A pattern inspection method and apparatus, wherein the target area is limited to a line part, having a simplified configuration and capable of detecting a killer defect as a defect candidate and considerably reducing the number of non-killer defects to be detected as defect candidates, have been disclosed. The present invention relates to a pattern inspection method and apparatus for judging non-matching parts to be defects by making a comparison between the same patterns having a line part in which a line extending in the longitudinal or transverse direction appears repetitively at a fixed pitch, wherein an average level of gray level data is calculated for each pixel columns in the direction in which the line extends, a type of the area of each pixel columns is classified into groups, a threshold value is determined for each area according to the statistical processing result of the type and the difference data of each pixel column, and the difference data is judged based on the threshold value.
|
1. A pattern inspection method for judging non-matching parts to be defects by making a comparison between the same patterns having a line part in which a line extending in the longitudinal or transverse direction appears repetitively at a fixed pitch,
wherein gray level data is generated by capturing the image of the pattern,
wherein difference data is generated by calculating the difference in the gray level data between corresponding pixels of patterns to be compared,
wherein average gray level data is generated by calculating the average level of the gray level data for each pixel column in the direction in which the line extends in a fixed range in the line part,
wherein a type of the area to which each pixel column belongs is determined by statistically processing the average gray level data,
wherein a threshold value is determined for each area according to the statistical processing result of the type of the area and the difference data of each pixel column, and
wherein the difference data of each area is compared with the threshold value and the part where the difference data is larger than the threshold value is judged to be a defect.
3. A pattern inspection apparatus for judging non-matching parts to be a defect by making a comparison between the same patterns having a line part in which a line extending in the longitudinal or transverse direction appears repetitively at a fixed pitch, comprising:
an image generation apparatus for generating a multi-valued image of the pattern;
a difference data generation circuit for generating difference data by calculating the difference between two patterns to be compared;
an average gray level generation section for generating average gray level data by calculating the average level of the gray level data for each pixel in the direction in which the line extends in a fixed range in the line part;
an area type determination section for determining a type of the area to which each pixel column belongs by statistically processing the average gray level data;
a threshold value determination section for determining a threshold value for each area according to the statistical processing result of the type of the area and the difference data of each pixel column; and
a judgment section for comparing the difference data of each area with the threshold value and judging the part where the difference data is larger than the threshold value to be a defect.
2. A pattern inspection method, as set forth in
4. A pattern inspection apparatus, as set forth in
|
This application claims priority of Japanese Patent Application Number 2002-308169, filed on Oct. 23, 2002.
The present invention relates to a pattern inspection method, and a pattern inspection apparatus, for detecting a pattern defect, by comparing patterns which should be essentially the same, and judging non-matching parts as defects. More particularly, the present invention relates to an inspection method and an inspection apparatus for detecting a defect in a pattern having a line part, which is frequently found in a semiconductor wafer, a photomask, a liquid crystal display panel, and so forth, and in which a line extending in the longitudinal or transverse direction appears repetitively and at a fixed pitch.
A fixed pattern is repetitively formed on a semiconductor wafer, a semiconductor memory photomask, a liquid crystal display panel, and so forth. Therefore a pattern defect is detected currently by capturing the optical image of the pattern and comparing neighboring patterns. If no difference is found between the two patterns by comparison, the patterns are judged to be nondefective and if any difference is found, it is judged that a defect exists in one pattern. Since such an apparatus is generally called an appearance inspection apparatus, this term is used here. In the following description, a semiconductor wafer appearance inspection apparatus, which inspects the patterns formed on a semiconductor wafer for a defect, is described as an example. The present invention, however, is not limited to this case, but it is applicable to an appearance inspection apparatus for a semiconductor memory photomask, a liquid crystal display panel, and so forth, and moreover, applicable to any apparatus as long as it has a configuration in which patterns, which should be essentially the same, are compared for defect inspection.
The manufacture of a semiconductor device includes a great number of processes and it is important to detect the occurrence of defects in the final and intermediate processes and to feed back the result to the manufacturing process in order to improve the yield and, therefore, an appearance inspection apparatus is widely used to detect defects.
The image generation section 1 comprises a stage 18 that holds a semiconductor wafer 19, an optical system 11 that generates the surface image of the semiconductor wafer 19, and a control unit 20. The optical system 11 comprises a light source 12, illuminating lenses 13 and 14 that converge the illuminating light from the light source 12, a beam splitter 15 that reflects illuminating light and passes through image light, an objective lens 16 that irradiates the surface of the semiconductor wafer 19 with illuminating light and at the same time that projects the optical image of the surface of the semiconductor wafer 19, and an image pickup device 17 that converts the projected optical image of the surface of the semiconductor wafer 19 into an electrical image signal. As for the image pickup device 17, a TV camera employing a two-dimensional CCD element or the like can be used, but in most cases, a line sensor, such as a one-dimensional CCD, is used to obtain an image signal with high resolution and images are captured by relatively moving (scanning) the semiconductor wafer 19 using the stage 18. Therefore, if optical images are captured by the line sensor in the course of movement of the semiconductor wafer 19 in the direction of the repetitive array of patterns, the image signal of the same part of the pattern is eventually generated at fixed time intervals. As the configuration of the image generation section 11 is widely known, a description is not given here.
The defect candidate detection section 2 comprises an analog-digital converter (A/D) 21 that converts an image signal output from the image pickup device 17 into multi-valued digital image data and a defect detection processing circuit 22 that processes the digital image data, compares the same parts of the pattern, and detects a defect candidate. The process in the defect candidate detection section 2 will be described later.
The ADC 3 analyzes the digital image data of the part of a defect candidate reported from the defect candidate detection section 2 and classifies the defect candidate as a true defect or not.
Next, the process in the defect detection processing circuit 22 is further described. As described above, a plurality of semiconductor chips (dies) are formed on the semiconductor wafer so as to be regularly arranged. The pattern of each die is identical because the same mask pattern is used. Therefore, the same pattern appears repetitively at a pitch of the die array as shown in
As described above, the semiconductor wafer 19 is scanned by the optical system 11 that has a line sensor 17, and the image data corresponding to the scan width is generated sequentially as the scanning time elapses. Therefore, when double detection is carried out, the image of die A is delayed by one repetition period and compared with the image of die B sequentially, then similarly, the image of die B is delayed by one repetition period and compared with the image of die C sequentially, and thus the double detection process of die B is completed, as shown in
A unit pattern called a cell is arranged repetitively at a fixed period in the memory cell array of a semiconductor memory. In such a part, a comparison between cells can be made, and such a comparison is called the cell-cell-comparison.
The double detection process must be performed in synchronization with generation of image data and a very high-speed processing ability is required. Although a circuit to perform such a process can be realized by a configuration in which a delay memory and a comparison circuit are combined, in most cases, it is realized by a configuration containing a pipeline processing data processor and a working memory because it is difficult to align positions for comparison and make the repetition period variable.
It is essential for a semiconductor wafer appearance inspection apparatus to be capable of detecting every part that includes a difference without fail, therefore, it is designed so as to recognize a part, as a defect, at which the difference between the two images exceeds a fixed threshold value, as described above. Therefore, the number of the parts judged to be a defect candidate depends considerably on the specified threshold value. As described above, the part judged to be a defect candidate is reported to the ADC 3 and it is determined whether it is a fatal defect (killer defect) that affects the yield of the semiconductor device. A problem, however, is caused that the time required for analysis increases if the number of the defect candidates increases and the throughput is degraded, because it is difficult to perform the pipeline processing of this part and a considerable time is required for the analysis of one part. Therefore, it is preferable that the double detection circuit 22 detects every killer defect as a defect candidate without fail, but detects as few non-killer defects as possible as a defect candidate.
There is, however, another problem that it is difficult to meet the demand only with the setting of a threshold value because the part at which the difference between two images is large is not always a killer defect. In the metal process of a semiconductor device, for example, the killer defect that users want to detect is a defect such as a short between patterns and it is preferable if a non-killer defect such as a metal grain is separated from a defect candidate. Generally in most cases, however, the difference in gray level caused by a metal grain is by far larger than that caused by a short between patterns. Therefore, if a threshold value is set to a value so that a metal grain is not at all detected as a defect candidate, a short between patterns, which should be primarily detected, is hardly detected. As a result, a threshold value is set to a value so that a short between patterns is detected without fail, and both a short and a metal grain are detected temporarily as a defect candidate, and then the ADC 3 classifies them according to whether it is a killer defect or not.
Conventionally, the ADC 3 was not provided and the classification was performed by a visual inspection of each defect candidate that had been moved again to the stage of a microscope by using an appearance inspection apparatus or another apparatus called a review station, therefore, an enormous amount of time was required for classification when there occurred many metal grains. Recently, the trend is toward automation of classification by providing the ADC 3, but for the automatic classification to be realized, the image of the die that includes the detected defect candidate and at least one of the die images used in the comparison are needed, and it is necessary to obtain these images again, send them to the ADC 3, and detect the defect candidate again before the defect classifying process is performed. If a memory with a capacity large enough to store the image data of all dies on one semiconductor wafer is provided, as described above, it is no longer necessary to obtain image data of the semiconductor wafer again for analysis of defective parts in the ADC 3, but the memory capacity required for the image data of all the dies is tremendously large, resulting in considerable increase in cost.
As described above, the double detection circuit performs the comparison process at a high speed such as, for example, 1G pixel/second, in order to realize a high throughput and, therefore, this part forms a considerable proportion of the cost of the appearance inspection apparatus. In other words, it can be said that the cost of the apparatus and the throughput thereof are in a trade-off relationship, and the processing performance of the double detection circuit (a pipeline processing data processor and a memory) used to be specified, various factors being taken into consideration. As a result, for example, an upper limit is set to the number of defect candidates that can be reported per unit processed image, and when the number of detected defect candidates exceeds the upper limit, it is reported that a large defect exists in the unit processed image. As described above, there is a problem that a tremendous cost and processing time are required in order to send two pieces of image data relating to all of the detected defect candidates to the automatic defect classification (ADC) section and detect again the defect candidates among all of the defect candidates for classification in the ADC.
An example of the defect detection process is described using a case where the image of a semiconductor memory metal wire layer is captured by a bright field microscope. The metal wire layer, which corresponds to the memory array of a semiconductor memory, has a pattern in which a line extending in one direction appears repetitively at a fixed period. Such a part is called a line part here.
As shown in
Generally, a metal grain has a sectional structure as shown in
In this example, that is, in the conventional judging method in which the absolute value of a difference between images is compared with a single threshold value, it is unlikely that on one hand a pattern short between metal wires is detected, and on the other hand a grain on the metal wire avoids detection. This is because the difference in gray level between the pattern short part and the normal space part is only 30, but that between the small grain part and the normal metal wire part is 50. In other words, the setting of a threshold value will be a big problem.
Therefore, various methods for determining a threshold value have been proposed. For example, in Japanese Unexamined Patent Publication (Kokai) No. 4-107946, a method has been disclosed in which differences in gray level are calculated at multiple parts of a pattern and a threshold value is determined based on the statistics of them. In Japanese Unexamined Patent Publication (Kokai) No. 5-47886, a method has been disclosed in which an approximation of a curve is calculated from the relationship between the gray level difference and the frequency, and a gray level difference at which the value of the approximation of the curve becomes zero is taken as an optimum threshold value. In Japanese Unexamined Patent Publication (Kokai) No. 2002-22421, a method has been disclosed in which an error probability conversion is carried out based on the standard deviation.
Moreover, in Japanese Unexamined Patent Publication (Kokai) No. 2000-171404, a method and an apparatus for inspecting a pattern have been disclosed, in which, by using an elongated filter, an average gray level and a range in which the gray level changes within the filter are calculated, thereby a direction in which the line pattern extends is detected and at the same time each pixel is classified into a group, and an optimum threshold value is set.
As described above, the metal wire layer of a memory cell array of a semiconductor memory element has a line part and because the metal wire line appears repetitively at a very fine pitch in this line part, a defect is more likely to occur and the grain also does. Therefore, a pattern inspection method and a pattern inspection apparatus, having a simplified configuration and a high processing speed, and capable of detecting a killer defect in a line part in a highly sensitive manner without detecting a non-killer defect, are desired, even though the target range is limited only to the line part.
The object of the present invention is to realize a pattern inspection method and a pattern inspection apparatus having a simplified configuration and capable of not only detecting a killer defect as a defect candidate but also considerably reducing the number of non-killer defects to be detected as a defect candidate, even though the target range is limited to only a line part.
In order to realize the above-mentioned object, the pattern inspection method and the pattern inspection apparatus of the present invention are characterized in that, as to a line part, an average level of gray level data is calculated for each pixel column in the direction in which a line extends and the type of the area of each pixel column is classified into groups, a threshold value is determined for each area based on the statistic process result of the type and the difference data of each pixel column, and the difference data is judged based on the threshold value.
In other words, in the pattern inspection method and apparatus of the present invention, a pattern having a line part where a line extending in the longitudinal or transverse direction appears repetitively at a fixed pitch is compared with another identical pattern, and a non-matching part is judged to be a defect, and the pattern inspection method and the apparatus are characterized in that the image of the pattern is captured and the gray level data is created, the difference in the gray level data between two corresponding pixels of the patterns to be compared is calculated and thus difference data is created, an average level of the gray level data for each pixel column in the direction in which the line extends is calculated in a fixed range in the line part and average gray level data is created, the average gray level data is statistically processed and the type of an area to which each pixel column belongs is determined, a threshold value is determined for each area according to the statistical process result of the type of the area and the difference data for each pixel column, the difference data in each area is compared with the threshold value, and the part where the difference data is larger than the threshold value is judged to be a defect.
The direction in which the line extends and the fixed range in the line part are determined and set based on the data of the pattern to be inspected. It is possible to manually make the judgment or to provide a means for automatically analyzing the data of the pattern to be inspected.
Although the target area is limited to a line part in the present invention, it is possible to securely classify the types of an area of each pixel (pixel column) into groups with a simplified configuration, therefore, it is also possible to securely detect a killer defect as a defect candidate and considerably reduce the number of non-killer defects (grains) to be detected as a defect candidate because a proper threshold value can be set according to the classification.
The features and advantages of the invention will be more clearly understood from the following description taken in conjunction with the accompanying drawings, wherein:
As shown schematically, the defect candidate detection section in the present embodiment differs from the conventional defect candidate detection section shown in
The line part range/line direction detection section 32 obtains the range of the line part and the line direction by analyzing the pattern data of an object to be inspected, and sends the information to the threshold value setting section 31. It is also possible for an operator to determine the line part range and the line direction by analyzing the pattern data and input the information to the threshold value setting section 31 providing the line part range/line direction detection section 32.
In step 101, the line part range and the line direction are set by the line part range/line direction detection section 32. It is assumed that a stage 18 in the semiconductor wafer appearance inspection apparatus in the present embodiment is provided with a high precision position/direction aligning mechanism, and the direction of the pattern line of the semiconductor memory and the direction of the pixel column can be adjusted so that they are exactly identical.
It is assumed that an image is obtained as an image of the line part, in which bright lines 61 and dark lines 62 are arranged alternately at a fixed pitch as shown in
In step 102, the threshold value setting section 31 calculates the average of gray levels for each pixel column in the direction in which a line extends in the line part range. The gray level average changes as shown in
In step 103, the threshold value setting section 31 creates a histogram of gray level averages.
Next, the area of the histogram is divided into some types of areas. For example, when the area is divided into a bright area and a dark area, the area is divided by a line corresponding to the fixed density D. When the pixel pitch is not the same as the line pitch, there exists an intermediate gray level pixel and, in this case, it is desirable to divide the area into three or more areas by setting an intermediate area(s) between the bright area and the dark area.
It is necessary to perform the processes in steps 101 to 103 on only one of two images to be compared, but of course they can be performed on both images. In this case, because the position alignment and correction are performed accurately, almost the same results are eventually obtained from the two images.
In step 104, a difference calculation section 24 calculates the difference between two images to be compared and calculates the gray level difference (difference image). This process can be performed concurrently with the processes in steps 101 to 103 described above.
In step 105, a threshold value is determined for each area determined in step 103 based on the result of the statistical process of the gray level differences of the pixels in the pixel columns belonging to the area. There can be various methods for determining a threshold such as a method in which a certain proportion of the average gray level difference is taken as a threshold for each area and a method in which a threshold value is determined by creating a histogram of gray level differences for each area.
It is also possible to set a fixed threshold value for each area without performing step 105.
In step 106, the gray level difference of pixels in each area is compared with the threshold value determined for each area, as described above, and the area is judged to be a defect candidate when the gray level difference is larger than the threshold value.
In general, the metal wire line has a high gray level and is grouped into the bright area and the area between the metal wire lines is grouped into the dark area, therefore, if the threshold value in the bright area is set to a value sufficiently larger than the threshold value in the dark area, a metal wire grain, which is a non-killer defect, is not detected as a defect candidate, but a short between metal wires, which is a killer defect, is detected as a defect candidate, as a result.
According to the present invention, as described above, although the applicable area is limited to a line part where a line appears repetitively, it is possible to obtain the effect that a pattern inspection method and a pattern inspection apparatus having a simplified configuration can be realized, which are capable of easily grouping each pixel of an image into some areas and setting a proper threshold value for each value, whereby a killer defect is detected, as a defect candidate, and the number of non-killer defects to be detected, as defect candidates, can be considerably reduced.
Patent | Priority | Assignee | Title |
7747063, | Aug 08 2005 | SAMSUNG ELECTRONICS CO , LTD | Method and apparatus for inspecting a substrate |
8213704, | May 09 2007 | KLA-Tencor Corporation | Methods and systems for detecting defects in a reticle design pattern |
8260043, | Oct 10 2007 | Sharp Kabushiki Kaisha | Image processing apparatus, image forming apparatus, image processing method, and recording medium on which image processing program is recorded |
8482820, | Oct 13 2009 | Olympus Corporation | Image-capturing system |
8503819, | Nov 20 2007 | QUANTA COMPUTER INC. | Method and circuit for correcting defect pixels in image signal |
9983154, | Dec 14 2015 | IMEC VZW | Method for inspecting a pattern of features on a semiconductor die |
Patent | Priority | Assignee | Title |
5091963, | May 02 1988 | The Standard Oil Company | Method and apparatus for inspecting surfaces for contrast variations |
6229331, | Dec 02 1998 | Tokyo Seimitsu Co., Ltd. | Apparatus for and method of inspecting patterns on semiconductor integrated devices |
20020146171, | |||
JP11135583, | |||
JP2000171404, | |||
JP200222421, | |||
JP4107946, | |||
JP547886, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Sep 05 2003 | KUWABARA, MASAYUKI | TOKYO SEIMITSU CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014632 | /0620 | |
Oct 22 2003 | Tokyo Seimitsu Co., Ltd | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Dec 22 2010 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Feb 01 2011 | ASPN: Payor Number Assigned. |
Feb 01 2011 | RMPN: Payer Number De-assigned. |
Dec 31 2014 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Mar 11 2019 | REM: Maintenance Fee Reminder Mailed. |
Aug 26 2019 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Jul 24 2010 | 4 years fee payment window open |
Jan 24 2011 | 6 months grace period start (w surcharge) |
Jul 24 2011 | patent expiry (for year 4) |
Jul 24 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 24 2014 | 8 years fee payment window open |
Jan 24 2015 | 6 months grace period start (w surcharge) |
Jul 24 2015 | patent expiry (for year 8) |
Jul 24 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 24 2018 | 12 years fee payment window open |
Jan 24 2019 | 6 months grace period start (w surcharge) |
Jul 24 2019 | patent expiry (for year 12) |
Jul 24 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |