A microlens structure includes lower lens layers on a substrate. A sputtered layer of glass, such as silicon oxide, is applied over the lower lens layers at an angle away from normal to form upper lens layers that increase the effective focal length of the microlens structure. The upper lens layers can be deposited in an aspherical shape with radii of curvature longer than the lower lens layers. As a result, small microlenses can be provided with longer focal lengths. The microlenses are arranged in arrays for use in imaging devices.
|
16. A method of forming a microlens array comprising steps of:
reflowing an array of lower lenses, each lower lens separated by gaps, on a material layer; and
depositing an array of upper lenses over the array of lower lenses, wherein the upper lenses encapsulate respective lower lenses and have a cross-sectional thickness greater at a portion closest to the material layer compared with a cross-sectional thickness at a portion distal to the material layer.
1. A method of forming an array of microlenses comprising:
forming an array of lower lenses on a material layer; and
aligning a deposition source at an angle to the material layer for selective deposition of a respective upper lens over each of the lower lenses, wherein adjacent lower lenses are separated by gaps in first and second directions on the material layer, the gaps in the first direction being completely filled by the respective upper lenses, and the gaps in the second direction being only partially filled by the respective upper lenses.
11. A method of forming a microlens array, comprising:
forming an array of lower lenses on a material layer;
aligning a collimated sputtering source capable of depositing material at an angle in the range of about 0° to about 90° from normal to a material layer surface; and
rotating the material layer at varying speeds with respect to the sputtering source for the selective deposition of an array of upper lenses on the lower lenses, such that the shapes of the upper lenses from a top view perspective can be varied, and the radius of curvature of the upper lenses can be varied.
7. A method of forming a microlens array, comprising:
forming an array of lower lenses having an effective focal length on a material layer using reflow techniques;
aligning a collimated sputtering source at an angle of about 45° to about 60° from normal to the material layer, the sputtering source capable of selective deposition of material over the array of lower lenses; and
rotating the material layer with respect to the sputtering source
for the selective deposition of an array of upper lenses on the lower lenses, the deposited upper lenses at least partially filling gaps between adjacent lower lenses to form an array of microlenses, each microlens having an effective focal length greater than the effective focal length of its lower lens.
3. A method according to
4. A method according to
8. A method of forming a microlens according to
10. A method according to
12. A method according to
13. A method according to
14. A method according to
15. A method according to
17. A method of forming a microlens array according to
18. A method of forming a microlens array according to
|
The present application is a divisional of application Ser. No. 10/740,597, filed Dec. 22, 2003 (now U.S. Pat. No. 7,205,526) the disclosure of which is incorporated by reference in its entirety.
The present invention relates generally to improved lens structures, and in particular to a microlens system for an imager or display array.
The semiconductor industry currently uses different types of semiconductor-based imagers, such as charge coupled devices (CCDs), complementary metal-oxide semiconductor (CMOS) active pixel sensors (APS), photodiode arrays, charge injection devices and hybrid focal plane arrays, among others, in which an array of microlenses causes incident light to converge toward each of an array of pixel elements. Semiconductor displays using microlenses have also been developed.
Microlenses are manufactured using subtractive processes and additive processes. In an additive process, lens material is formed on a substrate, patterned and subsequently formed into microlens shapes.
In conventional additive microlens fabrication, an intermediate material is patterned on a substrate to form a microlens array using a reflow process. Each microlens is separated by a minimum distance from adjacent microlenses, typically no less than 0.3 micrometers. Distances less than 0.3 micrometers may cause unwanted bridging of neighboring microlenses during reflow. In the known process, each microlens is patterned as a single shape, typically square, with gaps around it. Heat is applied during the subsequent step of reflowing, which causes the patterned microlens material to form a gel drop in a partially spherical shape, driven by the force equilibrium of surface tension and gravity. The microlenses then harden in this shape. If the gap between two adjacent gel drops is too narrow, they may touch and merge, or bridge, into one larger drop. The effect of bridging is that it changes the shape of the lenses, which leads to a change in focal length, or more precisely the energy distribution in the focal range. A change in the energy distribution in the focal range leads to a loss in quantum efficiency of, and enhanced cross-talk between, pixels. The gaps also allow unfocused photons through the empty spaces in the microlens array, leading to increased cross-talk between respective photosensors of adjacent pixel cells.
In addition, as the size of imager arrays and photosensitive regions of pixels decreases, it becomes increasingly difficult to provide a microlens capable of focusing incident light rays onto a photosensitive region. This problem is due in part to the increased difficulty in constructing a smaller microlens that has the optimal focal length for the imager device process and that optimally adjusts for optical aberrations introduced as the light passes through the various device layers. Also, it is difficult to correct the distortion created by multiple layered regions above the photosensitive area, for example, color filter regions, which results in increased crosstalk between adjacent pixels. Consequently, smaller imagers with untuned or nonoptimized microlenses do not achieve optimal color fidelity and signal/noise ratios.
It would be advantageous to have improved microlens structures and techniques for producing them.
Exemplary embodiments of the invention provide a microlens structure having at least two differing layers which together produce a desired microlens characteristic. In a two-layer exemplary embodiment, for example, the top layer can have a different shape than the bottom layer, thus obtaining a desired focal property. The top layer can be formed by off-angle deposition, e.g., sputtering, of a transparent glassy material, such as a silicon oxide, over a pre-formed lower layer.
The invention also provides methods of producing microlenses. An exemplary method embodiment includes forming a bottom layer with precursor microlens material such as by photoresist reflow. A top layer is deposited over the precursor microlens material using a glass-forming oxide, for example. Deposition takes place by sputtering the oxide at an angle off normal by about 45°-60°. As a result of depositing the glass at an angle off normal, glass is deposited in greater amounts around the peripheral edges of the precursor material, thereby changing the shape and increasing the effective focal length of the lenses. According to one exemplary two-layer embodiment the resulting shape is aspherical.
These and other features and advantages of various embodiments of the invention will be better understood from the following detailed description, which is provided in connection with the accompanying drawings.
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof and show by way of illustration specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized, and that structural, logical, and electrical changes may be made without departing from the spirit and scope of the present invention. The progression of processing steps described is exemplary of embodiments of the invention; however, the sequence of steps is not limited to that set forth herein and may be changed, with the exception of steps necessarily occurring in a certain order.
The term “wafer” or “substrate,” as used herein, is to be understood as including silicon, silicon-on-insulator (SOI) or silicon-on-sapphire (SOS) technology, doped and undoped semiconductors, epitaxial layers of silicon supported by a base semiconductor foundation, and other semiconductor or insulating structures in, on, or at a surface of which circuitry or optical or electrical devices can be formed. Furthermore, when reference is made to a “wafer” or “substrate” in the following description, previous processing steps may have been utilized to form regions, junctions, or material layers in or over the base semiconductor structure or foundation. In addition, a semiconductor wafer or substrate need not be silicon-based, but could be based on silicon-germanium, germanium, gallium arsenide or other semiconductors.
The term “pixel,” as used herein, refers to a picture element unit cell containing a photosensor and other components for converting electromagnetic radiation to an electrical signal. For purposes of illustration, a representative CMOS imager pixel cell is illustrated in the figures and description herein. However, this is just one example of the types of imagers and pixel cells with which the invention may be used. The invention may also be used to create microlens arrays for display devices.
The term “microlens” refers herein to one of an array of optical components over an array of photosensors or photoemitters. In an imager array each microlens tends to focus incident light toward a respective photosensor. A microlens array may be part of a layered structure formed over a substrate using photolithographic techniques. Various processes have been developed for producing microlenses, including fluid self-assembly, droplet deposition, selective curing in photopolymer by laser beam energy distribution, photoresist reflow, direct writing in photoresist, grayscale photolithography, and modified milling. These processes are described in more detail in U.S. Pat. No. 6,473,238 to Daniell, the disclosure of which is incorporated herein by reference.
While the invention is described with particular reference to a semiconductor-based imager, such as a CMOS imager, it should be appreciated that the invention may be applied in any micro-electronic or micro-optical device that includes a microlens, especially one that requires high quality microlenses for optimized performance. Other exemplary micro-optical devices that can include microlenses include CCDs and display devices, as well as others.
Referring initially to
In the illustrated embodiment of
In the illustrated embodiment, the upper surface of upper layer 6 has radii of curvature longer than the substantially uniform radius of curvature at the upper surface of lower layer 4. As a result, the effective (or average) focal length of each microlens structure is longer than if both layers had the same shape.
The lens layers 4, 6 can be formed into various symmetrical geometric shapes, such as circles, squares, etc., and asymmetrical shapes to provide a path for incident light rays to reach the photo sensors of the pixels 12.
Referring again to
Lens layers 4 illustratively are substantially spherical and can be formed using a photo resist reflow technique, as is known to those of skill in the art for forming microlenses. The lens layers 4 illustratively are formed from a layer of microlens material, such as photo resist, referred to herein as a “precursor microlens material.” Other inorganic, as well as organic and organic-inorganic hybrid materials, also could be used. The precursor microlens material is illustratively coated and patterned upon the passivation layer 8. After patterning, a portion of the material over each pixel has a substantially rectangular or circular configuration and each portion is substantially equal in size with the others. Upon reflow, the precursor microlens material hardens and preferably is impervious to subsequent reflow processes. As a result of the reflow process, the patterned precursor microlens material is transformed into lens layers 4. The lens layers 4 each have a substantially circular perimeter configuration with a spherically curved profile.
The layer 8 upon which the lens layers 4 are formed can be any suitable material that is transparent to electromagnetic radiation in the relevant wavelength range. The lens layers 4, which are also transparent to electromagnetic radiation in the relevant wavelength range, will retain their shape even if a subsequent reflow process is performed. As shown in
After patterning and reflowing the precursor microlens material to form lower lens layers 4, upper lens layers 6 are formed. Lens layers 6 are deposited over lens layers 4 by an off-angle deposition process, illustrated in
Platform 26 rotates relative to sputtering source 22 as indicated by the arrows in
SiO2 beam 20 is directed at an angle θ away from normal such that most of the glass deposition takes place around the perimeters or peripheral edges of the lens layers 4 and little is deposited at the tops or central surfaces. The angle θ can range between about 0° and about 90°, and preferably is between about 45° and about 60°. Accordingly, the layer of deposited glass on lens layers 6 is thicker toward the bottoms of lens layers 4, near layer 8, than it is toward the tops of lens layers 4. To obtain a rectangular shape as in
Various materials can be used for both the lens layers 4 and 6. Exemplary materials for lens layers 6 are those that provide a substantially transparent layer and are amenable to physical vapor deposition. In addition to SiO2, exemplary materials include nitrides such as Si3N4, borophosphosilicate glass (BPSG), phosphosilicate glass (PSG), and zinc selenide. Advantageously, a refractive index of the deposited lens layers 6 and the lens layers 4 will be substantially identical to minimize loss of incident light that otherwise would occur as the result of reflections from the interface between layers 6 and 4.
Layers 6 also provide a protective layer for later processes, and can have excellent optical properties. In particular layers 6 can have lower absorption than lower layers 4 formed of an organic microlens material. Further, the layers 6 can protect organic microlenses 4 to prevent cracking, oxidation, aging during high temperature baking processes, and physical or chemical attack in subsequent processes, for example.
Advantageously, deposition continues until gaps between the lens layers 4 are substantially filled with glass, thereby increasing the area of coverage of each lens. Consequently, a greater portion of light incident upon the lens structure array is captured and focused toward pixels 12. The deposition process may take several minutes, for example, depending on the rate of deposition, desired thickness, subsequent processing requirements, etc. Typically, deposition takes place at least until gaps between individual lens in the lower layers 4 are filled. Exemplary, non-limiting thickness of the resulting lens layers 6 can be in the range of 0.1-2.0 micrometers, most preferably 0.4-0.8 micrometers, for example.
The pixel array 200 is operated by the timing and control circuit 250, which controls address decoders 220, 270 for selecting the appropriate row and column lines for pixel signal readout. The pixel column signals, which illustratively include a pixel reset signal (Vrst) and a pixel image signal (Vsig), are read by a sample and hold circuit 261 associated with the column selector 260. A differential signal (Vrst−Vsig) is produced by differential amplifier 262 for each pixel, and the differential signal is amplified and digitized by analog to digital converter (ADC) 275. ADC 275 supplies the digitized pixel signals to an image processor 280 which can perform image processing before providing image output signals.
Imager IC 308 can be a CMOS imager or CCD imager, or can be any other type of imager that includes a microlens structure.
System 300 includes an imager IC 308 having the overall configuration depicted in
While exemplary embodiments of the invention have been described and illustrated above, it should be understood that these are exemplary of the invention and are not to be considered as limiting. Additions, deletions, substitutions, and other modifications can be made without departing from the spirit or scope of the present invention. Accordingly, the invention is not to be considered as limited by the foregoing description but is only limited by the scope of the appended claims.
Li, Jin, Boettiger, Ulrich, Li, Jiutao, Ford, Loriston
Patent | Priority | Assignee | Title |
8704935, | Jan 25 2011 | Aptina Imaging Corporation | Imaging systems with arrays of aligned lenses |
Patent | Priority | Assignee | Title |
4689291, | Aug 30 1985 | Xerox Corporation | Pedestal-type microlens fabrication process |
5595930, | Jun 22 1995 | Intellectual Ventures II LLC | Method of manufacturing CCD image sensor by use of recesses |
5605783, | Jan 06 1995 | Eastman Kodak Company | Pattern transfer techniques for fabrication of lenslet arrays for solid state imagers |
5672519, | Feb 23 1994 | Intellectual Ventures II LLC | Method of fabricating solid state image sensing elements |
5754514, | Oct 08 1996 | HANGER SOLUTIONS, LLC | Phase controlled evanescent field systems and methods for optical recording and retrieval |
5871888, | Jul 11 1996 | INTERUNIVERSITAIRE MICROELEKTRONICA CENTRUM IMEC | Method of forming multiple-layer microlenses and use thereof |
5910940, | Oct 08 1996 | HANGER SOLUTIONS, LLC | Storage medium having a layer of micro-optical lenses each lens generating an evanescent field |
6040591, | Mar 25 1997 | Sony Semiconductor Solutions Corporation | Solid state imaging device having refractive index adjusting layer and method for making same |
6171883, | Feb 18 1999 | Taiwan Semiconductor Manufacturing Company | Image array optoelectronic microelectronic fabrication with enhanced optical stability and method for fabrication thereof |
6301051, | Apr 05 2000 | TELEDYNE SCIENTIFIC & IMAGING, LLC | High fill-factor microlens array and fabrication method |
6339506, | Nov 06 1998 | Ciena Corporation | Microlens array with spatially varying optical property |
6414343, | Oct 07 1999 | FUJIFILM Corporation | Solid-state imaging device having aspheric lenses |
6433844, | Mar 31 1998 | Intel Corporation | Method for creating a color microlens array of a color display layer |
6473238, | Mar 17 2000 | STRATEGIC PATENT ACQUISITIONS, LLC | Lens arrays |
6495813, | Oct 12 1999 | Taiwan Semiconductor Manufacturing Company | Multi-microlens design for semiconductor imaging devices to increase light collection efficiency in the color filter process |
6821810, | Aug 07 2000 | Taiwan Semiconductor Manufacturing Company | High transmittance overcoat for optimization of long focal length microlens arrays in semiconductor color imagers |
6831311, | Apr 12 1999 | Sovereign Peak Ventures, LLC | Solid-state imaging device |
20010033007, | |||
20010050737, | |||
EP1045449, | |||
EP1143529, | |||
WO9508192, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 20 2006 | Micron Technology, Inc. | (assignment on the face of the patent) | / | |||
Dec 23 2009 | Micron Technology, Inc | Round Rock Research, LLC | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 023786 | /0416 |
Date | Maintenance Fee Events |
Jun 12 2008 | ASPN: Payor Number Assigned. |
Sep 14 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 14 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 16 2019 | REM: Maintenance Fee Reminder Mailed. |
Jun 01 2020 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Apr 29 2011 | 4 years fee payment window open |
Oct 29 2011 | 6 months grace period start (w surcharge) |
Apr 29 2012 | patent expiry (for year 4) |
Apr 29 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Apr 29 2015 | 8 years fee payment window open |
Oct 29 2015 | 6 months grace period start (w surcharge) |
Apr 29 2016 | patent expiry (for year 8) |
Apr 29 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Apr 29 2019 | 12 years fee payment window open |
Oct 29 2019 | 6 months grace period start (w surcharge) |
Apr 29 2020 | patent expiry (for year 12) |
Apr 29 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |