A method and a central subscriber database are provided for performing a permission status check in a mobile network. A mobile station is identified using subscription related identification data and equipment based identification data. When a determination is made that current subscription related identification data and current equipment based identification data have not been previously correlated a validation procedure is performed.
|
20. A centralized subscriber database comprising:
a receiving unit for receiving a service request signal comprising subscription related identification data for a particular subscription and for receiving particular equipment related identification data;
a correlation unit for correlating subscription related identification data and equipment related identification data and for determining whether the subscription related identification data for the particular subscription has been previously correlated with the particular equipment related identification data;
an equipment identity database interface for sending a validation request signal requesting the validity of the particular subscription and for receiving a validation response signal; and
a processing unit for analyzing the validation response signal as to validate the particular subscription and for processing the service request signal.
12. centralized subscriber database for performing a permission status check on a particular mobile station, said mobile station identified using first data identifying a particular subscription associated with said mobile station and second data identifying a particular user equipment associated with said mobile station, the centralized subscriber database comprising:
means for receiving a service request signal, the service request signal comprising said first data;
means for receiving said second data;
means for determining whether said first data has been previously correlated with said second data;
means for transmitting, in response to a negative determination, a validation request signal to an equipment identity registry database, said validation request signal requesting said equipment identity database to confirm the validity of said mobile station as identified by said second data; and
means for processing said service request signal in response to a confirmation of the validity.
1. A method for performing a permission status check on a particular mobile station using a centralized subscriber database within a mobile communication network, said mobile station identified using first data identifying a particular subscription associated with said mobile station and second data identifying a particular user equipment associated with said mobile station, comprising the steps of:
receiving a service request signal in the centralized subscriber database, the service request signal comprising said first data;
receiving said second data in the centralized subscriber database;
determining by said centralized subscriber database as to whether said first data has been previously correlated with said second data, and
in response to a negative determination, further comprising the steps of:
transmitting a validation request signal from said centralized subscriber database to an equipment identity registry database;
said equipment identity database to confirm the validity of said mobile station as identified by said second data; and
in response to receiving an affirmative validation from the equipment identity registry database processing said service request signal.
2. Method according to
3. Method according to
4. Method according to
receiving in the centralized subscriber database a permission status cancellation signal indicating a recent cancellation of a network access permission, the permission status cancellation signal comprising a recently barred mobile equipment identification;
determining by the centralized subscriber database, whether the recently barred equipment identification is currently administrated therein; and
in response to an affirmative determination initiating a service termination procedure for a mobile subscription associated with the recently barred mobile equipment identification.
5. Method according to
6. Method according to
7. Method according to
8. Method according to
9. Method according to
10. Method according to
11. Method according to
13. centralized subscriber database according to
14. centralized subscriber database according to
a mobile equipment identification record for administrating a plurality of mobile equipment identifications currently administrated in the home subscriber database;
means for receiving a permission status cancellation signal indicating a recent cancellation of a network access permission, the permission status cancellation signal comprising a recently barred mobile equipment identification;
means for determining, whether the recently barred equipment identification is currently administrated within the mobile equipment identification record; and
means for initiating a service termination procedure for a mobile subscription associated with the recently barred mobile equipment identification in response to an affirmative determination.
15. centralized subscriber database according to
16. centralized subscriber database according to claim 14, wherein the means for initiating a service termination procedure comprises means for releasing an ongoing call.
17. centralized subscriber database according to
18. centralized subscriber database according to
19. centralized subscriber database according to
|
This invention relates to a method for performing a permission status check on mobile equipment within a wireless communication network. More particularly, the present invention relates to performing a permission status check using a centralized subscriber database having access to both mobile equipment identification data as well as subscriber identification data.
With the advent of mobile stations and wireless communication systems, mobile subscribers are granted location independent mobility with a number of other features and applications. One such feature is a detachable subscriber identification module identifying a particular mobile subscriber or associated subscription account. With a mobile station having a detachable subscriber identification module, such as a Subscriber Identity Module (SIM) in a Global System for Mobile (GSM) communication system, a mobile subscriber conveniently exchanges or changes his mobile equipment by merely removing his SIM card from the old mobile equipment and re-inserting it into the new mobile equipment. As a result, the mobile user no longer has to rely on a customer support or technicians to switch his mobile equipment from the old equipment to the new equipment while still retaining the same telephone number along with his personal settings and user information. However, with the physical separation between a subscriber identity module (SIM) identifying a particular mobile subscriber and particular mobile equipment providing wireless communications, two different identification data are needed for properly validating the mobile subscriber (or subscription) as well as the associated mobile equipment within the wireless communications network. As an illustration, a mobile equipment within a GSM network for communicating voice and a General Packet Radio System (GPRS) network for communication data is identified using an International Mobile Equipment Identification (IMEI) as standardized by the 3rd Generation Partnership Project (3GPP) Standard. Separately, as discussed above, mobile subscriber identification data or subscription data are identified using an International Mobile Subscriber Identity (IMSI) as further standardized by the GSM Standard, or, alternatively, using an Universal Mobile Subscriber Telephony System (UMTS) SIM (USIM), as standardized by the 3GPP Standard.
To determine whether mobile equipment is permitted within a particular mobile communication network, a permission status check on the mobile equipment needs to be performed. A permission status check performed on an IMEI as identification data for particular mobile equipment may be referred to as IMEI check. Such a permission status check is performed for a various reasons. One such reason may be to detect stolen mobile equipment. It may also be to detect virus infected mobile equipment which should not be granted access to a mobile network. The permission status check could also be used for performing “type approval” in order to identify mobile equipment not approved for use within a particular mobile network for technical, regulatory or compatibility reasons. A regulatory reason may be to “type approve” a particular terminal type as to not disturb other technical installations. Another technical reason may be to approve a particular terminal as to properly cooperate with existing network equipment within a mobile network.
The IMEI check for conducting the above described permission status check may be performed using a mobility management component in a Visitor Location Register (VLR) within the GSM network architecture or in a Serving GPRS Support Node (SGSN) within the GPRS network architecture. More specifically, an IMEI check is performed during a call control procedure for a call setup in a VLR serving a particular mobile station within a GSM network or, during a session management procedure, for a location area update, or for an attach procedure in an SGSN serving that mobile station within a GPRS network. An IMEI check may be further performed according to one or more rules defined by a serving SGSN or VLR further specifying when or how often an IMEI check needs to be performed for a served mobile station.
Reference is now made to
To provide permission status check and subscriber validation process, the core network 3 further includes two different databases—an Equipment Identity Register (EIR) 32 as an equipment related database and a Home Location Register or Home Subscriber Server (HLR/HSS) 33 as a subscriber related database. The EIR 32 stores the IMEI data along with the associated permission status for the ME 11. The permission status may be requested by the MSC/SGSN 31 as described above using permission status request signals sent via an interface between MSC/SGSN 31 and EIR 32. The interface between MSC and EIR in the GSM network architecture is refereed to as an F interface and the interface between SGSN and EIR in the GPRS network architecture is referred to as a Gf interface.
The HLR/HSS 33 on the other hand is a centralized subscriber database handling subscriber related data. Subscriber related data may be requested by the MSC/SGSN 31 via an interface towards HLR/HSS 33 using the associated IMSI data identifying a particular mobile subscriber or subscription. For example the HLR/HSS 33 stores the IMSI associated to SIM/USIM 12 as subscriber related identification data.
Reference is now made to
In response to receiving the IMEI associated with ME 11, the MSC/SGSN performs a permission status check on the IMEI associated with ME 11 by sending a check IMEI signal 211 towards the EIR 32. The EIR 32 then looks up the current permission status associated with ME 11 and responds with a check IMEI response signal 212 containing the permission status of the ME 11. Such permission status may indicate the identified ME as being “white listed” indicating that the respective mobile equipment is deemed to be permitted for use, as being “black listed” indicating that the respective mobile equipment is deemed not permitted for use and should be barred, or as being “gray listed” indicating that the respective equipment is deemed permitted for use but should be monitored. According to the permission status of ME 11 indicated in the check IMEI response signal 212, MSC/SGSN then determines whether to accept or reject the requested attach procedure 201.
In case of a positive determination that the attach request is to be approved for that particular MS1, the serving MSC/SGSN 31 then performs yet another validation process by sending a update location request signal 221 to a HLR/HSS 33 associated with the identified IMSI number. The serving HLR/HSS 33, in turn, performs subscriber validation process to determine whether this particular mobile subscriber should be granted access to that particular mobile network and provides a update location response signal 222 with the access status back to the requesting MSC/SGSN 31.
As illustrated, it is rather inefficient for the serving MSC/SGSN to perform two different status checks or validations with two multiple databases. Accordingly, there is a need for simplified network architecture and more efficient signaling procedures to perform status checks on the mobile equipment as well as the mobile subscriber.
The present invention discloses a system and a method for performing a permission status check on a particular mobile station using a centralized subscriber database within a mobile communication network. According to the present invention, a mobile station is associated with first data identifying a particular subscription associated with a mobile user using that particular mobile station. The mobile station is further associated with second data identifying particular user equipment associated with that mobile station. In accordance with the teachings of the present invention, a centralized database having access to both the mobile equipment identification data as well as mobile subscription data for a particular mobile station receives a service request signal from that mobile station. The centralized database then determines as to whether the first data identifying the mobile subscription has been previously correlated with that second data identifying the mobile equipment. In response to a negative determination, the centralized database transmits a validation request signal to an equipment identity registry database for confirming the validity of the mobile equipment as identified by that second data. On the other hand, in response to an affirmative determination, the centralized database performs the status check as well as the subscriber validation without communicating with a separate equipment database.
In accordance with one embodiment of the present invention, a centralized subscriber database is provided for communicating with a core network serving a particular mobile station and for validating both the mobile equipment status as well as the mobile subscription status associated with that mobile station. The centralized subscriber database comprises means for receiving a service request signal, the service request signal comprising that first data, means for receiving that second data, means for determining whether that first data has been previously correlated with that second data, means for transmitting, in response to a negative determination, a validation request signal to an equipment identity registry database, that validation request signal requesting that equipment identity database to confirm the validity of that mobile station as identified by that second data, and means for processing that service request signal in response to an affirmative determination.
As yet another embodiment of the present invention, a permission status cancellation procedure is further disclosed and claimed wherein a cancellation procedure for a previously affirmed mobile equipment is communicated to the serving centralized database.
The network architecture of
The EIR 302 maintains permission status data for particular Mobile Equipment as identified by the IMEI number. In accordance with the teachings of the present invention, the EIR 302 communicates and interacts with an HLR/HSS 303 via an interface 310. The HLR/HSS 303 and the EIR 302 may be collocated on a common physical or logical node and the interface 310 between the HLR/HSS 303 and the EIR 302 may be an interface internal to the common physical node. The HLR/HSS 303 database or the common physical or logical node may be implemented as a single stand-alone network node or integrated within a network node serving further purposes. Furthermore the HLR/HSS 303 could be implemented as a single node involving a single physical entity or as a distributed node involving several physical entities.
Accordingly, the MSC/SGSN 301 interacts and communicates with the centralized HLR/HSS 303 for performing both the equipment status check as well as the subscription validation check in accordance with the teachings of the present invention.
In response to receiving the Attach Request signal 401, MSC/SGSN 301 then sends an Identity Request signal 402 to MS 1 to request the identification data identifying the ME 11. In response, the MS 1 responds with an identity response signal 403 including the requested IMEI associated with ME 11. As a result, after receiving the identity response signal 403, the serving MSC/SGSN 301 has both the IMSI number identifying the mobile subscriber as well as the IMEI number identifying the mobile equipment 11.
The MSC/SGSN 301 then performs a location update procedure by sending an update location request signal 421 to the HLR/HSS 301. In accordance with the teachings of the present invention, the transmitted location update request signal may contain both the IMSI as well as IMEI numbers. The HLR/HSS 303 then performs a correlation step 430 to determine as to whether the received IMSI has been previously correlated with the received IMEI. In response to a negative determination, i.e. if the SIM/USIM 12 has not been previously used together with this particular ME 11, the HLR/HSS 303 sends a check IMEI request signal 431 to the EIR 302 to request a validation of the IMEI. When the permission status associated with the ME 11 has been determined, the EIR 302 responds to the HLR/HSS with a check IMEI response signal 432 including the requested permission status.
Alternatively, the HLR/HSS 303 may determine that the identified IMEI number has been previously correlated with this particular IMSI number and that there is no need to perform any additional permission status check on this particular equipment. In accordance with the teachings of the present invention, the HLR/HSS 303 then processes the update location request signal without performing the permission status check with the EIR 302.
A permission status confirming the validity of the ME 11 may be “white listed” or “gray listed” as further described above, indicating that the ME 11 is deemed permitted to be used in the Mobile Network 5. A permission status not confirming the validity of the ME 11 may be “black listed” indicating that the ME 11 is deemed not permitted to be used in the Mobile Network 5.
The result of the HLR/HSS′ determination on the validity of the provided IMEI and IMSI is provided back to the serving MSC/SGSN 301 via an update location response signal 422.
According to the teachings of the present invention, the HLR/HSS 303 further includes a Subscription-Equipment Correlation (SEC) unit 3031 for holding association data for various mobile stations and for correlating the subscription related identification data with the equipment related identification data. For the MS 1, the SEC unit 3031, for example, associates its IMSI number with its IMEI number. The SEC unit 3031 is further embodied as to determine whether particular subscription related data and particular equipment related identification data have been previously correlated with each other. As an example, it is determined whether the IMSI and the IMEI received in a service signal have been previously correlated with each other, i.e. to determine whether the respective ME and the respective SIM/USIM have been previously used in connection with each other.
The HLR/HSS 303 further includes a processing unit 3033 for handling and processing service request signals and for coordinating the receiving unit 3034, the SEC unit 3031, and the EIR interface 3032. The processing unit 3033 initiates a permission status check on an IMEI in response to a negative determination within the SEC unit 3031, i.e. in response to a determination that the received IMEI and IMSI have not been previously correlated with each other within the SEC unit 3031.
To that end, the processing unit 3033 generates a validation request signal transmittable via the EIR interface 3034. The EIR interface 3034 transmits the validation request signal including an IMEI and to receive a corresponding validation response signal containing the previously transmitted IMEI and a permission status associated with the IMEI. The purpose of the validation request signal is to request the EIR 302 to confirm the validity of ME 11 as identified by the IMEI. Accordingly, the purpose of the validation response signal is to provide a permission status and to confirm the validity of the ME 11 as identified by the IMEI.
The processing unit 3033 is adapted to process the service request signal in response to a confirmation of the validity in the validation response signal. In response to a negative determination, the processing unit 3033 initiates the termination of the received service request.
The following permission status cancellation procedure is performed in response to a permission status cancellation step 601 wherein a list of recently blacklisted terminals is transmitted to the EIR 302. The permission status cancellation step 601 indicates a cancellation of a permission to use an IMEI in mobile network 5 and includes a recently barred IMEI. The permission status cancellation step 601 may be performed using a registration of blacklisted terminals in a Central Equipment Identity Register (CEIR) or in a national database. Alternatively the permission status cancellation step 601 may be performed as an operator initiated update of the EIR 302.
Along with an indication of the network permission cancellation, a permission status cancellation category may be provided. The permission status cancellation category may indicate a reason for the recent cancellation of the network permission. As further described above, a reason for canceling such network permission may be that a terminal is flagged as a virus infected terminal, as a terminal that may cause instabilities or interrupt the network, or as a terminal that has been reported as stolen.
To indicate the permission status cancellation, the EIR 302 sends a permission status cancellation signal 602 to the HLR/HSS 303. The permission status cancellation signal 602 may be termed “Update_IMEISC_HLR” to indicate an update of an International Mobile Equipment Identity—Software Version (IMEI-SV). The permission status cancellation signal 602 includes one or more recently barred IMEI-SV values. Furthermore the permission status cancellation signal 602 preferably includes one or more permission status cancellation categories associated with the recently barred IMEI-SV values as described above. In response to receiving the permission status cancellation signal 602, the HLR/HSS 303 performs a scanning step 603 to determine, whether one or more of the recently barred IMEI-SV values are used by a subscriber administrated within the HLR/HSS 303 and to determine the respective IMSI (International Mobile Subscriber Identification) values associated with the barred IMEI-SV values. If the scanning step 603 results in a determination of IMSI values associated with barred the IMEI-SV values, the HLR/HSS 303 performs a service termination procedure on the determined IMSI values. EIR 302 may respond to permission status cancellation signal 602 with a permission status cancellation response signal 605 to the EIR 302. The permission status cancellation response signal 605 may be a new Mobile Application Part (MAP) signal termed “Update_IMEISV_HLR_Rsp.”
The service termination procedure may include a plurality of predefined service termination procedures, preferably according to an available permission status cancellation category. The service termination procedure may be performed in that the HLR/HSS 303 instructs the MSC/SGSN 301 to force a location update procedure for the mobile subscription associated with the currently barred mobile equipment. Forcing a location update may involve sending a Cancel Location signal 621 to the MSC/SGSN 301. The Cancel Location signal 621 includes an IMSI determined in scanning step 603. The MSC/SGSN 301 performs a location cancellation operation and responds with a cancel location response signal 622.
In a further embodiment, the service termination procedure includes releasing an ongoing call. Releasing an ongoing call preferably includes transmitting an Immediate Service Termination signal 610 from the HLR/HSS 303 to the MSC/SGSN 301. The Service Termination Signal 610 may be a MAP_IST_Command according to the Mobile Application Part (MAP) Protocol. The MSC/SGSN 301 performs a service termination operation and responds with a Service Termination response signal 611. The Service Termination Signal 610 may be a MAP_IST_Command_Rsp according to the (MAP) Protocol.
In yet another embodiment, an indication for a subsequent service termination is set for the mobile subscription associated with the currently barred mobile equipment. This is indicated in the flagging step 606 in that a correlation of IMEISV and IMSI values is flagged as blacklisted in the HLR/HSS 303. In response to a subsequent location update or a subsequent call set up involving the flagged IMSI, the location update is denied barring any future access to the network.
After a permission status of a particular mobile equipment has been initially affirmed for a particular mobile equipment and is subsequently cancelled, the signaling sequences of
The permission status cancellation procedure depicted on
Alternatively, the OMC 701 may send a status update request signal 924 to the HLR/HSS 303 to request a status update of IMSI values and corresponding blacklisted IMEI values and permission status included in the status update signal. In response to the reception of the status update signal 924, the HLR/HSS 303 performs a flagging step 606 as described above wherein a correlation of the IMSI values and the corresponding blacklisted IMEI-SV values is flagged in the HLR/HSS 303. In response to a subsequent location update or a subsequent call set up involving the flagged IMSI, the location update is denied respectively and a service termination procedure is performed.
Hodges, Philip, Bleckert, Peter Nils Olov
Patent | Priority | Assignee | Title |
10015729, | Nov 17 2008 | Telefonaktiebolaget L M Ericsson (publ) | Providing access to a GPRS network |
8165579, | Jan 10 2006 | NTT DoCoMo, Inc | Communication system and communication method |
8671161, | Apr 11 2008 | ZTE Corporation | Method for realizing user registration |
9161229, | Jun 13 2008 | MEIZU TECHNOLOGY CO , LTD | Relating to communications |
Patent | Priority | Assignee | Title |
6665529, | Mar 26 1998 | Ericsson Inc. | System and method for authenticating a cellular subscriber at registration |
6957061, | Nov 18 1999 | VODAFONE LIMITED | User authentication in a mobile communications network |
20050159157, | |||
20050287990, | |||
20060128362, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jul 24 2005 | BLECKERT, PETER NILS OLOV | TELEFONAKTIEBOLAGET LM ERICSSON PUBL | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016619 | /0871 | |
Jul 27 2005 | HODGES, PHILIP | TELEFONAKTIEBOLAGET LM ERICSSON PUBL | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 016619 | /0871 | |
Aug 05 2005 | Telefonaktiebolaget L M Ericsson (publ) | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Dec 05 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 03 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Dec 03 2019 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jun 03 2011 | 4 years fee payment window open |
Dec 03 2011 | 6 months grace period start (w surcharge) |
Jun 03 2012 | patent expiry (for year 4) |
Jun 03 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jun 03 2015 | 8 years fee payment window open |
Dec 03 2015 | 6 months grace period start (w surcharge) |
Jun 03 2016 | patent expiry (for year 8) |
Jun 03 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jun 03 2019 | 12 years fee payment window open |
Dec 03 2019 | 6 months grace period start (w surcharge) |
Jun 03 2020 | patent expiry (for year 12) |
Jun 03 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |