An external rear view mirror for vehicles includes a mirror head the is fixedly secured to the vehicle. A housing defines an opening and a housing rear wall. The housing rear wall defines a recess that extends along a portion thereof. A turn-signal lamp, designed to generate light, is fixedly secured to the housing rear wall. The turn-signal lamp extends into the recess. The turn-signal lamp includes a light lens that covers the turn-signal lamp. The light lens has an outside surface. The external rear view mirror also includes an optical waveguide that guides the light generated by the turn-signal lamp around the mirror head, whereby the optical waveguide is fixedly secured to the light lens.
|
1. An external rear view mirror for vehicles, said external rear view mirror comprising:
a mirror head fixedly secured to the vehicle;
a housing defining an opening and a housing rear wall, said housing rear wall defining a recess extending along a portion thereof;
a turn-signal lamp for generating light, said turn-signal lamp fixedly secured to said housing rear wall and extending into said recess, said turn-signal lamp including a light lens covering said turn-signal lamp and defining an outside surface and an opening extending through said light lens; and
an optical waveguide having a source portion end extending through said opening in said light lens for guiding the light generated by said turn-signal lamp outside said light lens and around said mirror head, said optical waveguide having a remaining portion fixedly secured to said outside surface of said light lens.
2. An external rear view mirror as set forth in
3. An external rear view mirror as set forth in
4. An external rear view mirror as set forth in
5. An external rear view mirror as set forth in
6. An external rear view mirror as set forth in
7. An external rear view mirror as set forth in
8. An external rear view mirror as set forth in
9. An external rear view mirror as set forth in
|
1. Field of the Invention
The invention relates to an outside rear view mirror of vehicles. More particularly, the invention relates to outside rear view mirrors having turn-signal lamps secured thereto.
2. Description of the Related Art
External rear view mirrors having repeater turn-signal lamps are known. These lamps are inserted into the housing as lamp units. Using the optical waveguide technology, light is conducted to a decoupling point, at which the light escapes outward. This technology allows a portion of the emitted light, that is generally directed outwardly toward the front of a vehicle, to be directed in another direction, either to signal to those rearward of the vehicle or the operator of the vehicle.
An external rear view mirror for vehicles includes a mirror head the is fixedly secured to the vehicle. A housing defines an opening and a housing rear wall. The housing rear wall defines a recess that extends along a portion thereof. A turn-signal lamp, designed to generate light, is fixedly secured to the housing rear wall. The turn-signal lamp extends into the recess. The turn-signal lamp includes a light lens that covers the turn-signal lamp. The light lens has an outside surface. The external rear view mirror also includes an optical waveguide that guides the light generated by the turn-signal lamp around the mirror head, whereby the optical waveguide is fixedly secured to the light lens.
Advantages of the invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
The external rear view mirror is attached in a known way using a mirror base (not shown) to a vehicle, preferably a motor vehicle. A mirror head 1 is mounted on the mirror base, which may be pivoted in relation to the mirror base in and against the travel direction of the vehicle. A lamp unit 2, which is formed in the exemplary embodiment by a repeater turn-signal lamp, is housed in the mirror head 1 at a distance from the mirror base. The lamp unit 2 has a light lens 3 defining an outside surface 15, through which the light of the lamp unit 2 escapes to the outside. The mirror head 1 has an adjustable mirror glass support (not shown), which is housed in a housing 4 of the mirror head 1. The housing 4 encloses an opening, in which a mirror glass 6 lies (
On the back, the housing 4 is provided with a recess 5, into which the light lens 3 is inserted. The recess 5 is halfway up the housing 4 and extends in an outward direction from approximately the midway point of the mirror housing 4. The outer end 14 of the light lens 3, facing away from the mirror base, is drawn around the housing 4 enough so that the light lens 3 extends almost to the edge of the housing 4 around an edge of the mirror glass 6 of the external rear view mirror. The light lens 3 fills up the recess 5 completely. The outside 15 of the light lens 3 advantageously forms a continuous extension of the outside 16 of a rear wall 20 of the housing 4 (
The edge 18 of the light lens 3 is attached in a suitable way to the edge 19 of the housing rear wall 20, for example, glued, welded, and the like. The light lens 3 is fabricated from light-transparent material, preferably an appropriate plastic. At least one light source (not shown) may be provided behind the light lens 3, whose light is emitted outward through the light lens 3.
The lamp unit 2 has three optical waveguides 9 through 11 lying parallel to one another in the exemplary embodiment. These optical waveguides 9-11 are pressed against the outside surface 15 of the light lens 3 over the majority of their lengths. The optical waveguides 9 through 11 preferably have a circular cross-section. The optical waveguides 9 through 11 pass diagonally and inwardly into the housing 4 through the light lens 3 near the edge 13 facing toward the mirror base (
The optical waveguides 9 through 11 extend up to the end of the light lens 3 facing away from the mirror base (
Notwithstanding the exemplary embodiment shown, the optical waveguides 9 through 11 may also be implemented as shorter, depending on where the suitable point for the light exit is, in order to illuminate the legally required area. The optical waveguides 9 through 11 may also have different lengths and be situated next to one another in such a way that they lie staggered next to one another.
The optical waveguides 9 through 11 have identical circular sections in the exemplary embodiment. However, they may also have non-round cross-sections, such as oval, trapezoidal, or similar cross sections. The cross-sections may also be different and/or only different sizes.
The optical waveguides 9 through 11 may be implemented in one piece with the light lens 3. Of course, only one or two optical waveguides or even more than three optical waveguides may be provided; they may also have different distances from one another and/or from the longitudinal edges of the light lens 3. The optical waveguides 9 through 11 may also be separate parts from the light lens, which are attached permanently to the outside 15 of the light lens 3. In this case, the light lens is provided with passage openings 8 for the passage of the optical waveguides 9 through 11. The passage points are sealed, so that no moisture, dirt, or the like may penetrate into the lamp unit 2.
In the embodiment shown in
Furthermore, the bent-over edge 18a of the light lens 3a is attached to the bent-over edge 19 of the recess 5. Optical waveguides 9a through 11a are implemented and situated identically as in the previous embodiment.
Webs 25, 26, which are preferably implemented in one piece with the light lens 3b and advantageously have equal lengths, extend from the bottom 24 of the light lens 3b at the level of the optical waveguides 9b, 10b. The webs 25, 26 extend toward the light source within the lamp unit 2. In order to ensure simple production, the light lens 3b, the optical waveguides 9b, 10b, and the webs 25, 26 are produced from the same material. The light lens 3b has the bent-over edge 18b, using which it is attached to the bent-over edge 19 of the recess 5 in the way described. In a further embodiment (not shown), the optical waveguides pass outward through openings in the housing 4.
A background lamp, a heater for the mirror glass 6, a loudspeaker, a camera, a GPS module, sensors for automatic dimming of the mirror glass 6 and/or the mirror glass of the internal rear view mirror of the motor vehicle, an antenna, and the like may be housed in the mirror head in arbitrary combinations.
The invention has been described in an illustrative manner. It is to be understood that the terminology, which has been used, is intended to be in the nature of words of description rather than of limitation.
Many modifications and variations of the invention are possible in light of the above teachings. Therefore, within the scope of the appended claims, the invention may be practiced other than as specifically described.
Patent | Priority | Assignee | Title |
10274155, | Sep 26 2013 | Fico Mirrors, S.A.; FICO MIRRORS, S A | Mirror device for motor vehicles and method for assembling thereof |
10800322, | Mar 19 2015 | SMR PATENTS S À R L | Side flashing lamp with light guide element, lens and housing |
7699511, | Oct 11 2006 | Murakami Corporation | Door mirror with turn lamp |
8477044, | May 16 2008 | SMR PATENTS S A R L | Turn-indicator light module for a vehicle mirror assembly and vehicle mirror assembly comprising a turn-indicator light module |
8733991, | Oct 31 2008 | Murakami Corporation | Vehicle lamp |
D751477, | Feb 26 2014 | LED turn signal mirror |
Patent | Priority | Assignee | Title |
6637917, | Oct 04 2000 | Fer Fahrzeugelektrik GmbH | Side flashing lamp |
6932497, | Dec 17 2003 | Signal light and rear-view mirror arrangement |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Mar 17 2006 | Schefenacker Vision Systems Germany GmbH | (assignment on the face of the patent) | / | |||
Oct 11 2006 | WALDMANN, BERND | Schefenacker Vision Systems Germany GmbH | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020405 | /0787 | |
Jun 28 2007 | SCHEFENACKER PATENTS S A R L | DEUTSCHE BANK LUXEMBOURG S A | SECURITY AGREEMENT | 022086 | /0053 | |
Mar 05 2008 | Schefenacker Vision Systems Germany GmbH | VISIOCORP PATENTS S A R L | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 020747 | /0795 |
Date | Maintenance Fee Events |
May 06 2008 | ASPN: Payor Number Assigned. |
Sep 22 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 30 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 07 2019 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Apr 15 2011 | 4 years fee payment window open |
Oct 15 2011 | 6 months grace period start (w surcharge) |
Apr 15 2012 | patent expiry (for year 4) |
Apr 15 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 15 2015 | 8 years fee payment window open |
Oct 15 2015 | 6 months grace period start (w surcharge) |
Apr 15 2016 | patent expiry (for year 8) |
Apr 15 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 15 2019 | 12 years fee payment window open |
Oct 15 2019 | 6 months grace period start (w surcharge) |
Apr 15 2020 | patent expiry (for year 12) |
Apr 15 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |