A radar apparatus includes a modulation signal generating unit that generates a modulation signal based on an internal clock with a cycle Tc and generates a trigger signal in synchronization with the modulation signal, a carrier wave generating unit that generates a carrier wave, a modulation unit that generates and outputs a high frequency signal by modulating the carrier wave using the modulation signal, a modulation signal extracting unit that extracts the modulation signal from a component of the high frequency signal that has been transmitted via a transmission antenna, the component having been reflected by a measured object and received by a reception antenna, a detection signal generating unit that generates a detection signal, for measuring a distance to the measured object, based on the trigger signal and the extracted modulation signal, and a pulse width calculating unit that calculates a pulse width of the detection signal.
|
2. A radar apparatus comprising:
a modulation signal generating unit that generates a modulation signal with a predetermined pulse width based on an internal clock with a cycle Tc and generates a trigger signal in synchronization with the modulation signal;
a carrier wave generating unit that generates a carrier wave;
a modulation unit that generates a high frequency signal by modulating the carrier wave using the modulation signal that has been inputted and outputs the high frequency signal;
a modulation signal extracting unit that extracts the modulation signal from a component of the high frequency signal that has been transmitted via a transmission antenna, the component having been reflected by a measured object and received by a reception antenna;
a detection signal generating unit that generates a detection signal, which can be used to measure a distance to the measured object, based on the trigger signal and the modulation signal extracted by the modulation signal extracting unit; and
a pulse width calculating unit that calculates a pulse width of the detection signal, wherein the pulse width calculating unit comprises:
a delay circuit that generates (n−i) delayed internal clocks by delaying the internal clock that has been inputted by Tc/n, 2×Tc/n, . . . , (n−1)×Tc/n, where n is a natural number of 2 or greater;
n counter circuits that respectively carry out count operations in synchronization with rising edges or falling edges of the internal clock and the respective delayed internal clocks while the detection signal is being inputted; and
a calculating circuit that calculates a sum of count values of the respective counter circuits and multiplies the sum by Tc/n and adds Tc/(2×n) to a result of multiplying the sum to calculate the pulse width of the detection signal.
1. A radar apparatus comprising:
a modulation signal generating unit that generates a modulation signal with a predetermined pulse width based on an internal clock with a cycle Tc and generates a trigger signal in synchronization with the modulation signal;
a carrier wave generating unit that generates a carrier wave;
a modulation unit that generates a high frequency signal by modulating the carrier wave using the modulation signal that has been inputted and outputs the high frequency signal;
a modulation signal extracting unit that extracts the modulation signal from a component of the high frequency signal that has been transmitted via a transmission antenna, the component having been reflected by a measured object and received by a reception antenna;
a detection signal generating unit that generates a detection signal, which can be used to measure a distance to the measured object, based on the trigger signal and the modulation signal extracted by the modulation signal extracting unit; and
a pulse width calculating unit that calculates a pulse width of the detection signal, wherein the pulse width calculating unit comprises:
a delay circuit that generates (n−1) delayed detection signals by delaying the detection signal that has been inputted by Tc/n, 2×Tc/n, . . . , (n−1)×Tc/n, where n is a natural number of 2 or greater;
n counter circuits that respectively carry out count operations in synchronization with rising edges or falling edges of the internal clock while the detection signal and the respective delayed detection signals are being inputted; and
a calculating circuit that calculates a sum of count values of the respective counter circuits and multiplies the sum by Tc/n and adds Tc/(2×n) to a result of multiplying the sum to calculate the pulse width of the detection signal.
4. A radar apparatus comprising:
a modulation signal generating unit that generates a modulation signal with a predetermined pulse width based on an internal clock with a cycle Tc and generates a trigger signal in synchronization with the modulation signal;
a carrier wave generating unit that generates a carrier wave;
a modulation unit that generates a high frequency signal by modulating the carrier wave using the modulation signal that has been inputted and outputs the high frequency signal;
a modulation signal extracting unit that extracts the modulation signal from a component of the high frequency signal that has been transmitted via a transmission antenna, the component having been reflected by a measured object and received by a reception antenna;
a detection signal generating unit that generates a detection signal, which can be used to measure a distance to the measured object, based on the trigger signal and the modulation signal extracted by the modulation signal extracting unit; and
a pulse width calculating unit that calculates a pulse width of the detection signal, wherein the pulse width calculating unit comprises:
a delay circuit that generates (n−1) delayed internal clocks by delaying the internal clock that has been inputted by Tc/(2×n), 2×Tc/(2×n), . . . , (n−1)×Tc/(2×n), where n is a natural number of 2 or greater;
n counter circuits that respectively carry out count operations in synchronization with rising edges and falling edges of the internal clock and the respective delayed internal clocks while the detection signal is being inputted; and
a calculating circuit that calculates a sum of count values of the respective counter circuits and multiplies the sum by Tc/(2×n) and adds Tc/(4×n) to a result of multiplying the sum to calculate the pulse width of the detection signal.
3. A radar apparatus comprising:
a modulation signal generating unit that generates a modulation signal with a predetermined pulse width based on an internal clock with a cycle Tc and generates a trigger signal in synchronization with the modulation signal;
a carrier wave generating unit that generates a carrier wave;
a modulation unit that generates a high frequency signal by modulating the carrier wave using the modulation signal that has been inputted and outputs the high frequency signal;
a modulation signal extracting unit that extracts the modulation signal from a component of the high frequency signal that has been transmitted via a transmission antenna, the component having been reflected by a measured object and received by a reception antenna;
a detection signal generating unit that generates a detection signal, which can be used to measure a distance to the measured object, based on the trigger signal and the modulation signal extracted by the modulation signal extracting unit; and
a pulse width calculating unit that calculates a pulse width of the detection signal, wherein the pulse width calculating unit comprises:
a delay circuit that generates (n−1) delayed detection signals by delaying the detection signal that has been inputted by Tc/(2×n), 2×Tc/(2×n), . . . , (n−1)×Tc/(2×n), where n is a natural number of 2 or greater;
n counter circuits that respectively carry out count operations in synchronization with rising edges and falling edges of the internal clock while the detection signal and the respective delayed detection signals are being inputted; and
a calculating circuit that calculates a sum of count values of the respective counter circuits and multiplies the sum by Tc/(2×n) and adds Tc/(4×n) to a result of multiplying the sum to calculate the pulse width of the detection signal.
|
1. Field of the Invention
The present invention relates to a radar apparatus that is installed inside a vehicle or the like, for example, and is constructed so as to be capable of detecting a distance to a measured object such as an obstacle.
2. Description of the Related Art
A radar apparatus disclosed in Japanese Laid-Open Patent Publication No. H07-244154 is one example of this kind of radar apparatus. As shown in FIG. 1 of the publication, the radar apparatus includes a trigger signal generating circuit, a transmitting means, a reflected signal receiving circuit, and a distance detecting circuit. Here, the reflected signal receiving circuit includes a PD (photodiode), a logarithmic amplifier circuit, an A/D converter, and a reflected waveform memory. In this radar apparatus, the trigger signal generating circuit supplies a transmission start signal to the transmitting means and a conversion start signal to the A/D converter. Next, the A/D converter starts A/D conversion from a point when the start signal is inputted from the trigger signal generating circuit. By doing so, the waveform of a reflected signal from a start of transmission by the transmitting means is stored at sampling intervals in temporal order as digital data in the reflected waveform memory. On the other hand, the distance detecting circuit detects rises in the waveform of the reflected signal stored in the reflected waveform memory and, based on the product of the number of pieces of digital data that have been stored and the sampling interval, finds the time from the start of recording for the waveform of the reflected signal (i.e., the start for A/D conversion by the A/D converter) until the detected rise, and detects the distance to the reflecting body from the calculated time and the speed of light.
By investigating the radar apparatus described above, the present inventors discovered the following problems. In the above radar apparatus, circuits such as the trigger signal generating circuit and the reflected signal receiving circuit are normally designed to operate in synchronization with an internal clock outputted by a crystal oscillator disposed inside the apparatus. This means that in the above radar apparatus, the timing of the start of recording of the waveform of the reflected signal by the A/D converter that starts A/D conversion based on the start signal and the sampling clock of the A/D converter are also thought to be synchronized with the internal clock. On the other hand, since the reflected signal is proportional to the distance to the reflecting object, the rising point of the waveform of the reflected signal is asynchronous with the sampling clock. For this reason, at such asynchronous part, a measurement error of up to one cycle of the sampling clock is always present. Since the resolution for the time from the start of recording of the waveform of the reflected signal to the rise is around one cycle of the sampling clock, the resolution for the distance to the reflecting object is the product of one cycle of the sampling clock and the speed of light, resulting in the problem that high resolution measurement is not possible. There is a further problem in that since the measurement error described above is unrelated to the time from the start of recording for the waveform of the reflected signal to the detected rise, the shorter the time from the start of recording for the waveforms of the reflected signal until the detected rise, that is, the shorter the distance to the reflecting object, the larger the relative error in the measurement of distance.
The above problem can be improved by increasing the frequency of the sampling clock. However, as the frequency of the sampling clock is increased, it normally becomes necessary to use high-speed electronic components, which are costly compared to low-speed electronic components, resulting in the problem of a large increase in the manufacturing cost of the radar apparatus.
The present invention was conceived in view of the above problems, and it is a principal object of the present invention to provide a radar apparatus that has increased resolution for measuring distances without increasing the frequency of the internal clock.
A first radar apparatus according to the present invention includes: a modulation signal generating unit that generates a modulation signal with a predetermined pulse width based on an internal clock with a cycle Tc and generates a trigger signal in synchronization with the modulation signal; a carrier wave generating unit that generates a carrier wave; a modulation unit that generates a high frequency signal by modulating the carrier wave using the modulation signal that has been inputted and outputs the high frequency signal; a modulation signal extracting unit that extracts the modulation signal from a component of the high frequency signal that has been transmitted via a transmission antenna, the component having been reflected by a measured object and received by a reception antenna; a detection signal generating unit that generates a detection signal, which can be used to measure a distance to the measured object, based on the trigger signal and the modulation signal extracted by the modulation signal extracting unit; and a pulse width calculating unit that calculates a pulse width of the detection signal, wherein the pulse width calculating unit includes: a delay circuit that generates (n−1) delayed detection signals by delaying the detection signal that has been inputted by Tc/n, 2×Tc/n, . . . , (n−1)×Tc/n, where n is a natural number of 2 or greater; n counter circuits that respectively carry out count operations in synchronization with rising edges or falling edges of the internal clock while the detection signal and the respective delayed detection signals are being inputted; and a calculating circuit that calculates a sum of count values of the respective counter circuits and multiplies the sum by Tc/n to calculate the pulse width of the detection signal.
According to the first radar apparatus, the pulse width calculating unit generates (n−1) delayed detection signals by delaying the detection signal, which can be used to measure the distance to the measured object, by Tc/n, 2×Tc/n, . . . , (n−1)×Tc/n, carries out respective count operations in synchronization with rising edges or falling edges of the internal clock while the detection signal and the delayed detection signals are being inputted, calculates a sum of the n count values produced by the counting, and multiplies the sum by Tc/n to calculate the pulse width of the detection signal, so that the pulse width of the detection signal can be calculated at a high resolution of Tc/n.
A second radar apparatus according to the present invention includes: a modulation signal generating unit that generates a modulation signal with a predetermined pulse width based on an internal clock with a cycle Tc and generates a trigger signal in synchronization with the modulation signal; a carrier wave generating unit that generates a carrier wave; a modulation unit that generates a high frequency signal by modulating the carrier wave using the modulation signal that has been inputted and outputs the high frequency signal; a modulation signal extracting unit that extracts the modulation signal from a component of the high frequency signal that has been transmitted via a transmission antenna, the component having been reflected by a measured object and received by a reception antenna; a detection signal generating unit that generates a detection signal, which can be used to measure a distance to the measured object, based on the trigger signal and the modulation signal extracted by the modulation signal extracting unit; and a pulse width calculating unit that calculates a pulse width of the detection signal, wherein the pulse width calculating unit includes: a delay circuit that generates (n−1) delayed internal clocks by delaying the internal clock that has been inputted by Tc/n, 2×Tc/n, . . . , (n−1)×Tc/n, where n is a natural number of 2 or greater; n counter circuits that respectively carry out count operations in synchronization with rising edges or falling edges of the internal clock and the respective delayed internal clocks while the detection signal is being inputted; and a calculating circuit that calculates a sum of count values of the respective counter circuits and multiplies the sum by Tc/n to calculate a pulse width of the detection signal.
According to the second radar apparatus, the pulse width calculating unit generates (n−1) delayed internal clocks by delaying the internal clock by Tc/n, 2×Tc/n, . . . , (n−1)×Tc/n, carries out count operations in synchronization with rising edges or falling edges of the internal clock or respective delayed internal clocks while the detection signal, which can be used to measure a distance to the measured object, is being inputted, calculates a sum of the n count values produced by the counting, and multiplies the sum by Tc/n to calculate the pulse width of the detection signal, so that the pulse width of the detection signal can be calculated at a high resolution of Tc/n.
Here, in the first or second radar apparatus, the pulse width calculating unit may calculate the pulse width of the detection signal by adding Tc/(2×n) to a result of multiplying the sum by Tc/n. With this construction, it is possible to suppress the calculation error for the pulse width of the detection signal to a small range of ±Tc/(2×n).
A third radar apparatus according to the present invention includes: a modulation signal generating unit that generates a modulation signal with a predetermined pulse width based on an internal clock with a cycle Tc and generates a trigger signal in synchronization with the modulation signal; a carrier wave generating unit that generates a carrier wave; a modulation unit that generates a high frequency signal by modulating the carrier wave using the modulation signal that has been inputted and outputs the high frequency signal; a modulation signal extracting unit that extracts the modulation signal from a component of the high frequency signal that has been transmitted via a transmission antenna, the component having been reflected by a measured object and received by a reception antenna; a detection signal generating unit that generates a detection signal, which can be used to measure a distance to the measured object, based on the trigger signal and the modulation signal extracted by the modulation signal extracting unit; and a pulse width calculating unit that calculates a pulse width of the detection signal, wherein the pulse width calculating unit includes: a delay circuit that generates (n−1) delayed detection signals by delaying the detection signal that has been inputted by Tc/(2×n), 2×Tc/(2×n), . . . , (n−1)×Tc/(2×n), where n is a natural number of 2 or greater; n counter circuits that respectively carry out count operations in synchronization with rising edges and falling edges of the internal clock while the detection signal and the respective delayed detection signals are being inputted; and a calculating circuit that calculates a sum of count values of the respective counter circuits and multiplies the sum by Tc/(2×n) to calculate a pulse width of the detection signal.
According to the third radar apparatus, the pulse width calculating unit generates (n−1) delayed detection signals by delaying the detection signal, which can be used to measure the distance to the measured object, by Tc/(2×n), 2×Tc/(2×n), . . . , (n−1)×Tc/(2×n), carries out count operations in synchronization with rising edges and falling edges of the internal clock while the detection signal and the delayed detection signals are being inputted, calculates a sum of the n count values produced by the counting, and multiplies the sum by Tc/(2×n) to calculate the pulse width of the detection signal, so that the pulse width of the detection signal can be calculated at a high resolution of Tc/(2×n).
A fourth radar apparatus according to the present invention includes: a modulation signal generating unit that generates a modulation signal with a predetermined pulse width based on an internal clock with a cycle Tc and generates a trigger signal in synchronization with the modulation signal; a carrier wave generating unit that generates a carrier wave; a modulation unit that generates a high frequency signal by modulating the carrier wave using the modulation signal that has been inputted and outputs the high frequency signal; a modulation signal extracting unit that extracts the modulation signal from a component of the high frequency signal that has been transmitted via a transmission antenna, the component having been reflected by a measured object and received by a reception antenna; a detection signal generating unit that generates a detection signal, which can be used to measure a distance to the measured object, based on the trigger signal and the modulation signal extracted by the modulation signal extracting unit; and a pulse width calculating unit that calculates a pulse width of the detection signal, wherein the pulse width calculating unit includes: a delay circuit that generates (n−1) delayed internal clocks by delaying the internal clock that has been inputted by Tc/(2×n), 2×Tc/(2×n), . . . , (n−1)×Tc/(2×n), where n is a natural number of 2 or greater; n counter circuits that respectively carry out count operations in synchronization with rising edges and falling edges of the internal clock and the delayed internal clocks while the detection signal is being inputted; and a calculating circuit that calculates a sum of count values of the respective counter circuits and multiplies the sum by Tc/(2×n) to calculate a pulse width of the detection signal.
According to the fourth radar apparatus, the pulse width calculating unit generates (n−1) delayed internal clocks by delaying the internal clock by Tc/(2×n), 2×Tc/(2×n), . . . , (n−1)×Tc/(2×n), carries out count operations in synchronization with rising edges and falling edges of the internal clock or respective delayed internal clocks while the detection signal, which can be used to measure a distance to the measured object, is being inputted, calculates a sum of the n count values produced by the counting, and multiplies the sum by Tc/(2×n) to calculate the pulse width of the detection signal, so that the pulse width of the detection signal can be calculated at a high resolution of Tc/(2×n).
Here, in the third or fourth radar apparatus, the pulse width calculating unit may calculate the pulse width of the detection signal by adding Tc/(4×n) to a result of multiplying the sum by Tc/(2×n). With this construction, it is possible to suppress the calculation error for the pulse width of the detection signal to a small range of ±Tc/(4×n).
It should be noted that the disclosure of the present invention relates to a content of Japanese Patent Application 2003-424518 that was filed on 22 Dec. 2003 and the entire content of which is herein incorporated by reference.
These and other objects and features of the present invention will be explained in more detail below with reference to the attached drawings, wherein:
Preferred embodiments of a radar apparatus according to the present invention will now be described with reference to the attached drawings.
First, the construction of a radar apparatus (a “first radar apparatus” according to the present invention) 1 will be described with reference to the drawings.
As shown in
As shown in
As shown in
Based on the trigger signal STG and the baseband signal SRB that has been subjected to waveform shaping, the detection signal generating circuit 15 generates and outputs a detection signal Sd. More specifically, the detection signal generating unit 15 is constructed of an RS flip-flop (not shown), for example, with an output signal of the RS flip-flop being set in synchronization with the input of the trigger signal STG (as one example, in synchronization with a rising edge of the trigger signal STG) and the output signal of the RS flip-flop being reset in synchronization with the input of the baseband signal SRB (as one example, in synchronization with a rising edge of the baseband signal SRB). By doing so, a detection signal Sd that rises in synchronization with the input of the trigger signal STG and falls in synchronization with the input of the baseband signal SRB is generated. With this construction, the pulse width Tw of the detection signal Sd is equal to the time taken for the high frequency signal STR transmitted from the transmission antenna 6 to reach and return from the vehicle OB.
As shown in
Next, the overall operation of the radar apparatus 1 will be described with reference to
As shown in
On the other hand, after a predetermined time T1 has passed from output of the baseband signal STB (that is, the trigger signal STG) by the pulse generating unit 2, the reception antenna 11 inputs the high frequency signal STR that has been reflected by the vehicle OB. Here, the predetermined time T1 is the time taken for the high frequency signal STR to go back and forth on the distance L between the radar apparatus 1 and the vehicle OB, that is, the time taken to cover a distance (2×L) that is double the distance L.
Next, the mixer unit 12 mixes the high frequency signal SRR inputted from the reception antenna 11 and the carrier wave Sc to extract the baseband signal SRB. After this, the baseband signal SRB outputted from the mixer unit 12 is amplified by the amplification unit 13, subjected to waveform shaping by the comparator unit 14, and then inputted into the detection signal generating unit 15. Next, the detection signal generating unit 15 resets the output signal of the RS flip-flop in synchronization with the inputted baseband signal SRB to stop the outputting of the detection signal Sd. By doing so, the detection signal generating unit 15 outputs the detection signal Sd with the same pulse width Tw as the predetermined time T1.
On the other hand, in the pulse width calculating unit 16, the delay circuit DL1 delays the detection signal Sd generated by the detection signal generating unit 15 by Tc/4, 2×Tc/4, and 3×Tc/4 respectively to generate the delayed detection signals Sd2, Sd3, and Sd4. The counter circuit CNT11 carries out a count operation in synchronization with the internal clock CLK while the detection signal Sd is being inputted and outputs the count value D1 showing the pulse width of the detection signal Sd. Also, the counter circuits CNT12, CNT13, and CNT14 carry out a count operation in synchronization with the internal clock CLK while the delayed detection signals Sd2, Sd3, and Sd4 are respectively being inputted and output the respective count values D2, D3, and D4 showing the pulse widths of the delayed detection signals Sd2, Sd3, and Sd4.
Here, as shown in
In the same way, as shown in
The calculating circuit 16a calculates the sum Dsum of the respective count values D1 to D4 outputted in this way from the respective counter circuits CNT11 to CNT14, multiplies the total Dsum by Tc/4, and further adds Tc/(2×4) to calculate the pulse width Tw of the detection signal Sd. More specifically, when the pulse width of the detection signal Sd is the length shown in
In this way, with the radar apparatus 1, the pulse width calculating unit 16 generates, based on the detection signal Sd that can be used to measure the distance L to the vehicle OB, (n−1) delayed detection signals Sd2, Sd3, . . . , Sdn whose phases are respectively shifted by Tc/n with respect to the detection signal Sd. The respective pulse widths of the detection signal Sd and the delayed detection signals Sd2, Sd3, . . . , Sdn are counted in synchronization with the internal clock CLK using the n counter circuits CNT11, CNT12, . . . , CNT1n and the sum Dsum of the n count values D1, D2, . . . , Dn found by this counting is calculated. By multiplying the sum Dsum by Tc/n to calculate the pulse width Tw of the detection signal Sd, the pulse width Tw of the detection signal Sd can be calculated with a high resolution of Tc/n. In addition, in the radar apparatus 1, the pulse width calculating unit 16 adds a time Tc/(2×n) to the value produced by multiplying the sum Dsum by Tc/n, so that it is possible to calculate the pulse width Tw of the detection signal Sd with an error range of ±Tc/(2×n). Accordingly, even if the radar apparatus 1 is used as a radar apparatus for detecting a distance to a measured object (for example, the vehicle OB) at a short distance (for example, several tens of centimeters), the distance to the measured object can be accurately calculated.
It should be noted that the present invention is not limited to the construction described above. For example, although the radar apparatus 1 has been described by way of an example that uses counter circuits CNT11 to CNT1n, which carry out count operations in synchronization with one edge (rising edges or falling edges, in the above example, the rising edges) of the internal clock CLK as the pulse width calculating unit 16, it is also possible to construct a radar apparatus 21 that uses a pulse width calculating unit 22 shown in
Aside from using the pulse width calculating unit 22 in place of the pulse width calculating unit 16, the radar apparatus 21 (a “third radar apparatus” for the present invention) has the same construction as the radar apparatus 1 shown in
As shown in
Next, the overall operation of the radar apparatus 21 will be described with reference to
As shown in
In this case, in the pulse width calculating unit 22, the delay circuit DL2 delays the detection signal Sd by Tc/(2×4), 2×Tc/(2×4), and 3×Tc/(2×4) respectively to generate the delayed detection signals Sd2, Sd3, and Sd4. In this case, in the counter circuit CNT21, the counter A carries out a count operation in synchronization with rising edges of the internal clock CLK and outputs the count value D11 showing the pulse width of the detection signal Sd. Similarly, the counter B carries out a count operation in synchronization with falling edges of the internal clock CLK and outputs the count value D12 showing the pulse width of the detection signal Sd. In the same way, in the counter circuits CNT22, CNT23, and CNT24, the respective counters A carry out a count operation in synchronization with rising edges of the internal clock CLK and output the count values D21, D31, and D41 showing the pulse widths of the delayed detection signals Sd2, Sd3, and Sd4. Also, the respective counters B carry out a count operation in synchronization with falling edges of the internal clock CLK and output the count values D22, D32, and D42 showing the pulse widths of the delayed detection signals Sd2, Sd3, and Sd4.
Here, as shown in
Also, as shown in
Also, as shown in
Also, as shown in
Hereinafter, although not shown in the drawings, as described above, by lengthening the pulse width Tw of the detection signal Sd to shift a one eighth section inside one cycle Tc of the internal clock CLK in which a falling edge of the detection signal Sd is included by one section at a time, the totals of the count values D11, D12, D21, D22, . . . , D41, D42 of the counters A, B outputted from the counter circuits CNT21 to CNT24 increase one at a time. More specifically, when the falling edge of the detection signal Sd is included in the fifth one eighth section in one cycle Tc of the internal clock CLK, that is, when the pulse width of the detection signal Sd is at least (m×Tc+Tc/2) but less than (m×Tc+Tc×5/8), the totals of the count values of the counters A and B outputted from the counter circuits CNT21 to CNT24 are respectively 7. Also, when the falling edge of the detection signal Sd is included in the sixth one eighth section in one cycle Tc of the internal clock CLK, that is, when the pulse width of the detection signal Sd is at least (m×Tc+Tc×5/8) but less than (m×Tc+Tc×6/8), the totals of the count values of the counters A and B outputted from the counter circuits CNT21 to CNT24 are respectively 7 for the CNT21 to CNT23 and 8 for the counter circuit CNT24. When the falling edge of the detection signal Sd is included in the seventh one eighth section in one cycle Tc of the internal clock CLK, that is, when the pulse width of the detection signal Sd is at least (m×Tc+Tc×6/8) but less than (m×Tc+Tc×7/8), the totals of the count values of the counters A and B outputted from the counter circuits CNT21 to CNT24 are 7 for the counter circuits CNT21 and CNT22 and 8 for the counter circuits CNT23 and CNT24. When the falling edge of the detection signal Sd is included in the final one eighth section in one cycle Tc of the internal clock CLK, that is, when the pulse width of the detection signal Sd is at least (m×Tc+Tc×7/8) but less than (m×Tc+Tc), the totals of the count values of the respective counters A, B outputted from the counter circuits CNT21 to CNT24 are respectively 7 for the CNT21 and 8 for the counter circuits CNT22 to CNT24.
The calculating circuit 22a calculates the sum Dsum of the count values D11 to D42 outputted from the respective counter circuits CNT21 to CNT24, multiplies the sum Dsum by Tc/(2×4), and further adds Tc/(4×4) to calculate the pulse width Tw of the detection signal Sd. More specifically, when the pulse width of the detection signal Sd is the length shown in
Also, when the pulse width of the detection signal Sd is at least (3×Tc+Tc/2) but less than (3×Tc+Tc×5/8), the sum Dsum of the respective count values D11 to D42 is 3×4+4×4=28, so that the calculating circuit 22a calculates the pulse width Tw of the detection signal Sd as 3.5625×Tc (=28×Tc/8+Tc/16) When the pulse width of the detection signal Sd is at least (3×Tc+Tc×5/8) but less than (3×Tc+Tc×6/8), the sum Dsum of the respective count values D1 to D42 is 3×3+4×5=29, so that the calculating circuit 22a calculates the pulse width Tw of the detection signal Sd as 3.6875×Tc (=29×Tc/8+Tc/16) When the pulse width of the detection signal Sd is at least (3×Tc+Tc×6/8) but less than (3×Tc+Tc×7/8), the sum Dsum of the respective count values D11 to D42 is 3×2+4×6=30, so that the calculating circuit 22a calculates the pulse width Tw of the detection signal Sd as 3.8125×Tc (=30×Tc/8+Tc/16) When the pulse width of the detection signal Sd is at least (3×Tc+Tc×7/8) but less than (3×Tc+Tc), the sum Dsum of the respective count values D11 to D42 is 3×1+4×7=31, so that the calculating circuit 22a calculates the pulse width Tw of the detection signal Sd as 3.9375×Tc (=31×Tc/8+Tc/16). Accordingly, the pulse width calculating unit 22 can calculate the pulse width Tw of the detection signal Sd at a high resolution of Tc/8 (the phase difference of the detection signal Sd and the respective delayed detection signals Sd2, Sd3, and Sd4), and by further adding half (=Tc/16) the phase difference (the delay time Tc/8 of the delay elements DL21 to DL23), the pulse width Tw of the detection signal Sd is calculated with an error of ±Tc/16. Accordingly, even if the radar apparatus 21 is used as a radar apparatus for detecting a distance to a measured object (for example, the vehicle OB) at a short distance (for example, several tens of centimeters), the distance to the measured object can be calculated even more accurately.
Although a construction that raises the resolution of the pulse width of the detection signal Sd by delaying the detection signal Sd has been described above, it is also possible to construct a radar apparatus 31 that uses a pulse width calculating unit 32 (see
Aside from using the pulse width calculating unit 32 in place of the pulse width calculating unit 16, the radar apparatus 31 (a “second radar apparatus” for the present invention) has the same construction as the radar apparatus 1 shown in
As shown in
Next, the operation of the pulse width calculating unit 32 will be described. It should be noted that an example will be described where n=4, that is, the pulse width calculating unit 32 includes four counter circuits CNT11 to CNT14 and three delay elements DL11 to DL13.
As shown in
Also, by using a construction that delays the internal clock CLK for the pulse width calculating unit 22, it is possible to construct a pulse width calculating unit 42 shown in
With the above construction, as shown in
It should be noted that the present invention is not limited to the constructions described above. For example, although examples have been described where the respective pulse width calculating units 16, 32 use the delay circuit DL1 in which a plurality of delay elements DL11 to DL1n−1 set with the same delay time (Tc/n) are connected in series, in place of the delay circuit DL1, as shown in
Also, although a construction has been described where the pulse generating unit 2 directly sends the trigger signal STG to the detection signal generating unit 15, the present invention is not limited to this. As one example, a high frequency signal STR modulated using the baseband signal STB may be outputted directly to the reception antenna 11 or the mixer unit 12 without passing the vehicle OB, and the detection signal generating unit 15 may generate the detection signal Sd based on a first baseband signal SRB (the “trigger signal” for the present invention) generated by the mixer unit 12 from the directly outputted high frequency signal STR and the second baseband signal SRB (the “modulation signal” for the present invention) generated from the high frequency signal STR reflected by the vehicle OB.
Tomita, Katsuhiko, Ikeda, Hiroshi, Honya, Tomohiro
Patent | Priority | Assignee | Title |
10533966, | Jul 27 2017 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Digital time domain readout circuit for bioFET sensor cascades |
11243184, | Jul 27 2017 | Taiwan Semiconductor Manufacturing Co., Ltd. | Digital time-domain readout circuit method for BioFET sensor cascades |
8125620, | Oct 18 2007 | Garmin Switzerland GmbH | Optical sensor device |
9239377, | Dec 13 2012 | Industrial Technology Research Institute | Pulse radar ranging apparatus and ranging algorithm thereof |
9335403, | Oct 18 2007 | Garmin Switzerland GmbH | Optical distance measurement device |
Patent | Priority | Assignee | Title |
3264454, | |||
3666367, | |||
4150375, | Mar 02 1978 | Sperry Rand Corporation | Interferometric protective system for vehicles |
4153366, | Jun 21 1977 | The Charles Stark Draper Laboratory, Inc. | Rangefinding system |
4620788, | Jul 13 1982 | Wild Heerbrugg, AG | Apparatus for measuring pulse signal delay interval |
5102219, | Jan 12 1990 | RISDON AMS USA , INC , A DE CORP | Method and means in optical distance meters |
5574552, | Jan 19 1995 | KAMA-TECH HK LIMITED | Self-calibrating precision timing circuit and method for a laser range finder |
5612779, | Jan 19 1995 | KAMA-TECH HK LIMITED | Automatic noise threshold determining circuit and method for a laser range finder |
5703678, | Jan 19 1995 | KAMA-TECH HK LIMITED | Self-calibrating precision timing circuit and method for a laser range finder |
5745442, | Oct 22 1996 | POWER SPECTRA, INC | Digital time interval measurement engine for a time of flight system |
5852491, | May 20 1996 | Olympus Optical Co., Ltd. | Distance measuring apparatus |
6057910, | Jan 19 1995 | KAMA-TECH HK LIMITED | Self-calibrating precision timing circuit and method for a laser range finder |
6133992, | Jan 28 1998 | Nikon Corporation | Distance measurement apparatus |
6137438, | Jul 22 1998 | McEwan Technologies, LLC | Precision short-range pulse-echo systems with automatic pulse detectors |
6226077, | Jan 19 1995 | KAMA-TECH HK LIMITED | Self-calibrating precision timing circuit and method for a laser range finder |
6445444, | Jan 19 1995 | KAMA-TECH HK LIMITED | Self-calibrating precision timing circuit and method for a laser range finder |
6587187, | Jan 18 2001 | Denso Corporation | Time measuring system and related distance measuring system |
6657704, | Jun 11 2001 | Denso Corporation | Distance measurement apparatus |
6757054, | Mar 14 2001 | Denso Corporation | Time measurement apparatus, distance measurement apparatus, and clock signal generating apparatus usable therein |
6771103, | Mar 14 2001 | Denso Corporation | Time measurement apparatus, distance measurement apparatus, and clock signal generating apparatus usable therein |
7145500, | Aug 30 2004 | TDK Corporation | Pulse wave radar device |
20010012104, | |||
20020093640, | |||
20020131035, | |||
20030197498, | |||
JP10073681, | |||
JP11038135, | |||
JP2000121726, | |||
JP43373, | |||
JP5249260, | |||
JP6138230, | |||
JP62043589, | |||
JP7244154, | |||
JP7280940, | |||
JP8211165, | |||
JP9043366, | |||
JP921873, | |||
JP9304533, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 08 2004 | HONYA, TOMOHIRO | TDK Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016117 | /0462 | |
Dec 08 2004 | TOMITA, KATSUHIKO | TDK Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016117 | /0462 | |
Dec 08 2004 | IKEDA, HIROSHI | TDK Corporation | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016117 | /0462 | |
Dec 21 2004 | TDK Corporation | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Mar 03 2008 | ASPN: Payor Number Assigned. |
May 16 2011 | REM: Maintenance Fee Reminder Mailed. |
Oct 09 2011 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Oct 09 2010 | 4 years fee payment window open |
Apr 09 2011 | 6 months grace period start (w surcharge) |
Oct 09 2011 | patent expiry (for year 4) |
Oct 09 2013 | 2 years to revive unintentionally abandoned end. (for year 4) |
Oct 09 2014 | 8 years fee payment window open |
Apr 09 2015 | 6 months grace period start (w surcharge) |
Oct 09 2015 | patent expiry (for year 8) |
Oct 09 2017 | 2 years to revive unintentionally abandoned end. (for year 8) |
Oct 09 2018 | 12 years fee payment window open |
Apr 09 2019 | 6 months grace period start (w surcharge) |
Oct 09 2019 | patent expiry (for year 12) |
Oct 09 2021 | 2 years to revive unintentionally abandoned end. (for year 12) |