A matrix H for encoding data words is defined for wide word ECC with uniform density and a reduced number of components. The H-matrix is incorporated in an encode unit operable to Hamming encode a data word with a 10×528 matrix generated in groups of four columns wherein; a first column is a complement of a second column; the value of the second column ranges from 9 to 271 in increments of two; a third column is a complement of a fourth column; and the value of the fourth column is the same as the value of the second column less one; and wherein a 528-bit bottom row is added to the 10×528 matrix comprising alternating zeroes and ones starting with a zero creating an 11×528 matrix.
|
12. A computer memory for storing data for access by an application program being executed on a computer system, the memory comprising:
a data structure stored in the memory and being used by the application program, the data structure comprising an 11×528 matrix for encoding data words, the matrix being represented by the following elements in hexadecimal form where two consecutive rows of hexadecimal numbers represent a corresponding row of the matrix, the matrix comprising:
14. A machine readable storage medium for storing data for access by an application program being executed on a computer system, the machine-readable storage medium comprising:
a data structure stored in the machine readable storage medium and being used by the application program, the data structure comprising:
an H-matrix in groups of four columns wherein;
a first column is a complement of a second column;
the value of the second column ranges from 1 to N in increments of two;
a third column is a complement of a fourth column;
the value of the fourth column is the same as the value of the second column less one; and
the H-matrix is shifted left by a number of columns to ensure every column in the matrix is unique.
1. A circuit, comprising:
an encode unit adapted to receive a data word and operable to encode the data word using a matrix to generate corresponding check bits, the encode unit including components to implement a matrix having,
11 rows and 528 columns, the matrix having elements generated in groups of four columns for rows 1-10 wherein for each group of four columns,
a first column is a complement of a second column;
the value of the second column ranges from 9 to 271 in increments of two;
a third column is a complement of a fourth column; and
the value of the fourth column is the same as the value of the second column minus one;
row 11 is formed by alternating zeroes and ones starting with a zero in column 1;
an 11×11 identity matrix concatenated onto end of the 11×528 matrix to form an 11×539 matrix; and
a last 1×11 column matrix concatenated onto the end of the identity matrix to form an 11×540 matrix;
a compare unit coupled to the encode unit to receive the generated check bits and adapted to receive a second set of check bits, and operable to compare the check bits from the encode unit to the second set of check bits and to generate an error signal indicating the result of the comparison;
a buffer adapted to receive and store the data word and operable to provide the data word on an output responsive to an enable signal; and
a corrector unit coupled to the compare unit and to the buffer and operable to activate the enable signal responsive to the error signal indicating no errors have been detected and operable to correct single bit errors in the data word stored in the buffer responsive to the error signal indicating a single bit error and to thereafter activate the enable signal.
18. A memory, comprising:
a memory array;
an encode unit coupled to the memory array to receive a data word and operable to encode the data word using a matrix to generate corresponding check bits, the encode unit including components to implement a matrix having,
11 rows and 528 columns, the matrix having elements generated in groups of four columns for rows 1-10 wherein for each group of four columns,
a first column is a complement of a second column;
the value of the second column ranges from 9 to 271 in increments of two;
a third column is a complement of a fourth column; and
the value of the fourth column is the same as the value of the second column minus one;
row 11 is formed by alternating zeroes and ones starting with a zero in column 1;
an 11×11 identity matrix concatenated onto end of the 11×528 matrix to form an 11×539 matrix; and
a last 1×11 column matrix concatenated onto the end of the identity matrix to form an 11×540 matrix;
a compare unit coupled to the encode unit to receive the generated check bits and adapted to receive a second set of check bits, and operable to compare the check bits from the encode unit to the second set of check bits and to generate an error signal indicating the result of the comparison;
a buffer adapted to receive and store the data word and operable to provide the data word on an output responsive to an enable signal; and
a corrector unit coupled to the compare unit and to the buffer and operable to activate the enable signal responsive to the error signal indicating no errors have been detected and operable to correct single bit errors in the data word stored in the buffer responsive to the error signal indicating a single bit error and to thereafter activate the enable signal.
23. An electronic system including a memory system, the memory system, comprising:
a memory array;
an encode unit coupled to the memory array to receive a data word and operable to encode the data word using a matrix to generate corresponding check bits, the encode unit including components to implement a matrix having,
11 rows and 528 columns, the matrix having elements generated in groups of four columns for rows 1-10 wherein for each group of four columns,
a first column is a complement of a second column;
the value of the second column ranges from 9 to 271 in increments of two;
a third column is a complement of a fourth column; and
the value of the fourth column is the same as the value of the second column minus one;
row 11 is formed by alternating zeroes and ones starting with a zero in column 1;
an 11×11 identity matrix concatenated onto end of the 11×528 matrix to form an 11×539 matrix; and
a last 1×11 column matrix concatenated onto the end of the identity matrix to form an 11×540 matrix;
a compare unit coupled to the encode unit to receive the generated check bits and adapted to receive a second set of check bits, and operable to compare the check bits from the encode unit to the second set of check bits and to generate an error signal indicating the result of the comparison;
a buffer adapted to receive and store the data word and operable to provide the data word on an output responsive to an enable signal; and
a corrector unit coupled to the compare unit and to the buffer and operable to activate the enable signal responsive to the error signal indicating no errors have been detected and operable to correct single bit errors in the data word stored in the buffer responsive to the error signal indicating a single bit error and to thereafter activate the enable signal.
2. The circuit of
3. The circuit of
5. The circuit of
9. The circuit of
10. The circuit of
11. The circuit of
13. The memory of
15. The machine readable storage medium of
16. The machine readable storage medium of
17. The machine readable storage medium of
20. The memory of
21. The memory of
22. The memory of
|
The present invention relates generally to error detection and correction codes, and more specifically to linear error detection and correction codes of the Hamming type.
Error detection and correction codes are codes utilized in a wide variety of digital electronic systems to detect and correct errors in stored and communicated data. Using such codes, the value of one or several erroneous bits can be restored to a correct value or values after a storage or a transmission
The memory 8 is designed to maximize the number of bits available (storage capacity) without sacrificing too much memory speed (the time it takes to store or access the data). Thus, memory cells that store individual bits are packed as closely together as possible through a variety of different techniques, such as by reducing the number of transistors per memory cell and by making the transistors smaller. Typically, the smaller a memory cell the longer it takes to access the cell due to the small voltages and currents that must be properly sensed. Thus, there is a trade off in using more and larger transistors to increase the speed of the memory 8 but at the same time reducing the storage capacity of the memory. As a result, the memory system 10 typically includes a combination of relatively slow but high-capacity memory cells such as dynamic random access memory (DRAM) cells, and also includes lower-capacity but faster memory cells such as static random access memory (SRAM) cells.
An array of memory cells includes a plurality of rows and columns of memory cells, with an address being associated with each memory cell in the array. In high-capacity arrays such as those formed from DRAM cells, the address is typically divided into a column address and a row address. The row address is typically sent first, and in response to the row address the data stored in an entire row of memory cells in the array is sensed and stored in circuitry in the memory 8. The column address is provided to the memory 8 after the row address, and selected ones of the memory cells in the addressed row are selected in response to the column address. If data is being fetched from a series of consecutive column addresses within the same addressed row of memory cells, the data stored in these consecutive columns of memory cells can be accessed from the circuitry that previously sensed and stored the data of the addressed row.
The memory 8 is typically manufactured with spare or redundant bits, and the redundancy logic 6 is programmed to substitute any defective memory cells with redundant memory cells. The redundancy logic 6 is typically programmed during initial testing of the memory 8. Referring to
The repair process for substituting redundant memory cells for defective memory cells typically consists of identifying the proper laser programmable fuses, electrically programmable fuses, or one-time-programmable MOSFETs needed to deactivate a defective column 14 of memory cells, deactivating the defective column or group of columns containing a defective cell or cells), activating a redundant column 16 or group of redundant columns of memory cells, and programming the redundancy logic 6 to assign the array address corresponding to the defective column 14 to the address of a redundant column 16. After the defective column 14 is disabled and the redundancy logic 6 programmed, whenever the defective column 14 is addressed the redundant column 16 will be accessed instead, allowing data to be read from and written to the memory cells in the redundant column 16. In this way, every time a subsequent read or write operation addresses the defective column 14, the redundant column 18 is accessed instead of the defective column. The circuitry, operation, and processes for redundancy programming to replace defective memory cells with redundant cells is well understood by those skilled in the art, and thus will not be described in more detail.
Modern computer systems typically contain hundreds of megabytes (MB) of memory for storing programming instructions and associated data. With so much memory now being contained in computer systems, the likelihood of defective memory cells has increased. For example, 128 MB of DRAM is a typical amount contained in present personal computer systems. Each byte of memory typically includes 8 bits and thus is stored in 8 individual memory cells. Accordingly, there are over 1×109 DRAM memory cells required to store the desired 128 MB of data. Moreover, these DRAM memory cells are typically accessed hundreds of millions of times per second. Given such a large number of memory cells and the frequency with which the cells are accessed, the probability that an error will occur in data being read from or written to the memory cells is fairly high.
As previously mentioned, the ECC logic 4 adds error bits to the stored data word 2, with the error bits being redundant information that allows errors in the data stored in the memory 8 to be detected and in some cases corrected. Referring again to
The ECC logic 4 may execute a variety of different error detection and correction algorithms. One common algorithm is an algorithm that utilizes a code known as a Hamming code, which is an error detection and correction code used in many fields. An example of a Hamming code and its use for data storage in a memory 8 will now be described in more detail for the case where the data words 2 to be stored are 16-bit words. Let X be the data word 2 to be stored. X can be represented by a vector Xe, the 16 components X0 to X15 of which correspond to the 16 bits of the data word 2 to be stored. Five error check bits C1(C0 . . . C4) are obtained by multiplying a parity control matrix H called a Hamming matrix, of dimensions 5×16, by the vector Xe in the form of a column vector.
with Xj being the jth component of vector Xe.
During a write data transfer, 21-bit words formed by the 16 data bits Xj forming the vector Xe and by the 5 check bits C1 generated from the matrix H and the vector Xe are written into the memory 8. In a read data transfer, the read word includes 16 bits Xr corresponding to the data bits read from the memory 8 and 5 bits Cr corresponding to the check bits read from the memory. It is possible for Xr and Cr not to be equal to Xe and C1, respectively, if errors have occurred between the write and read data transfer operations.
To detect and/or correct possible errors in the read bits Xr and Cr, a syndrome S with five components S0, . . . S4 is calculated by multiplying a determined matrix H′ of dimensions 5×21 by a read column vector or “read word” with 21 elements formed by the 16 bits Xr and the 5 check bits Cr.
If syndrome S has all its elements equal to 0, the storage of the read word formed by the 16 bits Xr and the 5 check bits Cr occurred with no errors and all the bits of the read word, be they data bits of the vector Xr or the check bits Cr, are correct.
If the syndrome S is different from 0, the read word includes one or more errors. If a single bit of the read word is erroneous, the obtained syndrome S enables correcting the error. Indeed, the syndrome S corresponds in this case to the column in the matrix H′ having had its elements multiplied by the erroneous bit. In other words, when a single bit in either the 16 bits Xr or the 5 check bits Cr is erroneous, the syndrome S will have a value corresponding to one of the columns in the matrix H′. Each column in the matrix H′ is associated with a particular one of the bits in Xr and Cr and thus the non-zero value of the syndrome indicates the erroneous bit. The matrix H′ has columns 1-21 from left to right where the bits X0-X15 and C0-C4 are associated with the columns 1-21, respectively. For example if the calculated syndrome is equal to:
then the syndrome corresponds to the first column of the matrix H′, which is associated with the first bit X0 of the vector Xr. Thus, this syndrome indicates that the first bit X0 of the vector Xr is erroneous.
Similarly, if the calculated syndrome is equal to:
then the syndrome S corresponds to the 17th column in the matrix H′ which is associated with the first detection bit C0. In this example, the syndrome means that the first detection bit C0 is erroneous. By knowing the erroneous bit from the syndrome S, the erroneous bit can be corrected simply by taking the complement of that bit. For example, if the syndrome S indicates the first bit X0 of the vector Xr is erroneous, then the corrector unit 78 (
The above-described Hamming code cannot detect two errors. Thus, if an error has occurred in bits X1 and X2, the obtained syndrome S is equal to the sum modulo 2 of the syndromes corresponding to errors on X1 and X2, that is, to:
S′=(00101)+(00110)=(00011).
The obtained syndrome S′ indicates an error in bit X0, which is wrong since the errors actually occurred in bits X1 and X2.
Indeed, the above Hamming code is known to gave a minimum code distance d=3 and a linear code like the Hamming code is known to be able to correct L errors and to detect L+1 errors if its minimum code distance d is strictly greater than 2 L+1. Accordingly, for the above Hamming code L=1 and thus the code can detect two errors (e.g., in the above example of bits X1 and X2 being erroneous the syndrome S was non zero and thus indicated that an erroneous bit was present) but can correct only a single error. A linear code is a code in which the sum of two read words equals a valid read word of an overall group of read words that collectively make up the code, as will be understood by those skilled in the art. Similarly, one skilled in the art will understand that the minimum Hamming code distance is the minimum number of bits by which all pairs of read words differ for all pairs of words that collectively make up the code.
To improve the above code and allow more errors to be detected, the minimum distance of the code must be increased. For example, to convert the above code into a code having a minimum code distance d equal to 4, a total parity bit P may be added to each read word.
The total parity bit P for each read word is calculated by adding modulo 2 all the data bits X0-X15 and all the check bits C0-C4 or each read word that is part of the overall code. The total parity bit P is added to each word to be stored, and the word to be stored X0-X15 the check bits C0-C4, and the total parity bit P are all collectively stored as a word in the overall code.
In a read data transfer, the read word is multiplied by parity control matrix H″ shown in
The obtained syndrome S′ is illustrated in
While the above SEC-DED code allows single errors to be corrected and double errors to be detected, the calculation of the total parity bit P is required. This calculation requires a large number of adders, since all data bits Xr and check bits Cr must be added modulo 2. Further, the calculation of the total parity bit P cannot be performed in parallel with the calculation of the check bits Cr, since it requires the previous knowledge of the check bits. Accordingly, it must be awaited that all check bits Cr have been calculated to calculate total parity bit P, which wastes time.
Upon decoding, the calculation of the last syndrome element, S5, requires a large number of additional adders, and this increases the circuitry required for decoding each stored read word which, in turn, increases the area consumed by such decoding circuitry in an integrated circuit. Furthermore, since each addition requires some time, the calculation of the last syndrome element S5 has a relatively long duration and thus undesirably increases the overall decoding time of each read word. This is true of the sixth row of matrix H″ in particular because this row consists of all binary “1”s, and each binary “1” requires an associated adder circuit while a binary “0” in the matrix does not require such an adder circuit, as will be understood by those skilled in the art and as will be discussed in more detail below.
It should also be noted that, in the above-described Hamming code, the Hamming matrix is neither symmetrical, nor regular. Thus, considering that the elements of a column in the matrix H″ correspond to the binary representation of a number, the variation of this number is not regular from column to column but instead includes jumps. This makes difficult the forming of a circuit implementing the parity control matrix H″ as well as the syndrome S decoding.—Systems have been developed using parity control matrices having characteristics that simplify circuitry for implementing the matrix and associated syndrome. For example,
The matrix M can be decomposed into eight couples Ai of two adjacent columns, with i ranging from 0 to 7. The couple A0 corresponds to the columns of rank 0 and of rank 1, couple A1 to the columns of rank 2 and of rank 3, and so on through couple A7 to the columns of ranks 14 and 15. In the example of matrix M shown in
The first four elements of the first column of couple A0 (column of rank 0) are chosen to be equal to “0011”. This choice is not critical. The first four elements of the column of rank 0 may indeed have any value, provided that the column of rank 0 once completed is different from any other column of matrix M or from the columns relative to the check bits of the matrix used for the decoding, M′, which will be described hereafter. The choice of (“0011”) has the advantage of using a small number of binary “1s”, which simplifies the coding and decoding circuits for implementing the matrix M because, as previously mentioned, the number of binary “1s” determines the number of adders required in the coding and decoding circuits. The last two elements of each first column of a couple Ai (columns of even rank) are equal to “10”, except for the first and last couples Ai (columns of rank 0 and 14), where they are equal to “01”.
Except for the first couple, A0, each second column of a couple Ai is complementary to the first column of the couple. In other words, except for the column of rank 1, the elements of each column of odd rank are the complements of the elements of the immediately preceding column of even rank, and vice versa. For example, the elements of the first column (rank 8) of couple A4 are equal to “010010” and the elements of the second column (rank 9) of this couple are “101101”. In
It should be noted that the penultimate row of matrix M, referred to as K, having as elements “0110101010101001”, is complementary to the last row of matrix M, referred to as L, having as elements “1001010101010110”. This provides advantages when calculating a total parity bit, as will be described in more detail below.
When matrix M is multiplied by a column vector of sixteen components X0-X15 corresponding to the bits of the word to be coded and six check bits C0-C5 are obtained, which are added to the word to be coded to form a 22-bit coded word.
In the matrix M′, the columns corresponding to the data bits (i.e., ranks 0-15 of the block corresponding to the matrix M) are complementary two by two, except for the first two, . Further, the last two rows of the matrix M′ are also complementary. If the sum modulo 2 of the last two syndrome components, S4 and S5, is calculated, the sum modulo 2 of all the data bits and the check bits of the word to be decoded, that is, a total parity bit Pr is obtained. The total parity bit Pr is here simply obtained and is calculated in approximately half the time as in the case of the corresponding Hamming code previously discussed with reference to the matrix H″ of
If the syndrome S is equal to the zero vector, there are no errors, either in data bits X0-X15 or in the 6 check bits C0-C5. If the syndrome S is different from the zero vector and total parity bit Pr is equal to 1, this means that there has been a single error, which can be corrected. Indeed, the syndrome S elements in this case correspond to the elements of the column of matrix M′ corresponding to the erroneous bit. If the syndrome is different from the zero vector and total parity bit Pr is equal to 0, two errors are present, which are detected but which cannot be corrected since it is not known which two columns of matrix M′ correspond to the erroneous bit in the data bits X0-X15 or in the 6 check bits C0-C5.
An embodiment of one of the adders modulo 2 Gi,j is shown in
The operation of circuit 100 will be explained for the calculation of detection bit C4, corresponding to the row of rank 4. Starting from the left, the first encountered adder is adder G1,4. The input e2 of adder G1,4 is grounded via column a and the input e1 of adder G1,4 receives data bit X1 via input E1 of the circuit 100. At the output of adder G1,4, s=0⊕X1, which is equal to X1. The signal provided by adder G1,4 is applied to the input e2 of adder G2,4 in the next adjacent column to the right, and this adder calculates the value X1⊕X2. This process continues from left to right for the adders Gi,j in the row of rank 4, until the adder G15,4 performs the addition modulo 2 of the result provided by adder G12,4 and the data bit X15. Thus, C4=X1⊕X2⊕X4⊕X6⊕X8⊕X10⊕X12⊕X15, which corresponds to the multiplication of the fifth row of matrix M by a vector having as elements the bits X0-X15 of the word being coded. Generally speaking, the circuit 100 has the structure of matrix M with the circuit rows and columns corresponding to the rows and columns of matrix M, and an adder modulo 2 Gi,j being located in each row where the matrix M includes a “1”. In other conventional encoder circuits, an adder Gi,j is formed for each element in the matrix M and thus is located at an intersection of each row and column.
The advantages provided for the circuit 100 by the fact that adjacent columns of the matrix M are complementary will now be described. Because the columns of the matrix M are complementary except for the first two columns, the adders modulo 2 Gi,j of circuit 100 need not be formed in adjacent columns except possibly for the first two columns rank 0 and 1. As a result, each adder Gi,j can laterally (i.e., in the direction of the rows) occupy the place of two adders in prior art circuits requiring an adder at the junction of each row and column. Making the adders Gi,j larger means components forming the adders, such as transistors, can be physically larger so that the overall operation of the adder is faster. This is desirable because the circuit 100 slows the rate at which code words can be encoded and decoded and thereby lowers the throughput of the data bits X0-X15, which is the data being accessed or communicated.
Although in
An examination of
It should further be noted that the number of adders Gi,j per row is reduced as compared to prior circuits, resulting in an additional increase in operating speed of the decoding circuit 110. As a comparison, reference will be made to the last row of matrix H″ of
The code words X, C for the encoding circuit 100 of
To generalize the matrix M, the number r of necessary check bits is first determined. Then, the matrix M used for the coding is built, so that the first r−2 elements of each column of even rank indicate, except for the first column, the rank of the couple to which the column belongs (a couple Ai of rank i is formed of the column of even rank 2i and of the column of odd rank 2i+1. The rank of the first column is 0, and that of the last columns is m−1. The last two elements of the columns of even rank are equal to “10”, except for the column of rank 0 and the column of rank m−2, where they are “01”. The first column of the matrix M may be formed of r−4 elements equal to “0”, followed by elements “1101”. Thus, in the first column of rank 0 in the matrix M, the first two rows are “0”s (r−4=6−4=2) and the elements in rows 2-5 are “1101.” The second column of the matrix M, which is the column of rank 1, may be formed of r−4 elements equal to “1” followed by the elements “111O”. Accordingly, the in the second column of the matrix M the first two rows are “1”s and the elements in rows 2-5 are “1110.” In the matrix M, the columns of odd rank are, except for the column of rank 1, complementary to the immediately preceding column of even rank. It should be noted that the last row of the matrix M is complementary to its penultimate line.
With regard to the matrix M, it should also be noted that the first r−2 elements of the first column of rank 0 may be identical to the r−2 elements of any other column of the matrix M (which is the case in the matrix M of
To form the matrix M′ used for decoding, the parity control matrix M is used and completed to the right by a square sub-matrix R of dimension rxr. The sub-matrix R includes “1s” on its main diagonal from upper left to lower right and “0s” everywhere else except in its last row, where the elements are the complement of those of the penultimate row of the sub-matrix R. The last row of the sub-matrix R thus includes “1s” everywhere except at the penultimate column.
The code using matrixes M and M′ has a minimum code distance equal to four, which enables correcting one error and detecting two errors. Upon decoding, the obtained syndrome S has r components. A total parity bit P is obtained by adding modulo 2 the last two syndrome components. If the syndrome S is the zero vector, there is no error in the data word X or check bits C. If the syndrome S is different from the zero vector and the total parity bit is equal to “1”, there is a single error. This error is easily corrected since the syndrome S corresponds to the matrix column having had its elements multiplied by the erroneous bit. If the syndrome is different from the zero vector and the total parity bit is equal to “0”, two errors are present and, while detected, cannot be corrected.
Any row permutation in a parity control matrix formulated according to this process may be utilized Similarly, any column permutation in such a matrix may also be done provided that at least two consecutive columns remain complementary. The number N of bits of the word to be coded may be even or odd. If the number N is odd, a matrix M such as described above with an even m equal to N+1 may first be formed, and then the matrix N to be used upon coding can easily derive from matrix M by suppression of any column, such as the first column.
Typically the ECC logic 4 (
In the matrix M of
Another issue when dealing with wide data words X using the matrix M is the number of gates and adders Gi,j needed to implement encoding matrix M and decoding matrix M′. There is a particular need to minimize the number of components in ECC logic 4 operating on wide data words X in order to conserve space on semiconductor memory chips in which such circuits must be formed, and to reduce the costs associated with the manufacture of such chips.
There is a need for a parity control matrix for encoding and decoding wide data words and that allows for the formation of ECC logic having a reduced number of components and having relatively uniform distribution of such components to improve operation of such logic.
According to one aspect of the present invention, the number of components required to implement ECC logic for wide data words is reduced first by eliminating duplicate rows and then by eliminating “1s” in one of the rows to the extent possible without creating duplicate columns.
According to another aspect of the present invention, an H-matrix is defined for wide word ECC logic with uniform density and a reduced number of components. The H-matrix is incorporated in an encode unit operable to Hamming encode a data word with a 10×528 matrix generated in groups of four columns wherein; a first column is a complement of a second column; the value of the second column ranges from 9 to 271 in increments of two; a third column is a complement of a fourth column; and the value of the fourth column is the same as the value of the second column less one; and wherein a 528-bit bottom row is added to the 10×528 matrix comprising alternating zeroes and ones starting with a zero creating an 11×528 matrix.
When a wide data word 22 is applied to the memory system 20, the word is first presented to error correcting code (ECC) logic 26 before being written into the memory 28. The ECC logic 26 generates error checking and correction or check bits using the data word 22, and these additional check bits are then stored in the memory 28 along with the wide data word 22. Recall, the data word 22 and associated check bits are collectively referred to as a code word. The code word is stored in specific locations in the memory 28 as programmed by redundancy logic 24, which redirects data to redundant storage locations in the memory to thereby replace defective storage locations, as previously discussed. In this way, the redundancy logic 24 replaces defective storage locations to which data was initially directed with redundant storage locations. When the stored code word is subsequently read from the memory 28, the word is again presented to the ECC logic 26 to ensure the code word read from the memory is the same as the code word initially stored in the memory.
The described embodiment of the present invention is for 528-bit wide data words 22, although the width of the data words along with the parity-control matrix H and corresponding ECC logic 26 may vary for encoding and decoding wide data words of different widths. The ECC logic 24 enables optimization of the size and number of elementary calculation units or adders Gi,j (not shown) utilized in the encoding and decoding circuits (not shown). The ECC logic 24 implements a SEC-DED code which is simpler than a corresponding Hamming code, as will be described in more detail below.
The process for constructing the parity-control matrix H according to one embodiment of the present invention will now be described. The process generates a family of 528-bit word matrices H, each of which may vary but all of which share certain common characteristics.
The number D is the number of data bits in each wide data word 22 and the number C is the number of check bits generated for each data word. The SECDED code implemented by the parity-control matrix H generates n+2 check bits C for 2**n data bits. For data words 22 between 2=512 data bits to 2=1024 data bits, the present SECDED code generated by the matrix H therefore includes 12 check bits because for D=528 bits then n=10 so that C=10+2=12. Decoding a code word generated using the matrix H also requires a check bit matrix formed by an 11×11 identity matrix in a 12×12 matrix with the last column of this matrix being zeros except in the final row, which is row 12 and which is the complement of row 11 and thus has the values ‘111111111101’.
Normally, a check bit matrix is appended onto the end of the matrix H to provide a matrix H′ for decoding a code word formed by the data bits D and check bits C, as previously described with reference to
1) In the matrix H, the rows are numbered from row 1 at the top to row 11 bottom (11);
2) In the matrix H, the columns are numbered from column 1 on the left to column 528 and the matrix H′ through column 540 on the right including the 12 check bits;
3) In the matrix H, pairs of adjacent columns are required to be complements of each other. For example, in
4) In the matrix H, there are no duplicate columns, and columns of the matrix H may shifted to ensure this property according to one embodiment of the invention, as will be described in more detail below;
5) The columns of the matrix H for the rows 1 to 10 are generated in groups of four as follows:
6) The matrix H is shifted left S bits to ensure that each column is unique, where S is the number of bits by which each row in the matrix H is shifted to the left and is given by S=N−D−C where D is the number of data bits and C is the number of check bits, and N is a total number for each row equal the total number of bits D+C plus the number value S by which reach row is shifted. The pattern of bits in each row is preserved in the shift, as will be described in more detail below. If N=D+C+S is greater than (2C)/2 then the shift of the matrix H will cause duplicate columns. In the present embodiment, C=12 so (212)/2=2048. In one embodiment, S=16 so the matrix H is shifted left until the left most column is the complement of 9, which is column 17 of
7) A number of gates required to implement the matrix H is reduced by replacing the 1s with 0s in row 2 of the matrix H unless such a replacement would result in a duplicate column. This replacement in row 2 can be done in any order, from the right or the left or randomly so long as the replacements do not result in any duplicate columns in the matrix H;
A family of matrices H may be generated according to these rules for the value of D=528. The family includes matrices H in which with row 2 has any values with up to a maximum number of zeroes as long as there are no duplicate columns. Moreover, any two rows of the matrix H may be swapped and as may any two columns of the matrix, including the swapping of any two groups of four columns. Also, the elements of the matrix H may be shifted in a circular manner to generate a corresponding matrix that is in the family. There are similar families for any value of D greater than 128 as long as the number of check bits equal the number required by a corresponding Hamming code.
Note that by replacing the binary 1s with 0s where appropriate in columns 1-492, the binary values represented by the columns where such replacements occur change. More specifically, a replacement of a 1 with a 0 results in row 2 for every first and third column in each group of four columns up until column 493, as may be seen by looking at row 2 in the matrix Hs of
Referring back to
The matrix Hsm reduces the number of components contained in the ECC logic 26 to implement the matrix by eliminating the penultimate row contained in the matrix M discussed with reference to
During decoding of the code words, the ECC logic 26 operates in the same way as described for the prior art circuits to generate a corresponding syndrome S except that the twelfth syndrome bit S12 is again generated differently using the complementary rows 1 and 11 of the matrix Hsm and the corresponding check bits C1 and C11. Just as with any Hamming SEC-DED code, if the syndrome S is equal to the zero vector there are no errors in either the data bits D or in the check bits C. If the syndrome S is different from the zero vector and total parity bit corresponding to the bit S12 is equal to 1, this means that there has been a single error which can be corrected. In fact, the elements of the syndrome S are the same as the elements of the column of the matrix Hsm corresponding to the erroneous data or check bit D or C. If the syndrome S does not equal the zero vector and the total parity bit corresponding to the bit S12 is equal to 0, two errors are present in the data and check bits D and C, which is thereby detected but which cannot be corrected.
The described embodiment of the present invention has been described in the context of the storage of the wide data words 22 in a memory system 20. The described parity-control matrix H and associated coding and decoding of data words may be applied to any system using data words for which error correction and detection is desired, such as, for example, in communications system involving the transmission of code words and the decoding of such words upon reception. Moreover, one embodiment of circuitry for implementing a parity-control matrix H according to embodiments of the present invention is described in more detail in U.S. patent application Ser. No. 10/742,595 to Worley entitled METHOD AND SYSTEM TO ENCODE AND DECODE WIDE DATA WORDS, which was filed concurrently with the present application on Dec. 18, 2003 and which is incorporated herein by reference.
The preceding discussion is presented to enable a person skilled in the art to make and use the invention. Various modifications to the disclosed embodiments will be readily apparent to those skilled in the art, and the generic principles herein may be applied to other embodiments and applications without departing from the spirit and scope of the present invention. Thus, the present invention is not intended to be limited to the embodiments shown, but is to be accorded the widest scope consistent with the principles and features disclosed herein.
Murillo, Laurent, Worley, James Leon
Patent | Priority | Assignee | Title |
10003315, | Jan 25 2016 | KANDOU LABS, S A | Voltage sampler driver with enhanced high-frequency gain |
10003424, | Jul 17 2014 | KANDOU LABS, S A | Bus reversible orthogonal differential vector signaling codes |
10003454, | Apr 22 2016 | KANDOU LABS, S.A. | Sampler with low input kickback |
10020966, | Feb 28 2014 | KANDOU LABS, S A | Vector signaling codes with high pin-efficiency for chip-to-chip communication and storage |
10044452, | Mar 15 2013 | KANDOU LABS, S.A. | Methods and systems for skew tolerance in and advanced detectors for vector signaling codes for chip-to-chip communication |
10055372, | Nov 25 2015 | KANDOU LABS, S A | Orthogonal differential vector signaling codes with embedded clock |
10056903, | Apr 28 2016 | KANDOU LABS, S.A. | Low power multilevel driver |
10057049, | Apr 22 2016 | KANDOU LABS, S.A. | High performance phase locked loop |
10091033, | Jun 25 2014 | KANDOU LABS, S.A. | Multilevel driver for high speed chip-to-chip communications |
10091035, | Apr 16 2013 | KANDOU LABS, S.A. | Methods and systems for high bandwidth communications interface |
10116468, | Jun 28 2017 | KANDOU LABS, S A | Low power chip-to-chip bidirectional communications |
10116472, | Jun 26 2015 | KANDOU LABS, S.A. | High speed communications system |
10122561, | Aug 01 2014 | KANDOU LABS, S.A. | Orthogonal differential vector signaling codes with embedded clock |
10153591, | Apr 28 2016 | KANDOU LABS, S.A. | Skew-resistant multi-wire channel |
10164809, | May 15 2013 | KANDOU LABS, S.A. | Circuits for efficient detection of vector signaling codes for chip-to-chip communication |
10177812, | Jan 31 2014 | KANDOU LABS, S.A. | Methods and systems for reduction of nearest-neighbor crosstalk |
10200188, | Oct 21 2016 | KANDOU LABS, S A | Quadrature and duty cycle error correction in matrix phase lock loop |
10200218, | Oct 24 2016 | KANDOU LABS, S A | Multi-stage sampler with increased gain |
10203226, | Aug 11 2017 | KANDOU LABS, S A | Phase interpolation circuit |
10230549, | Jul 21 2014 | KANDOU LABS, S.A. | Multidrop data transfer |
10243765, | Oct 22 2014 | KANDOU LABS, S.A. | Method and apparatus for high speed chip-to-chip communications |
10277431, | Sep 16 2016 | KANDOU LABS, S A | Phase rotation circuit for eye scope measurements |
10320588, | Jul 10 2014 | KANDOU LABS, S.A. | Vector signaling codes with increased signal to noise characteristics |
10324876, | Nov 25 2015 | KANDOU LABS, S.A. | Orthogonal differential vector signaling codes with embedded clock |
10326623, | Dec 08 2017 | KANDOU LABS, S A | Methods and systems for providing multi-stage distributed decision feedback equalization |
10333741, | Apr 28 2016 | KANDOU LABS, S.A. | Vector signaling codes for densely-routed wire groups |
10333749, | May 13 2014 | KANDOU LABS, S A | Vector signaling code with improved noise margin |
10348436, | Feb 02 2014 | KANDOU LABS, S A | Method and apparatus for low power chip-to-chip communications with constrained ISI ratio |
10355756, | Apr 30 2010 | Ecole Polytechnique Fédérale De Lausanne | Orthogonal differential vector signaling |
10355852, | Aug 31 2016 | KANDOU LABS, S.A. | Lock detector for phase lock loop |
10372665, | Oct 24 2016 | KANDOU LABS, S A | Multiphase data receiver with distributed DFE |
10404394, | Jul 17 2014 | KANDOU LABS, S.A. | Bus reversible orthogonal differential vector signaling codes |
10468078, | Dec 17 2012 | KANDOU LABS, S.A. | Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communication |
10554380, | Jan 26 2018 | KANDOU LABS, S A | Dynamically weighted exclusive or gate having weighted output segments for phase detection and phase interpolation |
10666297, | Apr 14 2017 | KANDOU LABS, S A | Pipelined forward error correction for vector signaling code channel |
10686583, | Jul 04 2017 | KANDOU LABS, S A | Method for measuring and correcting multi-wire skew |
10693587, | Jul 10 2017 | KANDOU LABS, S A | Multi-wire permuted forward error correction |
10999106, | Jul 21 2014 | KANDOU LABS, S.A. | Multidrop data transfer |
11336302, | Apr 14 2017 | KANDOU LABS, S.A. | Pipelined forward error correction for vector signaling code channel |
11356197, | Mar 19 2021 | Kandou Labs SA | Error-tolerant forward error correction ordered set message decoder |
11368247, | Jul 10 2017 | KANDOU LABS, S.A. | Multi-wire permuted forward error correction |
11658771, | Mar 19 2021 | Kandou Labs SA | Error-tolerant forward error correction ordered set message decoder |
11804855, | Apr 14 2017 | KANDOU LABS, S.A. | Pipelined forward error correction for vector signaling code channel |
11894926, | Jul 10 2017 | KANDOU LABS, S.A. | Interleaved forward error correction over multiple transport channels |
7721178, | Jun 01 2006 | International Business Machines Corporation | Systems, methods, and computer program products for providing a two-bit symbol bus error correcting code |
7797611, | Nov 14 2005 | GLOBALFOUNDRIES Inc | Creating an error correction coding scheme and reducing data loss |
8250659, | Jun 17 2005 | Infineon Technologies AG | Apparatus and method for protecting the integrity of data |
8321762, | Nov 14 2005 | GLOBALFOUNDRIES Inc | Method for creating an error correction coding scheme |
9288089, | Apr 30 2010 | ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE EPFL | Orthogonal differential vector signaling |
9361223, | May 14 2012 | KANDOU LABS, S A | Storage method and apparatus for random access memory using codeword storage |
9362962, | Aug 29 2013 | KANDOU LABS, S A | Methods and systems for energy-efficient communications interface |
9424908, | Sep 06 2012 | KANDOU LABS, S A | Differential vector storage for dynamic random access memory |
9450791, | May 15 2013 | KANDOU LABS, S A | Circuits for efficient detection of vector signaling codes for chip-to-chip communication |
9485057, | Jun 25 2013 | KANDOU LABS, S A | Vector signaling with reduced receiver complexity |
9524106, | May 14 2012 | KANDOU LABS, S A | Storage method and apparatus for random access memory using codeword storage |
9544015, | Jun 25 2014 | KANDOU LABS, S A | Multilevel driver for high speed chip-to-chip communications |
9577664, | Jul 05 2011 | KANDOU LABS, S A | Efficient processing and detection of balanced codes |
9577815, | Oct 29 2015 | KANDOU LABS, S A | Clock data alignment system for vector signaling code communications link |
9607673, | Dec 17 2012 | KANDOU LABS, S A | Methods and systems for pin-efficient memory controller interface using vector signaling codes for chip-to-chip communication |
9667379, | Jun 04 2010 | ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE EPFL | Error control coding for orthogonal differential vector signaling |
9674014, | Oct 22 2014 | KANDOU LABS, S A | Method and apparatus for high speed chip-to-chip communications |
9686106, | Feb 28 2014 | KANDOU LABS, S A | Clock-embedded vector signaling codes |
9692381, | May 16 2014 | KANDOU LABS, S.A. | Symmetric linear equalization circuit with increased gain |
9692555, | Jun 25 2013 | KANDOU LABS, S A | Vector signaling with reduced receiver complexity |
9819522, | May 15 2013 | KANDOU LABS, S A | Circuits for efficient detection of vector signaling codes for chip-to-chip communication |
9825677, | Apr 30 2010 | KANDOU LABS, S A ; ECOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE EPFL | Orthogonal differential vector signaling |
9825723, | Mar 15 2013 | KANDOU LABS, S A | Methods and systems for skew tolerance in and advanced detectors for vector signaling codes for chip-to-chip communication |
9838017, | Feb 11 2013 | KANDOU LABS, S A | Methods and systems for high bandwidth chip-to-chip communcations interface |
9838234, | Aug 01 2014 | KANDOU LABS, S A | Orthogonal differential vector signaling codes with embedded clock |
9893911, | Jul 21 2014 | KANDOU LABS, S A | Multidrop data transfer |
9906358, | Aug 31 2016 | KANDOU LABS, S A | Lock detector for phase lock loop |
9917711, | Jun 25 2014 | KANDOU LABS, S.A. | Multilevel driver for high speed chip-to-chip communications |
9985745, | Jun 25 2013 | KANDOU LABS, S.A. | Vector signaling with reduced receiver complexity |
Patent | Priority | Assignee | Title |
4569052, | Jul 14 1983 | Sperry Corporation | Coset code generator for computer memory protection |
7058876, | Feb 21 2002 | Ciena Corporation; CIENA, INC | Method and apparatus for use in a decoder of a forward error correction (FEC) system for locating bit errors in a error locator polynomial |
20030187899, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Dec 19 2003 | STMicroelectronics S.A. | (assignment on the face of the patent) | / | |||
Mar 16 2004 | WORLEY, JAMES LEON | STMicroelectronics, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015375 | /0585 | |
Mar 23 2004 | MURILLO, LAURENT | STMicroelectronics, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015375 | /0585 | |
Jan 18 2008 | STMicroelectronics, Inc | STMICROELECTRONICS S A | ASSIGNMENT OF UNDIVIDED ONE-HALF 1 2 INTEREST BY STMICROELECTRONICS, INC TO STMICROELECTRONICS S A | 020443 | /0435 | |
Jan 26 2023 | STMicroelectronics SA | STMICROELECTRONICS FRANCE | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 066357 | /0101 |
Date | Maintenance Fee Events |
Sep 21 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Oct 27 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Oct 23 2019 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
May 06 2011 | 4 years fee payment window open |
Nov 06 2011 | 6 months grace period start (w surcharge) |
May 06 2012 | patent expiry (for year 4) |
May 06 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
May 06 2015 | 8 years fee payment window open |
Nov 06 2015 | 6 months grace period start (w surcharge) |
May 06 2016 | patent expiry (for year 8) |
May 06 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
May 06 2019 | 12 years fee payment window open |
Nov 06 2019 | 6 months grace period start (w surcharge) |
May 06 2020 | patent expiry (for year 12) |
May 06 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |