An outer-mirror tilting apparatus includes a holder base that fixes a main body of an outer mirror, a housing that is fitted to a bearing unit of the holder base, the housing having a pivot shaft supporting the holder base in a tiltable manner, a rod driving mechanism that includes a pair of driving rods and a driving unit, and a rod detecting mechanism that includes a pair of detecting rods and a detector.
|
1. An outer-mirror tilting apparatus comprising:
a holder base having a bearing unit at a central portion of a backface thereof;
a housing that is fitted to the bearing unit, the housing having a pivot shaft engaging the bearing unit and supporting the holder base in a tiltable manner;
a rod driving mechanism that includes:
a pair of driving rods whose distal ends are fitted to a first driving socket and a second driving socket provided on the holder base to tilt the holder base in vertical direction and in horizontal direction, respectively; and
a driving unit that projects/retracts each of the pair of driving rods from/into the housing;
a rod detecting mechanism that includes:
a pair of detecting rods disposed so as to be opposed to the pair of driving rods through the pivot shaft and project from/retract into the housing corresponding to tilting of the holder base in the vertical direction and in the horizontal direction, respectively; and
a detector that detects the tilting angle of the holder base based on projecting/retracting amounts of the pair of detecting rods,
wherein the holder base includes a pair of detecting sockets, and distal ends of the pair of detecting rods are respectively fitted to the pair of detecting sockets,
wherein a pair of detecting rod guiding portions are formed inside the housing, each of the pair of detecting rods includes an engagement click extending toward and sliding on inner peripheral faces of the pair of detecting rod guiding portions in projecting/retracting directions of the pair of detecting rods, and the engagement click is biased in a diametrically outward direction of a corresponding detecting rod by a resilient member fixed to the inside of the detecting rod;
a sliding member that is fixed to each of the pair of detecting rods; and wherein the detector includes a resistor that is accommodated in the housing and whose electrical output varies based on sliding of the sliding member in response to the projecting/retracting amounts of the pair of detecting rods from/into the housing,
wherein the sliding member is fixed to a sliding member fixing portion formed on the engagement click and opposed to inner peripheral faces of the detecting rod guiding portions,
the detecting rod guiding portions are formed with notches for allowing the sliding member to slide on the resistor, and
a portion of the sliding member fixing portions makes a contact with an inner peripheral surface of the detecting rod guiding portions.
2. The outer-mirror tilting apparatus according to
the notches are formed on extending portions formed in a diametrically outward direction of the detecting rod guiding portions, and
the sliding member fixing portion with the sliding member is disposed on the extending portions.
|
The present document incorporates by reference the entire contents of Japanese priority documents, 2003-194987 filed in Japan on Jul. 10, 2003, 2003-194988 filed in Japan on Jul. 10, 2003, 2003-194989 filed in Japan on Jul. 10, 2003 and 2003-194990 filed in Japan on Jul. 10, 2003.
1) Field of the Invention
The present invention relates to an outer-mirror tilting apparatus that tilts a main body of an outer mirror, and more particularly, to an outer-mirror tilting apparatus integrated with a rod driving mechanism that tilts the main body and a rod detecting mechanism that detects a tilting angle of the main body.
2) Description of the Related Art
Conventionally, as an outer mirror to be mounted on a vehicle body of an automobile such as a passenger vehicle, there is one mounted with an outer-mirror tilting apparatus that can adjust a visual field of a main body relative to an outer mirror base from an interior of the vehicle, namely, can tilt the main body. For example, the outer-mirror tilting apparatus is constituted such that a pivot shaft formed in a housing is fitted into a bearing unit formed at a central portion of a holder base to which the main body is fixed so that the holder base is supported to the housing so as to freely tilt relative thereto. In the outer-mirror tilting apparatus, a distal end of a driving rod of a rod driving mechanism is fitted into a driving socket of the holder base. Thereby, the outer-mirror tilting apparatus causes the driving rod to project from/retract into the housing by driving a driving unit of the rod driving mechanism to tilt the main body fixed to the holder base about the bearing unit of the holder base.
The visual field of the main body varies according to a difference in physical constitution of a driver on a vehicle when its tilting angle is constant. Accordingly, when a driver with a different physical constitution drives a vehicle, it is necessary to adjust the visual field of the main body. When the vehicle moves backward, the driver may wish to change the visual field of the main body. In these cases, the driver drives the outer-mirror tilting apparatus from the interior of the vehicle to change the tilting angle of the main body. In view of these circumstances, there is a demand to detect the tilting angle of the main body. Conventionally, there is proposed a technique for fixing, on the outer mirror base or the outer-mirror tilting apparatus, an outer mirror detector that detects a tilting angle of a mirror fixed to the holder base separately of the outer-mirror tilting apparatus.
However, the outer mirror detector is separately fixed to the outer-mirror tilting apparatus independent of the outer-mirror tilting apparatus. Accordingly, since the number of parts constituting the outer mirror that can detect the tilting angle of the main body increases, such a problem as increase in the number of assembling steps or increase in manufacturing cost occurs.
It is an object of the present invention to solve at least the above problems in the conventional technology.
The outer-mirror tilting apparatus according to one aspect of the present invention includes a holder base that fixes a main body of an outer mirror; a housing that is fitted to a bearing unit of the holder base, the housing having a pivot shaft supporting the holder base in a tiltable manner; a rod driving mechanism that includes a pair of driving rods whose distal ends are fitted to a first driving socket and a second driving socket provided on the holder base to tilt the holder base in vertical direction and in horizontal direction, respectively, and a driving unit that projects/retracts each of the pair of driving rods from/into the housing; and a rod detecting mechanism that includes a pair of detecting rods disposed so as to be opposed to the pair of driving rods through the pivot shaft and project from/retract into the housing corresponding to tilting of the holder base in the vertical direction and in the horizontal direction, respectively, and a detector that detects the tilting angle of the holder base based on projecting/retracting amounts of the pair of detecting rods.
The other objects, features, and advantages of the present invention are specifically set forth in or will become apparent from the following detailed description of the invention when read in conjunction with the accompanying drawings.
Exemplary embodiments of an outer-mirror tilting apparatus according to the present invention will be explained in detail with reference to the accompanying drawings. The present invention is not limited by the embodiment.
A pair of driving sockets 12A and 12B, and a pair of detecting sockets 13A and 13B are formed in an annular manner near an outer peripheral edge of the back face of the holder base 10. Here, the respective sockets (12A, 12B, 13A, and 13B) are formed on an outer periphery of the bearing unit 11 at intervals of 90°. The respective sockets (12A, 12B, 13A, and 13B) have the same shape. The pair of driving sockets 12A and 12B have spherical inner faces corresponding to ones of the pair of driving rods 50A, 50B, respectively, and their root portions are opened with diameters smaller than the maximum diameters of the pair of driving rods 50A, 50B. Further, the pair of detecting sockets 13A and 13B have spherical inner faces corresponding to ones of the pair of detecting rods 80A and 80B, respectively, and their root portions are opened with diameters smaller than the maximum diameters of the pair of detecting rods 80A and 80B. Here, the pair of driving sockets 12A and 12B and the pair of detecting sockets 13A and 13B are formed so as to be opposed to each other via the bearing unit 11. That is, the driving socket 12A and the detecting socket 13A, and the driving socket 12B and the detecting socket 13B are formed in the holder base 10 such that the bearing unit 11 is interposed therebetween. Though not shown, the pair of driving sockets 12A, 12B and the pair of detecting sockets 13A, 13B are formed with slits, respectively. The root portions of the respective sockets (12A, 12B, 13A, and 13B) are spread in a pressing manner through the slits so that the respective rods (50A, 50B, 80A, and 80B) can be fitted to the sockets easily.
Openings for plate spring 14 extending from a surface of the holder base 10 to a back face thereof in a communicating manner are formed between the sockets adjacent to each other along the circumferential direction, namely, between the driving socket 12A and the driving socket 12B, between the driving socket 12B and the detecting socket 13A, between the detecting socket 13A and the detecting socket 13B, and between the detecting socket 13B and the driving socket 12A (four portions in
A groove 18 is formed on the surface of the holder base 10. The groove 18 is constituted of main grooves 18a formed around the bearing unit 11 and communication grooves 18b communicating from the main grooves 18a to the openings for plate spring 14. Engagement pieces for plate spring 19 are formed in the main groove 18a at a position where the bearing unit 11 and each resilient portion 17 are opposed to each other so as to project from the surface of the holder base (four pieces in
As shown in
A pair of driving rod through holes 22A, 22B and a pair of detecting rod through holes 23A, 23B corresponding to the pair of driving sockets 12A, 12B and the pair of detecting sockets 13A, 13B of the holder base 10 are formed near an outer peripheral edge of the housing lid 20. Here, the respective rod through holes (22A, 22B, 23A, and 23B) are formed at intervals of 90° along a circumferential direction of the housing lid 20 near the outer peripheral edge thereof. The pair of driving rods 50A, 50B described later are projected from/retracted into the pair of driving rod through holes 22A, 22B of the housing lid 20, namely, from/into the housing 40 by the pair of driving units 60A, 60B. On the other hand, the pair of detecting rods 80A, 80B described later are projected from/retracted into the pair of detecting rod through holes 23A, 23B, namely, from/into the housing 40 by tilting of the holder base 10 due to projection/retraction of the pair of driving rods 50A, 50B from/into the housing 40. Each of curved protrusions 24 protruding toward the holder base 10 is formed between the rod through holes adjacent to each other along the circumferential direction, that is, the curved protrusions 24 are formed between the driving rod through hole 22A and the driving rod through hole 22B, between the driving rod through hole 22B and the detecting rod through hole 23A, between the detecting rod through hole 23A and the detecting rod through hole 23B, and between the detecting rod through hole 23B and the driving rod through hole 22A. The sliding piece 15 of the holder base 10 abuts on the curved protrusion 24 and the former slides on the latter.
A first annular projection 20a projecting toward the housing body 30 described later is formed at the outer peripheral edge of the housing lid 20. Housing temporarily retaining pieces 20b engaged with housing temporarily retaining holes 30b of the housing body 30 described later are formed on the first annular projection 20a at predetermined intervals (eight pieces in
A pair of rotation restricting protrusions 26 projecting toward the holder base 10 respectively are formed between each rod through hole (22A, 22B, 23A, and 23B) of the housing lid 20 and the pivot shaft 21 (eight pieces in
In the housing lid 20, as shown in
A first annular projection 30a projecting toward the housing lid 20 is formed at an outer peripheral edge of the housing body 30. Housing temporarily retaining holes 30b engaged with housing temporarily retaining pieces 20c of the housing lid 20 are formed on the first annular projection 30a at predetermined intervals (eight pieces in
Driving unit accommodating portions 35 which accommodate driving units 60A, 60B driving respective ones of a pair of driving rods 50A, 50B described later are formed near the driving rod guiding portions 33A, 33B on the recess portion 32. The driving unit accommodating portions 35 are formed in a V shape so as not to interfere with the housing body communication hole 31. On the other hand, a detector accommodating portion 36 which accommodates a detecting member 93 provided with resistors 92 of detectors 90A, 90B described later is formed near the detecting rod guiding portions 34A, 34B. Extending portions 34a here are respectively provided on the detecting rod guiding portions 34A, 34B diametrically outward of the detecting rod guiding portions 34A, 34B, namely, on the side of the detector accommodating portion 36. The respective extending portions 34a are formed with notches 34b causing the detecting rod guiding portions 34A, 34B to communicate with the detector accommodating portion 36 (refer to
Drive power source connector receivers 37, 37 which respectively correspond to motors 64, 64 of the driving units 60A, 60B accommodated in the driving unit accommodating portions 35 are formed on a back face of the housing body 30. An external connector receiver 38 corresponding to the detecting connector 95 of the detecting member 93 accommodated in the detector accommodating portion 36 is formed on a back face of the housing body 30. Reference sign 39 denotes a positioning hole into which a positioning protrusion 201 formed on an outer mirror base 200 is inserted (four in
As shown in
Four legs 50e are formed on a lower portion of each of the pair of driving rods 50A, 50B by four slits, not shown. A sliding click 50f projecting in a diametrically outward direction of each of the pair of driving rods 50A, 50B is formed on each of these legs 50e. The sliding click 50f is provided in an inclined manner to a horizontal direction of each of the pair of driving rods 50A, 50B. Reference sign 50g denotes a spring fixing hole for fixing a spring 140 described later in each hollow portion 50a of the pair of driving rods 50A, 50B.
As shown in
As shown in
Four legs 80d are formed on a lower portion of each of the pair of detecting rods 80A, 80B by four slit, not shown. Engagement clicks 80e projecting in a diametrically outward direction of each of the pair of detecting rods 80A, 80B are formed on each leg 80d. A sliding member fixing portion 80f with a recessed sectional shape in a horizontal direction of each of the pair of detecting rods 80A, 80B is formed on one of the engagement clicks 80e. The sliding member fixing portion 80f is formed at a portion of the engagement click 80e opposed to an inner peripheral face of one of the pair of detecting rod guiding portions 34A, 34B, and it is fixed with one of sliding members 91, 91 of the detectors 90A, 90B described later. Reference sign 80g denotes a spring fixing hole for fixing a spring 140 described later in the hollow portion 80a of one of the pair of detecting rods 80A, 80B.
As shown in
A plurality of connecting terminals 96a to 96d for electrical connection with an external connector, not shown, are provided on the detecting connector 95 (four pieces in
As shown in
A method for assembling the outer-mirror tilting apparatus 1 according to the present invention will be explained next.
As shown in
As shown in
As shown in
As shown in
The respective springs 140 are respectively inserted into the hollow portions 50a of the pair of driving rods 50A, 50B. The respective sliding clicks 50f of the pair of driving rods 50A, 50B are screwed to the female screws 61c of the respective first gears 61 of the driving units 60A, 60B. At that time, since the widths of the opposed biasing portions 142, 142 of each spring 140 are larger than those of the pair of opposed legs 50e, 50e of each of the pair of driving rods 50A, 50B, as shown in
As shown in
As shown in
Thereby, force for projecting/retracting the detecting rods 80A, 80B from/into the housing 40 is increased so that vibrations generated between the housing 40 (detecting rod guiding portions 34A, 34B) and the pair of detecting rods 80A, 80B can be reduced. That is, deviations between positions of the respective sliding members 91 fixed to the pair of detecting rods 80A, 80B and the positions of the respective resistors 92 formed on the detecting member 93 due to the vibrations can be reduced. Accordingly, the followability of the pair of detecting rods 80A, 80B to tilting or inclination of the holder base 10 is prevented from deteriorating, and the detection accuracy of the tilting angle of the main body fixed to the holder base 10 can be prevented from lowering. Since vibrations generated between the housing 40 and the pair of detecting rods 80A, 80B can be reduced, vibrations of the holder base 10 where the detecting sockets 13A, 13B are tiltably fitted on the respective distal ends 80b of the pair of detecting rods 80A, 80B can be reduced. Thereby, vibrations of the main body fixed to the holder base 10 can be reduced, so that visibility of the main body can be prevented from lowering.
As shown in
As shown in
As shown in
As shown in
As shown in
At that time, as shown in
Since the respective retractable portions 132 cover the pair of detecting rods 80A, 80B, namely, the pair of detecting rods 80A, 80B are disposed in the hollow portions 132a of the respective retractable portions 132, even if the pair of detecting rods 80A, 80B move in the projecting/retracting directions P, the amounts of projection/retraction can be absorbed by the respective retractable portions 132. Accordingly, the respective detecting rod openings 133 of the detecting-rod sealing member 130 can be suppressed from moving from the positions of the outer peripheries of the pair of detecting rods 80A, 80B surrounded by the respective detecting rod openings 133. That is, the detecting rod openings 133 can be suppressed from sliding on the outer peripheries of the pair of detecting rods 80A, 80B in the projecting/retracting directions P of the detecting rods 80A, 80B. Water can be prevented from entering between each detecting rod opening 133 and corresponding one of the pair of detecting rods 80A, 80B by the sliding. Thereby, detection accuracy of the tilting angle of the main body fixed to the holder base 10 obtained by the detectors 90A, 90B can be prevented from lowering.
Since the respective detecting rod openings 133 cover the respective steps 80c of the pair of detecting rods 80A, 80B, the respective detecting rod openings 133 of the detecting-rod sealing member 130 can be restricted from moving beyond the respective steps 80c toward the housing 40. That is, since the respective detecting rod openings 133 are prevented from sliding beyond the respective steps 80c toward the housing 40, water can be prevented from entering between the respective detecting rod openings 133 and the pair of detecting rods 80A, 80B. Thereby, detection accuracy of the tilting angle of the main body fixed to the holder base 10 obtained by the detectors 90A, 90B can be prevented from lowering.
As shown in
A distal end of the screw 150 which has been protruded beyond the back face of the housing 40 is then screwed and inserted to a screw opening 202 formed in the outer mirror base 200. Thus, the outer-mirror tilting apparatus 1 is fixed to the outer mirror base 200. Accordingly, fixation of the outer-mirror tilting apparatus 1 to the outer mirror base 200 can securely be performed by one screw 150. Thereby, the number of parts for the outer mirror including the outer-mirror tilting apparatus 1 can be reduced, and reduction of the number of assembling steps or reduction of manufacturing cost can be achieved. Since the fixing member fixes the outer-mirror tilting apparatus 1 to the outer mirror base at a central portion of the outer-mirror tilting apparatus 1, the housing or the holder base can further be reduced in size, as compared with a conventional way of fixing at an outer periphery of the housing 40. Thereby, size reduction of the outer-mirror tilting apparatus 1 can be achieved. Further, since the screw 150 is screwed and inserted to the housing communication hole from the bearing unit opening 11a of the holder base 10, the outer-mirror tilting apparatus 1 can be simply and easily fixed to the outer mirror base 200 by the screw 150 after the pivot shaft 21 of the housing lid 20 of the housing 40 is fitted to the bearing unit 11 formed on the holder base 10.
Driving power source connectors, not shown, are respectively inserted into the respective driving power source connector receivers 37 of the housing body 30 (refer to
An operation of the outer-mirror tilting apparatus 1 according to the present invention will be explained. A case that the holder base 10 is tilted to the housing 40 in left and right directions will be explained. Power is supplied to the motor 64 of the driving unit 60A via the tilting controller, not shown, to rotate the first gear 61 forwardly, so that the driving rod 50A screwed to the female screw 61c through the respective sliding clicks 50f moves in a direction of projecting from the housing 40 of the projecting/retracting directions P, namely toward the holder base 10. When the driving rod 50A moves in the direction of projecting from the housing 40, the holder base 10 whose driving socket 12A is fitted to the distal end 50b of the driving rod 50A is tilted about the pivot shaft 21 of the housing lid 20 in a direction (a leftward direction) of the directions of arrow Q in which a distance between the driving socket 12A of the holder base 10 and the housing 40 becomes wider than a distance between the detecting socket 13A and the housing 40. Thereby, the main body fixed to the holder base 10 is tilted to the left side to a traveling direction of the vehicle (refer to
When the holder base 10 is tilted to the left side, the detecting rod 80A whose distal end 80b is fitted to the detecting socket 13A of the holder base 10 moves in a direction of retracting into the housing 40 of projecting/retracting directions P. When the detecting rod 80A moves in the direction of retracting into the housing 40, the detector 90A detects a projecting/retracting amount of the detecting rod 80A. That is, the sliding member 91 fixed to the detecting rod 80A slides on the resistor 92 provided on the detecting member 93 in the direction of retracting into the housing 40, so that a change in a detected voltage of a power source supplied from the external connector, not shown, for example, a voltage change to a plus side is detected. The change of the voltage is output to the tilting controller, not shown, via the detecting connector 95 and the external connector.
On the other hand, when the first gear 61 of the driving unit 60A is reverse rotated, the driving rod 50A moves in a direction of retracting into the housing 40 of the projecting/retracting directions P. When the driving rod 50A moves in the direction of retracting into the housing 40, the holder base 10 is tilted about the pivot shaft 21 of the housing lid 20 in a direction (a rightward direction) of the directions of arrow Q in which a distance between the driving socket 12A of the holder base 10 and the housing 40 is made narrower than a distance between the detecting socket 13A and the housing 40. Thereby, the main body fixed to the holder base 10 is tilted to the right side to the traveling direction of the vehicle (refer to
A case that the holder base 10 is titled in upward and downward directions to the housing 40 will be explained. When power is supplied to the motor 64 of the driving unit 60B via the tilting controller, not shown, to forwardly rotate the first gear 61, the driving rod 50B moves in a direction of projecting from the housing 40 of the projecting/retracting directions P. When the driving rod 50B moves in the projecting direction, the holder base 10 whose driving socket 12B is fitted to the distal end 50b of the driving rod 50B is tilted about the pivot shaft 21 of the housing lid 20 in a direction (a downward direction) of the directions of arrow Q in which a distance between the driving socket 12B of the holder base 10 and the housing 40 becomes wider than a distance between the detecting socket 13B and the housing 40. Thereby, the main body fixed to the holder base 10 is tilted downwardly to the traveling direction of the vehicle (refer to
When the holder base 10 is tilted downwardly, the detecting rod 80B whose distal end 80b is fitted to the detecting socket 13B of the holder base 10 moves in a direction of retracting into the housing 40 of the projecting/retracting directions P. When the detecting rod 80B moves in the retracting direction, the detector 90B detects the projecting/retracting amount of the detecting rod 80B. That is, the sliding member 91 fixed to the detecting rod 80B slides on the resistor 92 provided on the detecting member 93 in the retracting direction, so that change of a detected voltage of a power supplied from the external connector, not shown, for example, the voltage change to the plus side is detected. The change of the voltage is output to the tilting controller, not shown, via the detecting connector 95 and the external connector.
On the other hand, when the first gear 61 of the driving unit 60B is reverse rotated, the driving rod 50B moves in a direction of retracting into the housing 40 of the projecting/retracting directions P. When the driving rod 50B moves in the retracting direction, the holder base 10 is tilted about the pivot shaft 21 of the housing lid 20 in a direction (an upward direction) of the directions of arrow Q in which a distance between the driving socket 12B of the holder base 10 and the housing 40 becomes narrower than a distance between the detecting socket 13B and the housing 40. Thereby, the main body fixed to the holder base 10 is tilted upwardly to the traveling direction of the vehicle (refer to
The case that the outer-mirror tilting apparatus 1 is mounted on the outer mirror on the left side is explained, but the outer-mirror tilting apparatus 1 may be constituted similarly or identically to the above to be mounted on an outer mirror on a right side. In that case, the outer mirror titling device may be mounted in a state that it is rotated by an angle of 90° from the state that the outer-mirror tilting apparatus is mounted on the outer mirror on the right side. The tilting controller, not shown, is constituted such that the holder base 10 is tilted by the rod driving mechanism 70 in an upward or downward direction and in a left or right direction based on the tilting angle of the holder base 10 in the upward or downward direction and in the left or right direction, which is stored in the tilting controller, the rod detecting mechanism 100 detects the stored tilting angle of the holder base 10 in the upward or downward direction and in the left or right direction, determination is made as to whether the detected tilting angle has reached the stored tilting angle, and the rod driving mechanism 70 is stopped based on the determination. However, the present invention is not limited to such a tilting controller, but such a configuration may be employed that the holder base 10 is titled by the rod driving mechanism 70 in an upward or downward direction and in a left or right direction based on any tilting angle in the upward or downward direction and in the left or right direction which is input from an input unit provided in interior of the vehicle by a driver riding on the vehicle.
As described above, since the outer-mirror tilting apparatus 1 according to the present invention is provided inside the housing 40 with the rod driving mechanism 70 and the rod detecting mechanism 100, the rod driving mechanism 70 that tilts the main body fixed to the holder base 10 and the rod detecting mechanism 100 can be integrated into a single unit. Thereby, the number of parts for the outer mirror that can detect the tilting angle of the main body can be reduced and the number of assembling steps or manufacturing cost can be reduced.
It is unnecessary to fix the rod detecting mechanism 100 to the outer mirror base 200 or the outer-mirror tilting apparatus 1 using a fixing member as a separate member like the conventional art, and the rod detecting mechanism 100 is also fixed to the outer mirror base 200 by fixing the outer-mirror tilting apparatus 1 to the outer mirror base 200 using one screw 150. Thus, reduction in number of assembling steps for the outer mirror that can detect the tilting angle of the main body or reduction in manufacturing cost can be achieved.
Although the invention has been described with respect to a specific embodiment for a complete and clear disclosure, the appended claims are not to be thus limited but are to be construed as embodying all modifications and alternative constructions that may occur to one skilled in the art which fairly fall within the basic teaching herein set forth.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
4678295, | Apr 05 1985 | LOWELL ENGINEERING CORPORATION A CORPORATION OF MICHIGAN | Memory positioning system for remote control rear-view mirror |
4915493, | Jan 04 1989 | LOWELL ENGINEERING CORPORATION A CORPORATION OF MICHIGAN | Automotive rear view mirror assembly |
5007725, | May 13 1982 | Societe Manzoni Bouchot | Mechanism with torque-limiting device for controlling a rearview mirror |
5226034, | Jun 19 1990 | ICHIKOH INDUSTRIES, LTD | Electrically remote-controlled type mirror assembly |
5986364, | Apr 14 1997 | Donnelly Corporation | Housing with integral weather seals and noise dampeners for a rearview mirror actuator assembly |
5993018, | Mar 25 1997 | Murakami Corporation | Mirror position detection device |
6058553, | Sep 30 1997 | Ichikoh Industries, Ltd. | Wiper for a vehicular mirror |
6094027, | Jan 11 1999 | Donnelly Corporation | Vehicle memory mirror position transducer |
6174062, | Jan 17 1997 | Magna Auteca Zweigniederlassung der Magna Holding AG | Adjustable rear-view mirror for a vehicle |
6478436, | May 22 2001 | EATON AUTOMOTIVE B V | Sensing mirror position in a powered mirror positioning system |
EP1084906, | |||
JP200267795, | |||
WO2101425, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 02 2004 | Ichikoh Industries, Ltd. | (assignment on the face of the patent) | / | |||
Sep 06 2004 | TSUYAMA, OSAMU | ICHIKOH INDUSTRIES, LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015893 | /0909 |
Date | Maintenance Fee Events |
May 29 2009 | ASPN: Payor Number Assigned. |
Jul 27 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 09 2015 | REM: Maintenance Fee Reminder Mailed. |
Feb 26 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Feb 26 2011 | 4 years fee payment window open |
Aug 26 2011 | 6 months grace period start (w surcharge) |
Feb 26 2012 | patent expiry (for year 4) |
Feb 26 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Feb 26 2015 | 8 years fee payment window open |
Aug 26 2015 | 6 months grace period start (w surcharge) |
Feb 26 2016 | patent expiry (for year 8) |
Feb 26 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Feb 26 2019 | 12 years fee payment window open |
Aug 26 2019 | 6 months grace period start (w surcharge) |
Feb 26 2020 | patent expiry (for year 12) |
Feb 26 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |