in a server on a local area network or at a site on the Internet's World Wide Web. In this context, the term “bus subsystem” is used generically so as to include any mechanism for letting the various components and subsystems communicate with each other as intended. With the exception of the input devices and the display, the other components need not be at the same physical location. Thus, for example, portions of the file storage system could be connected over various local-area or wide-area network media, including telephone lines. Similarly, the input devices and display need not be at the same location as the processor, although it is anticipated that the present invention will most often be implemented in the context of PCS and workstations. Bus subsystem 504 is shown schematically as a single bus, but a typical system has a number of buses such as a local bus and one or more expansion buses (e.g., ADB, SCSI, ISA, EISA, MCA, NuBus, or PCI), as well as serial and parallel ports. Network connections are usually established through a device such as a network adapter on one of these expansion buses or a modem on a serial port. The client computer may be a desktop system or a portable system.

Scanner 520 is responsible for scanning casts of the patient's teeth obtained either from the patient or from an orthodontist and providing the scanned digital data set information to data processing system 500 for further processing. In a distributed environment, scanner 520 may be located at a remote location and communicate scanned digital data set information to data processing system 500 over network interface 524. Fabrication machine 522 fabricates dental appliances based on intermediate and final data set information received from data processing system 500. In a distributed environment, fabrication machine 522 may be located at a remote location and receive data set information from data processing system 500 over network interface 524.

The computer system 500 receives specific geometric data or in this case specific 3D spline target data and produces an output that is understandable by a controller 521. The controller 521 interprets computer code from the computer 500 into instructions for electromechanical actuators such as motors, for example. The instructions specify acceleration ramps, velocities, changes in velocities, pulse rate, the relationship between certain motions or timing sequence and the different axes. In one embodiment with five axis, five different motors, three motors describing X, Y and Z motion and two motors describing rotary motion about two of the axes.

Various alternatives, modifications, and equivalents may be used in lieu of the above components. The commercial manifestation of the concept of templates could take different forms. One form might be as an algorithm or subprogram within CAM. Another form could be as a separate program that would work with a variety of CAM programs. A third option would be as proprietary software, developed and used internally within a company. It should be noted that this invention, if patented, would have no practical enforceability outside the commercial forms. Development of software within a company for application within that company cannot be controlled outside that company; this fact makes strong development of a commercial format attractive.

While the invention has been shown and described with reference to an embodiment thereof, those skilled in the art will understand that the above and other changes in form and detail may be made without departing from the spirit and scope of the following claims.

Simkins, Barry A.

Patent Priority Assignee Title
10136961, Feb 02 2009 Viax Dental Technologies, LLC Dentist tool
10144100, Feb 02 2009 Viax Dental Technologies, LLC Method of preparation for restoring tooth structure
10219877, Oct 30 2012 University of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
10226312, Oct 30 2012 University of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
10426572, May 26 2011 Viax Dental Technologies LLC Dental tool and guidance devices
10441382, Feb 02 2009 Viax Dental Technologies, LLC Dentist tool
10828133, Dec 02 2016 SWIFT HEALTH SYSTEMS INC Indirect orthodontic bonding systems and methods for bracket placement
10881489, Jan 31 2017 SWIFT HEALTH SYSTEMS INC Hybrid orthodontic archwires
11007035, Mar 16 2017 Viax Dental Technologies LLC System for preparing teeth for the placement of veneers
11033356, May 26 2011 Viax Dental Technologies LLC Dental tool and guidance devices
11058517, Apr 21 2017 SWIFT HEALTH SYSTEMS INC Indirect bonding trays, non-sliding orthodontic appliances, and registration systems for use thereof
11058520, Oct 30 2012 University of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
11129696, Oct 30 2012 University of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
11241758, Sep 21 2011 ALIGN TECHNOLOGY, INC. Laser cutting
11253961, Feb 02 2009 Viax Dental Technologies LLC Method for restoring a tooth
11284972, Apr 13 2007 ALIGN TECHNOLOGY, INC. System for post-processing orthodontic appliance molds
11284973, Apr 13 2007 ALIGN TECHNOLOGY, INC. System for post-processing orthodontic appliance molds
11284974, Apr 13 2007 ALIGN TECHNOLOGY, INC. System for post-processing orthodontic appliance molds
11334996, Sep 29 2017 Align Technology, INC Methods of manufacturing and assessing orthodontic aligners
11383322, Sep 21 2011 ALIGN TECHNOLOGY, INC. Laser cutting
11510757, Oct 30 2012 University of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
11510758, Oct 30 2012 University of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
11517405, Oct 30 2012 University of Southern California Orthodontic appliance with snap fitted, non-sliding archwire
11565441, Apr 13 2011 ALIGN TECHNOLOGY, INC. Methods and systems for thermal forming an object
11610274, Mar 02 2007 ALIGN TECHNOLOGY, INC. Methods for volume manufacturing of items
11612458, Mar 31 2017 SWIFT HEALTH SYSTEMS INC Method of tongue preconditioning in preparation for lingual orthodontic treatment
11612459, Dec 02 2016 Swift Health Systems Inc. Indirect orthodontic bonding systems and methods for bracket placement
11623368, Apr 13 2011 ALIGN TECHNOLOGY, INC. Methods for thermal forming an object
11633877, Apr 13 2011 ALIGN TECHNOLOGY, INC. Methods and systems for thermal forming an object
11667412, Nov 28 2006 ALIGN TECHNOLOGY, INC. Methods for packaging orthodontic appliances
11752523, Oct 26 2006 ALIGN TECHNOLOGY, INC. Methods for sorting and sequencing objects
11813127, Feb 02 2009 Viax Dental Technologies LLC Tooth restoration system
11850680, Sep 21 2011 ALIGN TECHNOLOGY, INC. Laser cutting
11865653, Feb 02 2009 Viax Dental Technologies LLC Method for producing a dentist tool
11880973, Apr 01 2019 ALIGN TECHNOLOGY, INC. Image-based defect detection of dental appliances
11884758, Jun 30 2017 ALIGN TECHNOLOGY, INC. Methods for fabricating appliances from polymerizable compositions
11897181, Jun 14 2021 Align Technology, INC Dynamic thermoforming of dental appliances
11911929, Apr 13 2011 ALIGN TECHNOLOGY, INC. Systems for thermal forming an object
11911971, Dec 02 2016 Swift Health Systems Inc. Indirect orthodontic bonding systems and methods for bracket placement
8083522, Oct 29 2008 Inpronto Inc.; INPRONTO INC Method for tooth implants
8209044, Oct 10 2006 SHOFU INC Modeling data creating system, manufacturing method, and modeling data creating program
8301293, Jun 22 2009 JTEKT Corporation Process integration determining system and method
8326647, Jan 09 2001 ALIGN TECHNOLOGY, INC. Method and system for distributing patient referrals
8359114, Nov 28 2006 DENTSABLE, INC Haptically enabled dental modeling system
8606598, Jan 09 2001 ALIGN TECHNOLOGY, INC. Method and system for distributing patient referrals
9649201, Dec 08 2011 New York University Anatomic socket alignment guide and methods of making and using same
9922454, Aug 31 2011 MODJAW Method for designing an orthodontic appliance
Patent Priority Assignee Title
2467432,
3407500,
3600808,
3660900,
3683502,
3738005,
3860803,
3916526,
3922786,
3950851, Mar 05 1975 Orthodontic positioner and method for improving retention of tooth alignment therewith
3983628, Jan 24 1975 Dental articulator, new bite registration guide, and diagnostic procedure associated with stereodont orthodontic study model
4014096, Mar 25 1975 Method and apparatus for orthodontic treatment
4195046, May 04 1978 Method for molding air holes into a tooth positioning and retaining appliance
4253828, Apr 09 1979 PROFESSIONAL POSITIONERS, INC Orthodontic appliance
4324546, Sep 12 1979 Method for the manufacture of dentures and device for carrying out the method
4324547, Sep 16 1978 Vishay Intertechnology, Inc. Dentistry technique
4348178, Jan 03 1977 Vibrational orthodontic appliance
4478580, Feb 05 1982 Process and apparatus for treating teeth
4500294, Oct 03 1983 EPIC INTERNATIONAL CORPORATION 6350 LAUREL CANYON BLVD , NORTH HOLLYWOOD CALIFORNIA 91606 A CORP OF CA Method and device for detecting dental cavities
4504225, Nov 05 1976 Orthodontic treating device and method of manufacturing same
4505673, Nov 05 1976 Hito, Suyehiro Orthodontic treating device and method of manufacturing same
4526540, Dec 19 1983 Orthodontic apparatus and method for treating malocclusion
4575330, Aug 08 1984 3D Systems, Inc Apparatus for production of three-dimensional objects by stereolithography
4575805, Dec 24 1980 Sirona Dental Systems GmbH Method and apparatus for the fabrication of custom-shaped implants
4591341, Oct 03 1984 Orthodontic positioner and method of manufacturing same
4609349, Sep 24 1984 Active removable orthodontic appliance and method of straightening teeth
4611288, Apr 14 1982 DURET INVENTEUR Apparatus for taking odontological or medical impressions
4656860, Apr 19 1984 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Dental apparatus for bending and twisting wire pieces
4663720, Feb 21 1984 Method of and apparatus for making a prosthesis, especially a dental prosthesis
4664626, Mar 19 1985 System for automatically preventing overtipping and/or overuprighting in the begg technique
4676747, Aug 06 1986 TP Orthodontics, Inc. Torquing auxiliary
4742464, May 12 1981 DURET INVENTEUR Method of making a prosthesis, especially a dental prosthesis
4755139, Jan 29 1987 Great Lakes Orthodontics, Ltd. Orthodontic anchor appliance and method for teeth positioning and method of constructing the appliance
4763791, Jun 06 1985 NEW RAC CORP ; REPUBLIC ACCEPTANCE CORPORATION Dental impression supply kit
4793803, Oct 08 1987 Removable tooth positioning appliance and method
4798534, Aug 03 1984 Great Lakes Orthodontic Laboratories Inc. Method of making a dental appliance
4836778, May 26 1987 Vexcel Corporation Mandibular motion monitoring system
4837732, Jun 24 1986 Sirona Dental Systems GmbH Method and apparatus for the three-dimensional registration and display of prepared teeth
4850864, Mar 30 1987 Bracket placing instrument
4850865, Apr 30 1987 Orthodontic method and apparatus
4856991, May 05 1987 Great Lakes Orthodontics, Ltd. Orthodontic finishing positioner and method of construction
4877398, Jun 26 1986 TP Orthodontics, Inc. Bracket for permitting tipping and limiting uprighting
4880380, Oct 13 1987 Orthodonture appliance which may be manually installed and removed by the patient
4889238, Apr 03 1989 NORWICH EATON PHARMACEUTICALS, INC Medicament package for increasing compliance with complex therapeutic regimens
4890608, Jun 20 1985 E R SQUIBB & SONS, INC , A CORP OF DE Attachment assembly for use on the human skin
4935635, Dec 09 1988 System for measuring objects in three dimensions
4936862, May 30 1986 ZIMMER TECHNOLOGY, INC Method of designing and manufacturing a human joint prosthesis
4937928, Oct 07 1987 Elephant Edelmetaal B.V. Method of making a dental crown for a dental preparation by means of a CAD-CAM system
4941826, Jun 09 1988 Apparatus for indirect dental machining
4964770, Jul 16 1987 Process of making artificial teeth
4975052, Apr 18 1989 Orthodontic appliance for reducing tooth rotation
4983334, Aug 28 1986 ADELL, LOREN S ; ADELL, MICHAEL Method of making an orthodontic appliance
5011405, Jan 24 1989 Ormco Corporation Method for determining orthodontic bracket placement
5017133, Jun 20 1989 GAC International, Inc. Orthodontic archwire
5027281, Jun 09 1989 REGENTS OF THE UNIVERSITY OF MINNESOTA, A CORP OF MN Method and apparatus for scanning and recording of coordinates describing three dimensional objects of complex and unique geometry
5035613, May 05 1987 Great Lakes Orthodontics, Ltd. Orthodontic finishing positioner and method of construction
5055039, Oct 06 1988 Great Lakes Orthodontics, Ltd. Orthodontic positioner and methods of making and using same
5059118, May 05 1987 Great Lakes Orthodontics, Ltd. Orthodontic finishing positioner and method of construction
5100316, Sep 26 1988 Orthodontic archwire shaping method
5121333, Jun 09 1989 MINNESOTA, REGENTS OF THE UNIVERSITY OF, A CORP OF MN Method and apparatus for manipulating computer-based representations of objects of complex and unique geometry
5125832, Jun 26 1986 TP Orthodontics, Inc. Bracket for permitting tipping and limiting uprighting
5128870, Jun 09 1989 REGENTS OF THE UNIVERSITY OF MINNESOTA, MORRILL HALL, 100 CHURCH STREET, S E , MPLS, MN 55455 A CORP OF MN Automated high-precision fabrication of objects of complex and unique geometry
5130064, Nov 08 1988 3D Systems, Inc Method of making a three dimensional object by stereolithography
5131843, May 06 1991 Ormco Corporation Orthodontic archwire
5131844, Apr 08 1991 FOSTER MILLER, INC Contact digitizer, particularly for dental applications
5139419, Jan 19 1990 Ormco Corporation Method of forming an orthodontic brace
5145364, May 15 1991 M-B Orthodontics, Inc. Removable orthodontic appliance
5176517, Oct 24 1991 TRU TRAIN, INC , A CORP OF MN Dental undercut application device and method of use
5184306, Jun 09 1989 Regents of the University of Minnesota Automated high-precision fabrication of objects of complex and unique geometry
5186623, May 05 1987 Great Lakes Orthodontics, Ltd. Orthodontic finishing positioner and method of construction
5257203, Jun 09 1989 Regents of the University of Minnesota Method and apparatus for manipulating computer-based representations of objects of complex and unique geometry
5273429, Apr 03 1992 Foster-Miller, Inc Method and apparatus for modeling a dental prosthesis
5278756, Jan 24 1989 DOLPHIN IMAGING SYSTEMS, LLC, A DE LIMITED LIABILITY CO Method and apparatus for generating cephalometric images
5328362, Mar 11 1992 Soft resilient interocclusal dental appliance, method of forming same and composition for same
5338198, Nov 22 1993 DACIM Laboratory Inc. Dental modeling simulator
5340309, Sep 06 1990 Apparatus and method for recording jaw motion
5342202, Jul 13 1993 Method for modelling cranio-facial architecture
5367478, Sep 06 1991 Sony Corporation Mutual division circuit
5368478, Jan 19 1990 Ormco Corporation Method for forming jigs for custom placement of orthodontic appliances on teeth
5382164, Jul 27 1993 Method for making dental restorations and the dental restoration made thereby
5395238, Jan 19 1990 Ormco Corporation Method of forming orthodontic brace
5431562, Jan 19 1990 Ormco Corporation Method and apparatus for designing and forming a custom orthodontic appliance and for the straightening of teeth therewith
5440326, Mar 21 1990 Thomson Licensing Gyroscopic pointer
5440496, Dec 12 1990 Nobelpharma AB Procedure and apparatus for producing individually designed, three-dimensional bodies usable as tooth replacements, prostheses, etc.
5447432, Jan 19 1990 Ormco Corporation Custom orthodontic archwire forming method and apparatus
5452219, Jun 11 1990 Dentsply Research & Development Corp. Method of making a tooth mold
5454717, Jan 19 1990 Ormco Corporation Custom orthodontic brackets and bracket forming method and apparatus
5456600, Nov 09 1992 Ormco Corporation Coordinated orthodontic archwires and method of making same
5474448, Jan 19 1990 Ormco Corporation Low profile orthodontic appliance
5518397, Jan 19 1990 Ormco Corporation Method of forming an orthodontic brace
5528735, Mar 23 1993 RPX Corporation Method and apparatus for displaying data within a three-dimensional information landscape
5533895, Jan 19 1990 Ormco Corporation Orthodontic appliance and group standardized brackets therefor and methods of making, assembling and using appliance to straighten teeth
5542842, Nov 09 1992 Ormco Corporation Bracket placement jig assembly and method of placing orthodontic brackets on teeth therewith
5549476, Mar 27 1995 Method for making dental restorations and the dental restoration made thereby
5562448, Apr 10 1990 Method for facilitating dental diagnosis and treatment
5587912, Jul 12 1993 Nobel Biocare Services AG Computer aided processing of three-dimensional object and apparatus therefor
5605459, Apr 14 1995 Unisn Incorporated Method of and apparatus for making a dental set-up model
5607305, Jul 12 1993 Nobel Biocare Services AG Process and device for production of three-dimensional dental bodies
5614075, Oct 01 1993 Method of incremental object fabrication
5621648, Aug 02 1994 CRUMP GROUP, INC , THE Apparatus and method for creating three-dimensional modeling data from an object
5645420, Jul 12 1993 Ortho-Tain, Inc. Multi-racial preformed orthodontic treatment applicance
5645421, Apr 28 1995 Great Lakes Orthodontics Ltd.; GREAT LAKES ORTHODONTICS, LTD Orthodontic appliance debonder
5655653, Jul 11 1995 Minnesota Mining and Manufacturing Company Pouch for orthodontic appliance
5683243, Nov 09 1992 Ormco Corporation Custom orthodontic appliance forming apparatus
5692894, Apr 08 1996 SCHWARTZ, DANN Thermoformed plastic dental retainer and method of construction
5718585, Sep 15 1995 Dentsply Research & Development Corp.; Dentsply Research & Development Corp Prosthetic teeth and mold making therefor
5725376, Feb 26 1997 TECHNIQUE D USINAGE SINLAB INC Methods for manufacturing a dental implant drill guide and a dental implant superstructure
5725378, Aug 16 1996 Artificial tooth assembly
5733126, Jul 12 1993 Nobel Biocare Services AG Process and device for production of three-dimensional bodies
5740267, May 29 1992 GUIBOR, INC Radiographic image enhancement comparison and storage requirement reduction system
5742700, Aug 10 1995 CARESTREAM HEALTH, INC Quantitative dental caries detection system and method
5799100, Jun 03 1996 University of South Florida Computer-assisted method and apparatus for analysis of x-ray images using wavelet transforms
5800174, Feb 18 1994 Nobel Biocare Services AG Method using an articulator and computer to represent an individual's bite
5803788, May 02 1996 NOW & FOREVER CORPORATION Figurine having a sublimated image for a face
5823778, Jun 14 1996 The United States of America as represented by the Secretary of the Air Imaging method for fabricating dental devices
5848115, May 02 1997 General Electric Company Computed tomography metrology
5857853, Jul 26 1993 Nobel Biocare Services AG Method of manufacturing a prosthesis to be fixed to implants in the jawbone of a patient, and a system for manufacturing such prostheses
5866058, May 29 1997 Stratasys Inc. Method for rapid prototyping of solid models
5879158, May 20 1997 ST LOUIS UNIVERSITY Orthodontic bracketing system and method therefor
5880961, Aug 02 1994 CRUMP GROUP, INC , THE Appararus and method for creating three-dimensional modeling data from an object
5880962, Jul 12 1993 Nobel Biocare Services AG Computer aided processing of three-dimensional object and apparatus thereof
5934288, Apr 23 1998 General Electric Company Method and apparatus for displaying 3D ultrasound data using three modes of operation
5957686, Apr 29 1997 Incisor block
5964587, Sep 16 1998 Bite control point and a method to form a projection on tooth surface
5971754, Jul 30 1998 3M Innovative Properties Company Indirect bonding method and adhesive for orthodontic treatment
5975893, Jun 20 1997 Align Technology, INC Method and system for incrementally moving teeth
6015289, Nov 09 1992 Ormco Corporation Custom orthodontic appliance forming method and apparatus
6044309, Nov 07 1996 Kabushiki Kaisha F A Labo Three-dimensional machining method and recording medium stored with a three-dimensional machining control program
6049743, Sep 05 1997 NEW ENERGY AND INDUSTRIAL TECHNOLOGY DEVELOPMENT ORGANIZATION MEDICAL AND WELFARE EQUIPMENT DEPARTMENT Method of designing dental prosthesis model and computer program product therefor
6062861, Feb 18 1994 Nobel Biocare Services AG Method and arrangement using an articulator and computer equipment
6068482, Oct 04 1996 CARDIOVENTION, INC Method for creation and utilization of individualized 3-dimensional teeth models
6099314, Jul 21 1995 Cadent Ltd. Method and system for acquiring three-dimensional teeth image
6123544, Dec 18 1998 3M Innovative Properties Company Method and apparatus for precise bond placement of orthodontic appliances
6152731, Sep 22 1997 3M Innovative Properties Company Methods for use in dental articulation
6183248, Nov 30 1998 Align Technology, INC System and method for releasing tooth positioning appliances
6190165, Mar 23 1999 Ormco Corporation Plastic orthodontic appliance having mechanical bonding base and method of making same
6210162, Jun 20 1997 Align Technology, INC Creating a positive mold of a patient's dentition for use in forming an orthodontic appliance
6217325, Jun 20 1997 ALIGN TECHNOLOGY, INC. Method and system for incrementally moving teeth
6217334, Jan 28 1997 HEALTHCARE FINANCIAL SOLUTIONS, LLC, AS SUCCESSOR AGENT Dental scanning method and apparatus
6241355, Mar 29 1996 Computer aided contact lens design and fabrication using spline surfaces
6244861, Nov 09 1992 Ormco Corporation Custom orthodontic appliance forming method and apparatus
6244926, Oct 23 1995 TPC ACQUISITION LLC Realistic doll head system and method therefor
6309215, Jun 20 1997 Align Technology, INC Attachment devices and method for a dental applicance
6315553, Nov 30 1999 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Method and apparatus for site treatment of an orthodontic patient
6322359, Sep 22 1997 3M Innovative Properties Company Method for use in dental articulation
6350120, Nov 30 1999 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Method and apparatus for designing an orthodontic apparatus to provide tooth movement
6382975, Feb 26 1997 Technique D'Usinage Sinlab Inc. Manufacturing a dental implant drill guide and a dental implant superstructure
6398548, Jun 20 1997 Align Technology, INC Method and system for incrementally moving teeth
6402707, Jun 28 2000 Densys Ltd Method and system for real time intra-orally acquiring and registering three-dimensional measurements and images of intra-oral objects and features
6464496, Nov 30 1999 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Method and apparatus for determining and monitoring orthodontic treatment
6482298, Sep 27 2000 International Business Machines Corporation Apparatus for electroplating alloy films
6524101, Apr 25 2000 ALIGN TECHNOLOGY, INC. System and methods for varying elastic modulus appliances
6554611, Jun 20 1997 ALIGN TECHNOLOGY, INC. Method and system for incrementally moving teeth
6554613, Apr 19 2000 SOLAR CAPITAL LTD , AS SUCCESSOR AGENT Method and apparatus for generating an orthodontic template that assists in placement of orthodontic apparatus
6572372, Apr 25 2000 ALIGN TECHNOLOGY INC Embedded features and methods of a dental appliance
6633789, Feb 17 2000 ALIGN TECHNOLOGY, INC. Effiicient data representation of teeth model
20030051255,
20040073417,
20040265770,
AU3031677,
AU517102,
AU5598894,
CA1121955,
DE2749802,
DE69327661,
EP667753,
EP91876,
EP299490,
EP376873,
EP490848,
EP541500,
EP731673,
EP774933,
ES463897,
FR2369828,
FR2652256,
GB1550777,
JP428359,
JP53058191,
JP8508174,
RE35169, Apr 30 1993 Ormco Corporation Method for determining orthodontic bracket placement
WO9008512,
WO9104713,
WO9410935,
WO9832394,
WO9844865,
WO9858596,
//
Executed onAssignorAssigneeConveyanceFrameReelDoc
Jul 20 2000ALIGN TECHNOLOGY, INC.(assignment on the face of the patent)
Mar 27 2001SIMKINS, BARRYAlign Technology, INCASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS 0117280041 pdf
Date Maintenance Fee Events
Dec 03 2010ASPN: Payor Number Assigned.
Dec 03 2010RMPN: Payer Number De-assigned.
Dec 16 2010M1551: Payment of Maintenance Fee, 4th Year, Large Entity.
Dec 24 2014M1552: Payment of Maintenance Fee, 8th Year, Large Entity.
Jan 03 2019M1553: Payment of Maintenance Fee, 12th Year, Large Entity.


Date Maintenance Schedule
Jul 17 20104 years fee payment window open
Jan 17 20116 months grace period start (w surcharge)
Jul 17 2011patent expiry (for year 4)
Jul 17 20132 years to revive unintentionally abandoned end. (for year 4)
Jul 17 20148 years fee payment window open
Jan 17 20156 months grace period start (w surcharge)
Jul 17 2015patent expiry (for year 8)
Jul 17 20172 years to revive unintentionally abandoned end. (for year 8)
Jul 17 201812 years fee payment window open
Jan 17 20196 months grace period start (w surcharge)
Jul 17 2019patent expiry (for year 12)
Jul 17 20212 years to revive unintentionally abandoned end. (for year 12)