A method to reduce the inverse narrow width effect in nmos transistors is described. An oxide liner is deposited in a shallow trench that is formed to isolate active areas in a substrate. A photoresist plug is formed in the shallow trench and is recessed below the top of the substrate to expose the top portion of the oxide liner. An angled indium implant through the oxide liner into the substrate is then performed. The plug is removed and an insulator is deposited to fill the trenches. After planarization and wet etch steps, formation of a gate dielectric layer and a patterned gate layer, the nmos transistor exhibits an improved Vt roll-off of 40 to 45 mVolts for both long and short channels. The improvement is achieved with no degradation in junction or isolation performance. The indium implant dose and angle may be varied to provide flexibility to the process.
|
14. A method to improve the threshold voltage (Vt) roll-off in an nmos transistor by fabricating a shallow trench isolation structure, comprising:
(a) providing a substrate having an active area where an nmos transistor will be built;
(b) forming shallow trenches in said substrate; said shallow trenches separate active areas in said substrate;
(c) growing an oxide liner layer on the sidewalls and bottom of said shallow trenches;
(d) forming a plug in said shallow trenches wherein said plug is recessed below the top of said substrate;
(e) performing an angled indium implant through said trench openings into the substrate adjacent to top corners of the shallow trenches;
(f) removing said plug layer; and
(g) depositing an insulator layer in said shallow trenches and planarizing said insulator layer.
1. A method to improve the threshold voltage (Vt) roll-off in an nmos transistor that includes a shallow trench isolation feature, comprising:
(a) providing a substrate having an active area where an nmos transistor will be built;
(b) forming trenches in said substrate wherein the shallow trenches separate active areas in said substrate;
(c) forming a liner on the surface of said substrate and on the sidewalls and bottom of said shallow trenches;
(d) forming a plug in said shallow trenches; said plug is recessed below the top of said substrate;
(e) performing an angled indium implant through said shallow trenches into the substrate adjacent to top corners of the trenches;
(f) removing said plug and depositing an insulator layer to fill said shallow trenches;
(g) planarizing said insulator layer; and
(h) forming a gate dielectric layer on said substrate and forming a patterned gate layer over said gate dielectric layer and over said insulator layer.
2. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
10. The method of
11. The method of
12. The method of
13. The method of
15. The method of
16. The method of
17. The method of
19. The method of
20. The method of
21. The method of
22. The method of
23. The method of
24. The method of
25. The method of
|
This application is a DIV of U.S. patent application Ser. No. 10/619,114, filed Jul. 14, 2003.
The invention relates to a method of fabricating an integrated circuit in a semiconductor device. More particularly, the present invention relates to the formation of an NMOS transistor comprising a shallow trench isolation structure. This application Ser. No. 10/757,203 filed Jan. 14, 2004, application is a divisional of application Ser. No. 10/619,114 filed Jul. 14, 2003 now U.S. Pat. No. 6,949,785 and now U.S. Pat. No. 7,071,515.
As design rules shrink for MOSFET (Metal Oxide Semiconductor Field Effect Transistor) devices, there is a need to improve the reliability and performance of n-type (hereafter called NMOS) transistors. One particular problem with devices having a channel length smaller than about 1 micron is referred to as a reverse narrow width effect in which threshold voltage decreases as the width of a shallow trench isolation (STI) feature that separates active areas decreases. As a result, the NMOS transistor performance and reliability are degraded.
A conventional process for fabricating a NMOS transistor involves forming a pad oxide on a substrate and depositing a silicon nitride cap layer on the pad oxide. A lithography and plasma etch process is used to form a shallow trench in the substrate. After an oxide liner is grown on the sidewalls and bottom of the trench, a dielectric material is deposited to fill the trench. The dielectric material is made coplanar with the nitride layer by employing a planarization process. The nitride and pad oxide layers are usually removed with a wet etch that leaves a recess in the top coners of the STI feature. Subsequent steps involve formation of a gate oxide and formation of a gate layer on the gate oxide. The gate layer which may be polysilicon or a similar material often fills the recess at the top corners of the STI structure. The presence of this conducting material can induce a local electric field below the corners of the gate oxide in the final device which leads to a lower threshold voltage (Vt) and higher leakage current in the NMOS transistor. Therefore, a method is needed to reduce the effect of the localized electric field adjacent to the top corners of the STI structure in order to improve device performance and reliability.
A shallow trench is also formed during the fabrication of a DRAM capacitor in U.S. Pat. No. 6,162,679. Here a conformal conductive layer is formed in a trench and a photoresist layer is coated on the conductive layer and etched back in the trench to protect a portion of the conductive layer while the exposed conductive layer is removed by a second etch step.
One method to reduce the reverse narrow width effect is described in U.S. Pat. No. 5,960,276 where a boron implant is performed on the sidewalls of the etched trench before an insulating material fills the STI feature. However, P+ to P well isolation is expected to be degraded due to the boron implant compensating the N well at the STI sidewall. Similarly, N+ to P well junction leakage will increase due to the boron implant increasing the P well implant concentration at the STI sidewall.
In related art found in U.S. Pat. No. 6,228,726, a boron implant is used to dope a region under an open trench to improve latchup immunity and to increase the N+ to N well and P+ to P well isolation. A method of forming a boron doped silicon sidewall in a trench structure is described in U.S. Pat. No. 5,296,392 and involves a CVD process with dichlorosilane as the silicon source gas and diborane as the source of the boron dopant.
In U.S. Pat. No. 6,277,697, a tilted boron implant is performed through a pad oxide into a substrate. A trench is etched into the substrate and leaves a pocket of boron dopant in the substrate adjacent to the upper corners of the STI structure. After the poly gate is formed, the doped region mitigates the influence of the local intensified electric field caused by polysilicon filling the etched recess at the top corners of the STI structure. Since the implant is performed prior to high temperature oxidation and anneal steps in the trench fabrication, a considerable amount of dopant is likely to be lost from the implanted regions.
Because of the tendency for boron to diffuse away from its implanted location during subsequent thermal cycles and thereby cause a depletion of dopant in desired regions, a reverse narrow channel effect (RNCE) is likely to occur. The RNCE is reduced in U.S. Pat. No. 6,245,639 by a large angle N ion implant into sidewalls of a trench which blocks B ions from migrating to an STI/well interface.
A method is described in U.S. Pat. No. 6,331,458 for implanting indium ions in an active region between two field oxide regions formed by a LOCOS method. The method teaches that the lower mobility of indium compared with boron in a substrate results in a lower threshold voltage skew but does not address the influence of the etched recess in an STI structure on reverse narrow width effect in an NMOS transistor which may also be referred to as Vt roll-off. Furthermore, the method does not allow for a higher dopant concentration in a region of the substrate adjacent to the STI corners and a lower concentration in other parts of the active region.
An indium ion implant is also employed in U.S. Pat. No. 6,504,219 in which the indium ions are vertically implanted into the bottom of an STI trench to strengthen a p-well and provide punchthrough protection. However, the method does not address the problem of Vt roll-off caused by an etched recess at top corners of the STI structure.
Therefore, a method is desirable for fabricating an NMOS transistor having an STI structure that enables the flexibility of placing a high concentration of dopant selectively in the active region adjacent to top corners of an STI structure. A preferred process does not degrade the isolation or junction performance and is adjustable to permit various degrees of threshold voltage improvement.
One objective of the present invention is to provide a means of improving the reverse narrow width effect without degrading isolation and junction leakage.
A further objective of the present invention is to provide a method of improving NMOS narrow width Vt roll-off with high flexibility.
A still further objective of the present invention is to achieve an improvement in reverse narrow width effect without implementing new equipment that will drive up the cost of fabrication.
These objectives are accomplished in one embodiment by providing a substrate that may be doped or undoped. A pad oxide is formed on the substrate followed by deposition of a silicon nitride cap layer. A conventional patterning and etching sequence is employed to produce a shallow trench in the substrate. Next, a thin oxide liner is grown on the sidewalls and bottom of the trench. A photoresist is coated to fill the trench and cover the substrate. Then the photoresist is etched back to a level that is slightly below the surface of the substrate to form a recessed plug in the trench. A key feature of the present invention is an angled implant of indium ions through the oxide at the top corners of the trench and into the adjacent region of substrate. The photoresist is removed and a p-type dopant may then be vertically implanted through the bottom of the trench. An insulator material is deposited to fill the trench above the level of the silicon nitride layer. A conventional wet etch method that is used to strip the silicon nitride and pad oxide is likely to produce a small groove in the insulator layer near where the top of the substrate abuts the shallow trench. A gate dielectric layer is then formed on active regions where the pad oxide was previously removed followed by deposition of a gate layer on the gate dielectric surface. Additional processes such as patterning the gate layer and forming source/drain regions that are well known to those skilled in the art are employed to finish the fabrication of a NMOS transistor.
The advantage of the indium implant is that the indium dopant has a lower tendency to migrate than boron and serves to mitigate the effect of the localized electrical field that is induced by the presence of the gate layer in the grooves formed within the insulator layer at top coners of the shallow trench.
The present invention is also a semiconductor device comprising an NMOS transistor that includes a substrate having an active region formed between shallow trench isolation structures. Each shallow trench has an oxide liner along its sidewalls and bottom and is filled with an insulator material to a level above the substrate. A gate dielectric layer covers the active region and a patterned gate layer is formed on the gate dielectric layer. An indium dopant is located near the surface of the substrate in a region that abuts the top corners of the shallow trench. Other p-type dopants may be present at the surface of the substrate in the active region but the total concentration of dopants is highest in the indium doped regions. This device is especially useful in improving NMOS Vt roll-off for transistors having a channel length of about 1 micron or less.
The features and advantages of a semiconductor device according to the present invention and further details of a process of fabricating such a device in accordance with the present invention will be more clearly understood from the following description taken in conjunction with the accompanying drawings in which like reference numerals designate similar or corresponding elements, regions, and portions, and in which
The present invention is a method of improving the reliability and performance of NMOS transistors in a semiconductor device by improving the Vt roll-off for short channel devices. However, the method is also effective for long channel devices. The invention is not limited to the specific examples described herein and the figures are not necessarily drawn to scale.
Referring to
Trenches 14a, 14b are formed by first coating a photoresist layer 13 on cap layer 12 and then patternwise exposing and developing photoresist layer 13. Trenches 14a, 14b may have equal widths (w1=w2) or the widths w1 and w2 may be different. Widths w1, w2 may have a size that ranges from less than 100 nm to several microns. Trenches 14a, 14b will subsequently be etched into substrate 10 and filled with an insulator layer to form shallow trench isolation features. Trenches 14a, 14b are transferred through cap layer 12 and pad oxide 11 with a plasma etch to expose portions of substrate 10. Active areas 15, 16 between trenches are active areas upon which NMOS transistors will be built. The widths of active areas 15, 16 are w3, w4, respectively, and may vary in size from less than 100 nm to several microns. The dimension w3 may or may not be equal to w4. There may be other active areas (not shown) on substrate 10 that have widths wx that may be equal to or different than dimensions w3, w4.
A top-down view of the partially formed device structure shown in
Referring to
Referring to
A key feature of the present invention is an angled implant 19 of indium ions through trenches 14a, 14b and through exposed liner 17. Some of the angled implant also penetrates through pad oxide layer 11. The indium ions are preferably implanted at an energy of between 10 and 300 keV and most preferably at 130 keV. The dosage is from about 1e12 to 5e13 ions/cm2 and preferably is about 2e13 ions/cm2. The angle of the implant is critical and is maintained between 0 degrees (vertical implant) and 60 degrees.
Referring to
Referring to
Referring to
In one embodiment, an implant (not shown) may be performed at this point on the exposed substrate 10 in active areas 15, 16 to compensate for well dopant loss near liner 17. The dopant which may be boron, indium, or BF2 is typically implanted at an equal concentration across active areas 15, 16. Thus, the total concentration of dopants in active areas 15, 16 is still greater in regions 20 than in other parts of active areas 15, 16. Dopants in implanted regions are activated by an anneal process such as a rapid thermal anneal step at about 800° C. to 1000° C., for example.
Referring to
The advantage of doped regions 20 in the present invention is that the indium dopant mitigates the effect of a localized electric field that is induced by the presence of gate layer 25 in grooves 26. In prior art, this localized electrical field causes an increased amount of leakage current and a lower threshold voltage (Vt). Moreover, the indium provides an advantage over boron dopant since indium has a much lower tendency to migrate away from regions 20 when the substrate is subjected to thermal cycles during NMOS transistor fabrication or in the final device. The lower mobility of indium ensures a higher concentration of dopant in the regions 20 where the dopant has the most influence on the localized electric field caused by gate layer 25 in grooves 26.
The NMOS transistor is completed by well known steps including the formation of spacers adjacent to the gate and heavily doped source/drain regions in substrate regions not covered by the gate or spacers. Those details are not provided here since they are known to those skilled in the art and are not pertinent to this invention.
A top-down view of the partially formed device shown in
The effectiveness of the indium dopant in substrate regions 20 in improving the long channel NMOS Vt roll-off is demonstrated in
Referring to
The Vt roll-off improvement is achieved in the present invention by employing existing ion implant tools and thereby minimizes any cost of including the indium implant step in the fabrication scheme. Any increase in cost is more than offset by the improved reliability and performance realized by the NMOS transistor that is produced by the present invention. Furthermore, the indium implant is performed in a manner that does not degrade junction or isolation performance. The method is flexible since the indium implant dose and angle can be varied to modify the dopant concentration and size of the implant region 20.
The invention is also a semiconductor device comprised of a NMOS transistor that includes a substrate with shallow trench isolation (STI) features and active areas as illustrated in
Referring to
Shallow trenches 14a, 14b have a depth of about 300 to 8000 Angstroms and preferably between 1500 and 5000 Angstroms with sloped sidewalls so that the bottom of the trench has a narrower width than the top opening of the trench. Shallow trenches 14a, 14b have a liner 17 that is preferably a thermal oxide layer with a thickness of about 50 to 300 Angstroms that is on the bottom of the trenches and extends upwards along the sidewalls to a point near the top of substrate 10. The remainder of shallow trenches 14a, 14b are filled with an insulator layer 23 that is an oxide such as SiO2 or a low k dielectric material. Insulator layer 23 extends above the surface of substrate 10 and has a top that may be flat or slightly rounded. Small grooves 26 may be present in shallow trenches 14a, 14b near the top of liner 17. The width w1 of the top of shallow trench 14a may or may not be equal to the width w2 of the top of shallow trench 14b. Furthermore, there may be other shallow trenches (not shown) in substrate 10 that have a width wy that may or may not be equivalent to w1 or w2. The widths w1, w2 of the top of shallow trenches 14a, 14b may vary from less than 100 nm to several microns.
Referring to
Referring again to
A p-type dopant is located in a region 28 that has a depth of about 100 to 500 Angstroms below the top of substrate 10 and extends across active areas 15, 16. An indium dopant is located in regions 20 of substrate 10 near the top of liner 17 along sidewalls of trenches 14a, 14b. Region 20 also extends under gate dielectric layer 24 up to a distance of 0 to about 1000 Angstroms from liner 17. The thickness of region 20 is from about 30 to 1000 Angstroms and the indium dopant is present at a concentration between about 1014 and 1019 ions/cm3.
In one embodiment, a third dopant is located in a region 22 below STI features 14a, 14b and is a p-type dopant such as boron or indium. Region 22 has a thickness of about 30 to 1000 Angstroms and a width that is similar to the width of the bottom of STI features 14a, 14b.
The advantage of NMOS transistor 40 over other NMOS transistor structures is the presence of an indium dopant in regions 20. The indium dopant mitigates the effect of a localized electric field that is induced by the gate layer 25 in groove 26. In prior art structures, this localized electric field causes gate leakage and a Vt roll-off that leads to a loss in reliability and performance in the NMOS transistor. The effectiveness of the indium dopant in substrate regions 20 in improving the long channel NMOS Vt roll-off is demonstrated in
Referring to
The improvement in Vt roll-off is achieved in NMOS transistor structure 40 without a loss in junction or isolation performance. The indium dopant in region 20 is preferred over a boron dopant which has a higher tendency to migrate during thermal treatments in the device fabrication scheme and thereby lessen the concentration of dopant in region 20 in the final device.
While this invention has been particularly shown and described with reference to, the preferred embodiment thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of this invention.
Wu, Chung-Cheng, Sheu, Yi-Ming, Lin, Da-Wen, Chen, Cheng-Ku, Yeh, Po-Ying, Peng, Shi-Shung
Patent | Priority | Assignee | Title |
8207581, | Sep 25 2009 | ABLIC INC | Semiconductor device |
9093266, | Apr 11 2011 | U S BANK NATIONAL ASSOCIATION, AS COLLATERAL AGENT | Forming high aspect ratio isolation structures |
Patent | Priority | Assignee | Title |
5296392, | Mar 06 1990 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method of forming trench isolated regions with sidewall doping |
5726095, | Dec 30 1994 | International Business Machines Corporation | Method for making MOSFET device having controlled parasitic isolation threshold voltage |
5960276, | Sep 28 1998 | Taiwan Semiconductor Manufacturing Company, Ltd. | Using an extra boron implant to improve the NMOS reverse narrow width effect in shallow trench isolation process |
6162679, | Apr 26 1999 | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | Method of manufacturing DRAM capacitor |
6228726, | Mar 06 2000 | Taiwan Semiconductor Manufacturing Company | Method to suppress CMOS device latchup and improve interwell isolation |
6245639, | Feb 08 1999 | Taiwan Semiconductor Manufacturing Company | Method to reduce a reverse narrow channel effect for MOSFET devices |
6277697, | Nov 12 1999 | United Microelectronics Corp | Method to reduce inverse-narrow-width effect |
6331458, | Oct 11 1994 | Advanced Micro Devices, Inc. | Active region implant methodology using indium to enhance short channel performance of a surface channel PMOS device |
6342429, | Dec 22 1999 | Bell Semiconductor, LLC | Method of fabricating an indium field implant for punchthrough protection in semiconductor devices |
6459141, | Nov 22 1999 | Advanced Micro Devices, Inc. | Method and apparatus for suppressing the channeling effect in high energy deep well implantation |
6504219, | Dec 22 1999 | Bell Semiconductor, LLC | Indium field implant for punchthrough protection in semiconductor devices |
6649461, | Apr 25 2002 | Chartered Semiconductor Manufacturing Ltd. | Method of angle implant to improve transistor reverse narrow width effect |
7029997, | Aug 15 2003 | ProMos Technologies Inc. | Method of doping sidewall of isolation trench |
7268048, | Aug 06 2004 | Taiwan Semiconductor Manufacturing Company, Ltd | Methods for elimination of arsenic based defects in semiconductor devices with isolation regions |
20020048913, | |||
20030096466, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
May 13 2003 | SHEU, YI-MING | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017306 | /0560 | |
May 13 2003 | LIN, DA-WEN | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017306 | /0560 | |
May 13 2003 | CHEN, CHENG-KU | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017306 | /0560 | |
May 13 2003 | YEH, PO-YING | TAIWAN SEMICONDUCTOR MANUFACTURING CO , LTD | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017306 | /0560 | |
Nov 29 2005 | Taiwan Semiconductor Manufacturing Co., Ltd. | (assignment on the face of the patent) | / |
Date | Maintenance Fee Events |
Sep 21 2011 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Dec 30 2015 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Jan 03 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Jul 15 2011 | 4 years fee payment window open |
Jan 15 2012 | 6 months grace period start (w surcharge) |
Jul 15 2012 | patent expiry (for year 4) |
Jul 15 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Jul 15 2015 | 8 years fee payment window open |
Jan 15 2016 | 6 months grace period start (w surcharge) |
Jul 15 2016 | patent expiry (for year 8) |
Jul 15 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Jul 15 2019 | 12 years fee payment window open |
Jan 15 2020 | 6 months grace period start (w surcharge) |
Jul 15 2020 | patent expiry (for year 12) |
Jul 15 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |