A solid free form fabrication system for manufacturing a component by successively building feedstock layers representing successive cross-sectional component slices includes a platform for receiving and supporting the feedstock layers, a feedstock supplying apparatus that deposits the feedstock into a predetermined region to form the feedstock layers, an energy source directed toward the predetermined region to modify the feedstock in the predetermined region and thereby manufacture the component, and a temperature control block disposed on the platform and directly in contact with the deposited feedstock layers to modify the feedstock temperature while manufacturing the component. A solid free form fabrication method uses the system to manufacture the component from the feedstock material
|
13. A solid free form fabrication method for manufacturing a component from a feedstock material, the method comprising:
forming successive feedstock layers by depositing the feedstock material into a predetermined region on a platform, the feedstock layers representing successive cross-sectional component slices;
modifying the feedstock by directing an energy source to the predetermined region and thereby forming the component; and
controlling the temperature of the component being formed by contacting the feedstock layers with a temperature control block disposed on the platform.
1. A solid free form fabrication system for manufacturing a component by successively building feedstock layers representing successive cross-sectional component slices, the system comprising:
a platform for receiving and supporting the feedstock layers;
a feedstock supplying apparatus that deposits the feedstock into a predetermined region to form the feedstock layers;
an energy source directed toward the predetermined region to modify the feedstock in the predetermined region and thereby manufacture the component; and
a temperature control block disposed on the platform and directly in contact with the deposited feedstock layers to modify the feedstock temperature while manufacturing the component.
2. The solid free form fabrication system of
3. The solid free form fabrication system of
4. The solid free form fabrication system of
a fluid reservoir containing a fluid; and
a fluid circulation channel in fluid communication with the fluid reservoir, and adapted to change the temperature of the temperature control block using the fluid.
5. The solid free form fabrication system of
6. The solid free form fabrication system of
7. The solid free form fabrication system of
a temperature sensor that measures the control block temperature and transmits temperature data representative thereof; and
a processor that receives the temperature data and, responsive thereto, regulates fluid flow from the fluid reservoir to the fluid circulation channel.
8. The solid free form fabrication system of
9. The solid free form fabrication system of
10. The solid free form fabrication system of
a fan that blows a column of a gas onto the deposited feedstock layers while manufacturing the component.
11. The solid free form fabrication system of
12. The solid free form fabrication system of
14. The solid free form fabrication method of
15. The solid free form fabrication method of
adjusting the temperature of the temperature control block using a fluid circulation channel that receives a pressurized fluid from a fluid reservoir.
16. The solid free form fabrication method of
17. The solid free form fabrication method of
18. The solid free form fabrication method of
measuring the control block temperature; and
automatically regulating flow from the fluid reservoir to the fluid circulation channel in response to the measured control block temperature.
19. The solid free form fabrication method of
blowing a column of a gas onto the deposited feedstock while manufacturing the component.
20. The solid free form fabrication method of
directing radiation from an energy source onto the deposited feedstock layers while manufacturing the component.
|
The present invention relates to the fabrication of parts and devices, and more particularly relates to solid free-form fabrication processes that create parts and devices by selectively applying feedstock material to a substrate or an in-process workpiece.
Solid free-form fabrication (SFF) is a designation for a group of processes that produce three dimensional shapes from additive formation steps. SFF does not implement any part-specific tooling. Instead, a three dimensional component is often produced from a graphical representation devised using computer-aided modeling (CAM). This computer representation may be, for example, a layer-by-layer slicing of the component shape into consecutive two dimensional layers, which can then be fed to control equipment to fabricate the part. Alternatively, the manufacturing process may be user controlled instead of computer controlled. Generally speaking, a component may be manufactured using SFF by successively building feedstock layers representing successive cross-sectional component slices. Although there are numerous SFF systems that use different components and feedstock materials to build a component, SFF systems can be broadly described as having an automated platform/positioner for receiving and supporting the feedstock layers during the manufacturing process, a feedstock supplying apparatus that directs the feedstock material to a predetermined region to build the feedstock layers, and an energy source directed toward the predetermined region. The energy from the energy source modifies the feedstock in a layer-by-layer fashion in the predetermined region to thereby manufacture the component as the successive layers are built onto each other.
One recent implementation of SFF is generally referred to as ion fusion formation (IFF). With IFF, a torch such as a plasma, gas tungsten arc, plasma arc welding, or other torch with a variable orifice is incorporated in conjunction with a stock feeding mechanism to direct molten feedstock to a targeted surface such as a base substrate or an in-process structure of previously-deposited feedstock. A component is built using IFF by applying small amounts of molten material only where needed in a plurality of deposition steps, resulting in net-shape or near-net-shape parts without the use of machining, molds, or mandrels. The deposition steps are typically performed in a layer-by-layer fashion wherein slices are taken through a three dimensional electronic model by a computer program. A positioner then directs the molten feedstock across each layer at a prescribed thickness.
There are also several other SFF process that may be used to manufacture a component. Direct metal deposition, layer additive manufacturing processes, and selective laser sintering are just a few SFF processes. U.S. Pat. No. 6,680,456, discloses a selective laser sintering process that involves selectively depositing a material such as a laser-melted powdered material onto a substrate to form complex, net-shape objects. In operation, a powdered material feeder provides a uniform and continuous flow of a measured amount of powdered material to a delivery system. The delivery system directs the powdered material toward a deposition stage in a converging conical pattern, the apex of which intersects the focal plane produced by a laser in close proximity to the deposition stage. Consequently, a substantial portion of the powdered material melts and is deposited on the deposition stage surface. By causing the deposition stage to move relative to the melt zone, layers of molten powdered material are deposited. Initially, a layer is deposited directly on the deposition stage. Thereafter, subsequent layers are deposited on previous layers until the desired three-dimensional object is formed as a net-shape or near net-shape object. Other suitable SFF techniques include stereolithography processes in which a UV laser is used to selectively cure a liquid plastic resin.
When building a component using any SFF process, an increase in the workpiece temperature may cause the workpiece to oxidize. An uncontrolled increase in temperature may also cause an undesirable increase in the workpiece grain size. Deposits that are coated with oxides may have relatively low ductility and fatigue strength. In addition, excessive heat may cause large columnar grains. Small equiaxed grains usually have higher strength at lower temperature and are often more isotropic than large columnar grains.
Hence, there is a need for SFF processes such as IFF that include a mechanism for inducing high cooling rates after heated feedstock is deposited onto a targeted surface to form a workpiece. There is a further need for a mechanism that controls the cooling rates in order to optimize grain size and thereby improve the workpiece strength and ductility.
The present invention provides a solid free form fabrication system for manufacturing a component by successively building feedstock layers representing successive cross-sectional component slices. The system comprises a platform for receiving and supporting the feedstock layers, a feedstock supplying apparatus that deposits the feedstock into a predetermined region to form the feedstock layers, an energy source directed toward the predetermined region to modify the feedstock in the predetermined region and thereby manufacture the component, and a temperature control block disposed on the platform and directly in contact with the deposited feedstock layers to modify the feedstock temperature while manufacturing the component.
The present invention also provides a solid free form fabrication method for manufacturing a component from a feedstock material. First, successive feedstock layers are formed by depositing the feedstock material into a predetermined region on a platform, the feedstock layers representing successive cross-sectional component slices. While depositing the feedstock, an energy source is directed to the predetermined region to modify the feedstock as it is deposited to thereby form the component. The temperature of the component being is controlled during the method by contacting the feedstock layers with a temperature control block that is disposed on the platform.
Other independent features and advantages of the preferred apparatus and method will become apparent from the following detailed description, taken in conjunction with the accompanying drawings which illustrate, by way of example, the principles of the invention.
The following detailed description of the invention is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background of the invention or the following detailed description of the invention. For example, although much of the following description of in-process workpiece cooling relates to an IFF apparatus and method, there is no intention to limit the invention to that or any other particular SFF process. Rather, although
Additional elements depicted in
A cross-sectional view of the torch 102 is depicted in detail in
A noble gas such as argon is preferably ionized using the arc electrode 150, although alternative inert gases, ions, molecules, or atoms may be used in conjunction with the torch 102 instead of argon. These alternative mediators of the plasma energy may include positive and/or negative ions, or electrons alone or together with ions. Further, reactive elements may be combined with an inert gas such as argon to optimize performance of the torch 120. The plasma generating process so energizes the argon gas that the gas temperature is raised to between 5,000 and 30,000K. Consequently, only a small volume of energized argon gas is required to melt feedstock 160 from the wire feed mechanism 104. Nozzles of varying apertures or other orifices may be used to provide specific geometry and plasma collimation for the fabrication of different components. Direct beam nozzle orifices may contrast with nozzles having a fan shape or other shapes.
The ionized argon plasma, and all other ionized noble gases, has strong affinity for electrons and will obtain them from the surrounding atmosphere unless the atmosphere consists of gases having equal or higher electron affinity. One advantage of the exemplary IFF system depicted in the drawings does not require a pressurization chamber or other chamber in which the ambient gas is controlled. However, to prevent the ionized argon plasma from obtaining electrons and/or ions from the surrounding atmosphere, i.e. from nitrogen and oxygen typically present in ambient environments, the ionized argon plasma is sheathed or protected by a curtain of helium, another noble gas, or other inert gases flowing from the nozzle from a coaxial channel 172. Helium and other noble gases hold their electrons with a high degree of affinity, and are less susceptible than oxygen or nitrogen to having its electrons taken by the ionized argon plasma.
Collisions between the energetic argon atom and the nozzle 154 may substantially heat and damage the nozzle if left unchecked. To cool the nozzle 154, water or another cooling fluid is circulated in a cooling chamber 174 that surrounds the nozzle 154. A gas and water flow line 180 leads into the cooling chamber 174.
Any material susceptible to melting by an argon ion or other plasma beam may be supplied using a powder feed mechanism or the wire feed mechanism 104 as feedstock 160. Such materials may include steel alloys, aluminum alloys, titanium alloys, nickel alloys, although numerous other materials may be used as feedstock depending on the desired material characteristics such as fatigue initiation, crack propagation, post-welding toughness and strength, and corrosion resistance at both welding temperatures and those temperatures at which the component will be used. Specific operating parameters including plasma temperatures, build materials, melt pool parameters, nozzle angles and tip configurations, inert shielding gases, dopants, and nozzle coolants may be tailored to fit an IFF process. U.S. Pat. No. 6,680,456 discloses an IFF system and various operating parameters, and is hereby incorporated herein by reference.
As previously discussed, when building a component using IFF or any SFF process, a process-related increase in the workpiece temperature may cause the workpiece to oxidize. An uncontrolled increase in temperature may also cause an undesirable increase in the workpiece grain size and/or other reactions. Deposits that are coated with oxides may have relatively low ductility and fatigue strength, and may also have large columnar grains. Small equiaxed grains usually have higher strength at lower temperature and are often more isotropic than large columnar grains. Although large grains tend to have increased creep resistance, the deposited feedstock grain growth should be controlled to optimize the overall workpiece properties.
In order to prevent oxide formation and also control the workpiece grain size, the workpiece temperature is controlled using a heat extraction block.
The manifold 118 is in communication with a fluid port 114. In an exemplary embodiment, the fluid port 114 is formed through the platform 130 and consequently does not impede lateral or rotational movement of the platform 130 during the SFF process. Seals 116a and 116b are included at interfaces between the fluid port 114, the platform 130, and the heat extraction block 110 to prevent cooling fluid leakage. The cooling fluid is preferably a liquid that is substantially colder than the temperature control block 110, although it may be a stream of cold gas. Although the cooling liquid may be as basic as water, some exemplary cooling liquids include glycol, glycol/water mixtures, and other alcohols, although preferred cooling liquids include liquids that are only liquid at temperatures substantially below room temperature (23° C.) such as liquid nitrogen or helium.
A valve 138, including valve opening and closing actuators, regulates fluid flow to the block 110 and thereby regulates the heat extraction block temperature to create a temperature disparity between the block 110 and the workpiece 112. A sensor 140 such as a temperature sensor is coupled to the heat extraction block 110 and transmits temperature data T to the computer 128 depicted in
Thus, the cooling fluid circulation control system provides a mechanism for inducing high cooling and heating rates after heated feedstock is deposited onto the heat extraction block surface 111 to form a workpiece. The system also provides a mechanism for managing the workpiece cooling and heating in order to optimize oxidation and grain size and thereby improve the workpiece strength and ductility.
While the invention has been described with reference to a preferred embodiment, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt to a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiment disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Patent | Priority | Assignee | Title |
10058920, | Dec 10 2015 | VELO3D, INC. | Skillful three-dimensional printing |
10065270, | Nov 06 2015 | VELO3D, INC | Three-dimensional printing in real time |
10071422, | Dec 10 2015 | VELO3D, INC | Skillful three-dimensional printing |
10071437, | Mar 31 2010 | Sciaky, Inc. | Raster methodology, apparatus and system for electron beam layer manufacturing using closed loop control |
10144176, | Jan 15 2018 | VELO3D, INC | Three-dimensional printing systems and methods of their use |
10183330, | Dec 10 2015 | VELO3D, INC | Skillful three-dimensional printing |
10189114, | Sep 17 2009 | Sciaky, Inc. | Electron beam layer manufacturing |
10195693, | Jun 20 2014 | VEL03D, INC. | Apparatuses, systems and methods for three-dimensional printing |
10207454, | Dec 10 2015 | VELO3D, INC | Systems for three-dimensional printing |
10252335, | Feb 18 2016 | VELO3D, INC | Accurate three-dimensional printing |
10252336, | Jun 29 2016 | VELO3D, INC | Three-dimensional printing and three-dimensional printers |
10259044, | Jun 29 2016 | VELO3D, INC | Three-dimensional printing and three-dimensional printers |
10272525, | Dec 27 2017 | VELO3D, INC | Three-dimensional printing systems and methods of their use |
10286452, | Jun 29 2016 | VELO3D, INC | Three-dimensional printing and three-dimensional printers |
10286603, | Dec 10 2015 | VELO3D, INC | Skillful three-dimensional printing |
10315252, | Mar 02 2017 | VELO3D, INC | Three-dimensional printing of three-dimensional objects |
10357829, | Mar 02 2017 | VELO3D, INC | Three-dimensional printing of three-dimensional objects |
10357957, | Nov 06 2015 | VELO3D, INC | Adept three-dimensional printing |
10369629, | Mar 02 2017 | VELO3D, INC | Three-dimensional printing of three-dimensional objects |
10434573, | Feb 18 2016 | VELO3D, INC | Accurate three-dimensional printing |
10442003, | Mar 02 2017 | VELO3D, INC | Three-dimensional printing of three-dimensional objects |
10449696, | Mar 28 2017 | VELO3D, INC | Material manipulation in three-dimensional printing |
10493564, | Jun 20 2014 | VELO3D, INC. | Apparatuses, systems and methods for three-dimensional printing |
10507527, | Nov 07 2016 | VELO3D, INC | Gas flow in three-dimensional printing |
10507549, | Jun 20 2014 | VELO3D, INC | Apparatuses, systems and methods for three-dimensional printing |
10611092, | Jan 05 2017 | VELO3D, INC | Optics in three-dimensional printing |
10661341, | Nov 07 2016 | VELO3D, INC | Gas flow in three-dimensional printing |
10668533, | Jul 17 2015 | Applied Materials, Inc | Additive manufacturing with coolant system |
10688722, | Dec 10 2015 | VELO3D, INC | Skillful three-dimensional printing |
10780528, | Nov 29 2016 | Honeywell International Inc. | Methods for residual stress reduction in additive manufacturing processes |
10888925, | Mar 02 2017 | VELO3D, INC | Three-dimensional printing of three-dimensional objects |
10921782, | May 24 2017 | Relativity Space, Inc. | Real-time adaptive control of additive manufacturing processes using machine learning |
10946474, | Mar 31 2010 | Sciaky, Inc. | Raster methodology, apparatus and system for electron beam layer manufacturing using closed loop control |
10981227, | Jul 17 2015 | Applied Materials, Inc. | Additive manufacturing with gas delivery and dispenser on common support |
11154935, | Jun 01 2018 | Applied Materials, Inc | Air knife for additive manufacturing |
11344967, | Sep 17 2009 | Sciaky, Inc. | Electron beam layer manufacturing |
11400649, | Sep 26 2019 | Applied Materials, Inc | Air knife assembly for additive manufacturing |
11413817, | Sep 26 2019 | Applied Materials, Inc | Air knife inlet and exhaust for additive manufacturing |
11691343, | Jun 29 2016 | VELO3D, INC | Three-dimensional printing and three-dimensional printers |
7527671, | Nov 15 2005 | National Technology & Engineering Solutions of Sandia, LLC | Regenerable particulate filter |
8461474, | Mar 31 2010 | Sciaky, Inc. | Raster methodology, apparatus and system for electron beam layer manufacturing using closed loop control |
8535049, | Dec 09 2009 | Husky Injection Molding Systems, Ltd. | Hot-runner system including melt-flow control structure integrally formed with the manifold body |
8546717, | Sep 17 2009 | SCIAKY, INC | Electron beam layer manufacturing |
8598523, | Nov 13 2009 | SCIAKY, INC | Electron beam layer manufacturing using scanning electron monitored closed loop control |
8809780, | Nov 13 2009 | SCIAKY, INC | Electron beam layer manufacturing using scanning electron monitored closed loop control |
9174300, | Mar 31 2010 | SCIAKY, INC | Raster methodology, apparatus and system for electron beam layer manufacturing using closed loop control |
9254535, | Jun 20 2014 | VELO3D, INC | Apparatuses, systems and methods for three-dimensional printing |
9346116, | Aug 14 2009 | NORSK TITANIUM AS | Method and device for manufacturing titanium objects |
9346127, | Jun 20 2014 | VELO3D, INC | Apparatuses, systems and methods for three-dimensional printing |
9399256, | Jun 20 2014 | VELO3D, INC | Apparatuses, systems and methods for three-dimensional printing |
9399264, | Sep 17 2009 | Sciaky, Inc. | Electron beam layer manufacturing |
9403235, | Jun 20 2014 | VELO3D, INC | Apparatuses, systems and methods for three-dimensional printing |
9486878, | Jun 20 2014 | VELO3D, INC | Apparatuses, systems and methods for three-dimensional printing |
9573193, | Jun 20 2014 | VELO3D, INC. | Apparatuses, systems and methods for three-dimensional printing |
9573225, | Jun 20 2014 | VELO3D, INC. | Apparatuses, systems and methods for three-dimensional printing |
9586290, | Jun 20 2014 | VELO3D, INC. | Systems for three-dimensional printing |
9662840, | Nov 06 2015 | VELO3D, INC | Adept three-dimensional printing |
9676145, | Nov 06 2015 | VELO3D, INC | Adept three-dimensional printing |
9821411, | Jun 20 2014 | VELO3D, INC | Apparatuses, systems and methods for three-dimensional printing |
9919360, | Feb 18 2016 | VELO3D, INC | Accurate three-dimensional printing |
9931697, | Feb 18 2016 | VELO3D, INC | Accurate three-dimensional printing |
9962767, | Dec 10 2015 | VELO3D, INC | Apparatuses for three-dimensional printing |
Patent | Priority | Assignee | Title |
5222652, | May 18 1990 | ITT Corporation | Non-corrosive double walled tube and process for making the same |
5402351, | Jan 03 1991 | STRATASYS, INC | Model generation system having closed-loop extrusion nozzle positioning |
5510066, | Aug 14 1992 | BIOZ, LLC | Method for free-formation of a free-standing, three-dimensional body |
5597589, | Oct 17 1986 | Board of Regents, The University of Texas System | Apparatus for producing parts by selective sintering |
5866058, | May 29 1997 | Stratasys Inc. | Method for rapid prototyping of solid models |
6127643, | Jan 27 1999 | Welding process | |
6153142, | Feb 08 1999 | 3D Systems, Inc | Stereolithographic method and apparatus for production of three dimensional objects with enhanced thermal control of the build environment |
6162378, | Feb 25 1999 | 3D Systems, Inc. | Method and apparatus for variably controlling the temperature in a selective deposition modeling environment |
6193923, | Sep 27 1995 | 3D Systems, Inc. | Selective deposition modeling method and apparatus for forming three-dimensional objects and supports |
6401001, | Jul 22 1999 | Nanotek Instruments Group, LLC | Layer manufacturing using deposition of fused droplets |
6680456, | Jun 09 2001 | NORSK TITANIUM AS | Ion fusion formation |
6689252, | Jul 28 1999 | Applied Materials, Inc | Abatement of hazardous gases in effluent |
6792326, | May 24 1999 | Potomac Photonics, Inc. | Material delivery system for miniature structure fabrication |
20030075836, | |||
20050173380, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Nov 30 2005 | Honeywell International, Inc. | (assignment on the face of the patent) | / | |||
Nov 30 2005 | ADAMS, ROBBIE J | Honeywell International, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017327 | /0368 | |
Aug 11 2016 | Honeywell International Inc | NORSK TITANIUM AS | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 039605 | /0649 | |
May 15 2020 | NORSK TITANIUM AS | NTI HOLDING AS | SECURITY INTEREST SEE DOCUMENT FOR DETAILS | 052697 | /0362 | |
Jun 19 2020 | NORSK TITANIUM AS | NTI HOLDING AS | PATENT SECURITY AGREEMENT UNITED STATES | 053008 | /0564 | |
Jun 19 2020 | NORSK TITANIUM AS | NTI HOLDING AS, AS COLLATERAL AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT UNITED STATES | 053008 | /0932 | |
Jan 29 2021 | NORSK TITANIUM AS | NTI HOLDINGS AS, AS COLLATERAL AGENT | INTELLECTUAL PROPERTY SECURITY AGREEMENT UNITED STATES | 055194 | /0837 | |
Jan 10 2022 | NTI HOLDINGS AS | NORSK TITANIUM AS | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 058741 | /0347 | |
Jan 10 2022 | NTI HOLDING AS | NORSK TITANIUM AS | RELEASE BY SECURED PARTY SEE DOCUMENT FOR DETAILS | 058742 | /0245 |
Date | Maintenance Fee Events |
Jul 21 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 28 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Sep 23 2019 | REM: Maintenance Fee Reminder Mailed. |
Jan 27 2020 | M2553: Payment of Maintenance Fee, 12th Yr, Small Entity. |
Jan 27 2020 | M2556: 11.5 yr surcharge- late pmt w/in 6 mo, Small Entity. |
Jan 27 2020 | SMAL: Entity status set to Small. |
Date | Maintenance Schedule |
Feb 05 2011 | 4 years fee payment window open |
Aug 05 2011 | 6 months grace period start (w surcharge) |
Feb 05 2012 | patent expiry (for year 4) |
Feb 05 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 05 2015 | 8 years fee payment window open |
Aug 05 2015 | 6 months grace period start (w surcharge) |
Feb 05 2016 | patent expiry (for year 8) |
Feb 05 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 05 2019 | 12 years fee payment window open |
Aug 05 2019 | 6 months grace period start (w surcharge) |
Feb 05 2020 | patent expiry (for year 12) |
Feb 05 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |