systems and methods provide network address failover capability within an application gateway device. In one aspect, a system has a first network interface and a second network interface. The system receives a set of configuration data, the configuration data may include a first network address for the first network interface and a second network address for the second network interface. At startup or during later operation, the system may detect the failure of the first network interface. The configuration data may be analyzed to determine if the first network address can be used on the second network interface. If so, the first network address is moved from the first network interface to the second network interface.
|
16. An application gateway device comprising:
a processor;
a memory;
an operating system executed by the processor from the memory; and
a first network interface having a first network address and a second network interface having a second network address;
wherein the operating system is operable to detect the failure of the first network interface and to analyze a set of configuration data to determine if the first network address can be used on the second network interface; and if so, moving the first network address to the second network interface.
1. A method for providing failover for a network address in an application gateway device having a first network interface and at least a second network interface, the method comprising:
receiving a set of configuration data for the application gateway device, the configuration data including a first network address for the first network interface and a second network address for the second network interface;
detecting a failure in the first network interface; and
analyzing the configuration data to determine if the first network address can be used on the second network interface; and if so, moving the first network address to the second network interface.
37. A system for providing failover for a network address in an application gateway device having a first network interface and at least a second network interface, the system comprising:
means for receiving a set of configuration data for the application gateway device, the configuration data including a first network address for the first network interface and a second network address for the second network interface;
means for detecting a failure in the first network interface; and
means for analyzing the configuration data to determine if the first network address can be used on the second network interface; and if so, moving the first network address to the second network interface.
22. A computer-readable medium having computer executable instructions for performing a method for providing failover for a network address in an application gateway device having a first network interface and at least a second network interface, the method comprising:
receiving a set of configuration data for the application gateway device, the configuration data including a first network address for the first network interface and a second network address for the second network interface;
detecting a failure in the first network interface; and
analyzing the configuration data to determine if the first network address can be used on the second network interface; and if so, moving the first network address to the second network interface.
3. The method of
4. The method of
5. The method of
6. The method of
7. The method of
8. The method of
9. The method of
11. The method of
removing the network address from the first interface;
removing a MAC address associated with the network address from a static routing table associated with the first interface;
moving the network address and the MAC address to the second network interface; and
reinstalling the static routing table on the second network interface.
12. The method of
removing at least one ARP entry for at least one host on a subnet associated with the first network address.
13. The method of
14. The method of
15. The method of
17. The application gateway device of
19. The application gateway device of
20. The application gateway device of
21. The application gateway device of
23. The computer-readable medium of
24. The computer-readable medium of
25. The computer-readable medium of
26. The computer-readable medium of
27. The computer-readable medium of
28. The computer-readable medium of
29. The computer-readable medium of
30. The computer-readable medium of
31. The computer-readable medium of
32. The computer-readable medium of
removing the network address from the first interface;
removing a MAC address associated with the network address from a static routing table associated with the first interface;
moving the network address and the MAC address to the second network interface; and
reinstalling the static routing table on the second network interface.
33. The computer-readable medium of
34. The computer-readable medium of
35. The computer-readable medium of
36. The computer-readable medium of
38. The system of
39. The system of
40. The system of
41. The system of
|
This invention is related to application Ser. No. 10/128,656, filed Apr. 22, 2002, now U.S. Pat. No. 7,165,258, issued on Jan. 16, 2007, entitled “SCSI-BASED STORAGE AREA NETWORK”, application Ser. No. 10/131,793, filed Apr. 22, 2002, entitled “VIRTUAL SCSI BUS FOR SCSI-BASED STORAGE AREA NETWORK”, provisional application Ser. No. 60/374,921, filed Apr. 22, 2002, entitled “INTERNET PROTOCOL CONNECTED STORAGE AREA NETWORK”, application Ser. No. 10/356,073, filed Jan. 31, 2003, entitled “STORAGE ROUTER WITH INTEGRATED SCSI SWITCH”, and application Ser. No. 10/128,657, filed Apr. 22, 2002, entitled “METHOD AND APPARATUS FOR EXCHANGING CONFIGURATION INFORMATION BETWEEN NODES OPERATING IN A MASTER-SLAVE CONFIGURATION” all of the above of which are hereby incorporated by reference.
A portion of the disclosure of this patent document contains material which is subject to copyright protection. The copyright owner has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever. The following notice applies to the software and data as described below and in the drawing hereto: Copyright© 2003, Cisco Systems, Inc., All Rights Reserved.
This invention relates generally to network addressing, and more particularly to providing address failover capability for network interfaces on an application gateway device.
Many devices capable of being attached to a network such as personal computers, servers, routers and switches have more than one network interface. Typically multiple network interfaces may be used by the network device to provide connectivity to differing networks or systems, to provide a redundant path to a network, or they may be used to provided increased network throughput (i.e. increased bandwidth).
Occasionally a network interface may fail. When this happens, software applications using the network interface are no longer able to use the network interface to send and receive data, possibly resulting in the failure of the software application.
In some systems, when a network interface fails, the system attempts to migrate the software application to another network device on the same network as the device experiencing the network interface failure. The application then runs on the new network device, often in a manner that is transparent to the users on the system. The ability to migrate an application to a new device is sometimes referred to as “failover.”
Failover capability is useful in providing fault tolerant applications, however there are problems associated with failing over to a second network device. Often it takes a substantial amount of time to accomplish the failover, because application configuration and data must be transferred to the second network device. A user will often notice a delay in the response of the system while the failover takes place. In addition, network connections between the failed over application and other hosts and applications may need to be reestablished because the new application will reside on a network device having a different network address than the original network device. This also can take a substantial mount of time and may result in the loss of data.
In view of the above problems and issues, there is a need in the art for the present invention.
The above-mentioned shortcomings, disadvantages and problems are addressed by the present invention, which will be understood by reading and studying the following specification.
Systems and methods provide network address failover capability within an application gateway device. In one aspect, a system has a first network interface and a second network interface. The system receives a set of configuration data, the configuration data may include a first network address for the first network interface and a second network address for the second network interface. At startup or during later operation, the system may detect the failure of the first network interface. The configuration data may be analyzed to determine if the first network address can be used on the second network interface. If so, the first network address is moved from the first network interface to the second network interface.
The present invention describes systems, methods, and computer-readable media of varying scope. In addition to the aspects and advantages of the present invention described in this summary, further aspects and advantages of the invention will become apparent by reference to the drawings and by reading the detailed description that follows.
In the following detailed description of exemplary embodiments of the invention, reference is made to the accompanying drawings that form a part hereof, and in which is shown by way of illustration specific exemplary embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that logical, mechanical, electrical and other changes may be made without departing from the scope of the present invention.
Some portions of the detailed descriptions that follow are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the ways used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self-consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers, or the like. It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussions, terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar computing device, that manipulates and transforms data represented as physical (e.g., electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.
In the Figures, the same reference number is used throughout to refer to an identical component which appears in multiple Figures. Signals and connections may be referred to by the same reference number or label, and the actual meaning will be clear from its use in the context of the description.
The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present invention is defined only by the appended claims.
Some embodiments of the invention operate in an environment of systems and methods that provide a means for Fibre Channel based Storage Area Networks (SANs) to be accessed from TCP/IP network hosts.
In one embodiment, storage router 110 provides IPv4 router functionality between a Gigabit Ethernet and a Fibre Channel interface. In one such embodiment, static routes are supported. In addition, storage router 110 supports a configurable MTU size for each interface, and has the ability to reassemble and refragment IP packets based on the MTU of the destination interface.
In one embodiment, storage router 110 acts as a gateway, converting SCSI protocol between Fibre Channel and TCP/IP. Storage router 110 is configured in such an embodiment to present Fibre Channel devices as iSCSI targets, providing the ability for clients on the IP network to directly access storage devices.
In one embodiment, SCSI routing occurs in the Storage Router 110 through the mapping of physical storage devices to iSCSI targets. An iSCSI target (also called logical target) is an arbitrary name for a group of physical storage devices. Mappings between an iSCSI target to multiple physical devices can be established using configuration programs on storage router 110. An iSCSI target always contains at least one Logical Unit Number (LUN). Each LUN on an iSCSI target is mapped to a single LUN on a physical storage target.
In operation, if a network interface on storage router 110 fails, the SCSI router instances using the interface may have their respective IP network addresses failed over to a secondary network interface. For example, assume that the network interface being used by SCSI router 105.2 fails. The IP network address associated with SCSI router 105.2 may be moved (i.e. failed over) to the same network interface as SCSI router 105.1. The movement is generally transparent both to the SCSI router instance 105.2, and to hosts and applications that are communicating via the network to SCSI router instance 105.2. Further details on the failover of the IP network address are provided with reference to
Although the exemplary environment illustrates two members 110.1 and 110.2 of cluster 112, the invention is not limited to any particular number of members of a cluster.
Further details on the operation of the above can be found in U.S. patent application Ser. No. 10/131,793 entitled “VIRTUAL SCSI BUS FOR SCSI-BASED STORAGE AREA NETWORK” and in U.S. patent application Ser. No. 10/356,073 entitled “INTEGRATED STORAGE ROUTER AND FIBRE CHANNEL SWITCH”, both of which have been previously incorporated by reference.
Router portion 210, which in the exemplary embodiment complies with draft 08 and later versions of the iSCSI protocol and incorporates commercially available router technology, such as the 5420 and 5428 Storage Routers from Cisco Systems, Inc. of San Jose, Calif., includes Gigabit Ethernet (GE) ports 211.1 and 211.2, console port 212, management port 213, high-availability (HA) port 214, bridge-and-buffer module 215, interface software 216, router processor 217, and router-to-switch interface 218.
GE ports 211.1 and 211.2 couple the storage router to an IP network for access by one or more servers or other computers, such as servers or iSCSI hosts (in
Console port 212 couples to a local control console (not shown). In the exemplary embodiment, this port takes the form of an RS-232 interface.
Management port 213 provides a connection for managing and/or configuring storage router 110. In the exemplary embodiment, this port takes the form of a 10/100 Ethernet port and may be assigned the base MAC address for the router-switch.
HA port 214 provides a physical connection for high-availability communication with another router-switch, such as storage router 110 in
Bridge-and-buffer module 215, which is coupled to GE ports 211.1 and 211.2, provides router services that are compliant with draft 08 and later versions of the iSCSI protocol. In the exemplary embodiment, module 215 incorporates a Peripheral Component Interface (PCI) bridge, such as the GT64260 from Marvell Technology Group, LTD. of Sunnyvale, Calif. Also module 215 includes a 64-megabyte flash file system, a 1-megabyte boot flash, and a 256-megabyte non-volatile FLASH memory (not shown separately.) Configuration memory 230 may be part of the flash file system, the boot flash or the non-volatile flash memory, or it may be a separate non-volatile flash memory. In addition, in alternative embodiments, configuration memory 230 may be part of a hard disk, CD-ROM, DVD-ROM or other persistent memory (not shown). The invention is not limited to any particular type of memory for configuration memory 230.
In addition to data and other software used for conventional router operations, module 215 includes router-switch interface software 216. Router-switch software 216 performs iSCSI routing between servers and the storage devices. The software includes an integrated router-switch command line interface module CLI and a web-based graphical-user-interface module (GUI) for operation, configuration and administration, maintenance, and support of the router-switch 110. Both the command-line interface and the graphical user interface are accessible from a terminal via one or both of the ports 213 and 214. Additionally, to facilitate management activities, interface software 216 includes an SNMP router-management agent AGT and an MIB router handler HD. (SNMP denotes the Simple Network Management Protocol, and MIB denotes Management Information Base (MIB)). The agent and handler cooperate with counterparts in switch portion 220 (as detailed below) to provide integrated management and control of router and switching functions in router-switch 200.
Router Processor 217, in the exemplary embodiment, is implemented as a 533-MHz MPC7410 PowerPC from Motorola, Inc. of Schaumburg, Ill. This processor includes 1-megabyte local L2 cache (not shown separately). In the exemplary embodiment, router processor 217 runs a version of the VX Works operating system from WindRiver Systems, Inc. of Alameda, Calif. To support this operating system, the exemplary embodiment also provides means for isolating file allocations tables from other high-use memory areas (such as areas where log and configuration files are written).
Coupled to router processor 217 as well as to bridge-and-buffer module 215 is router-to-switch (RTS) interface 218. RTS interface 218 includes N/NL switch-interface ports 218.1 and 218.2 and management-interface port 218.3, where the port type of N or NL is determined by negotiation. N type ports may act as a Fibre Channel point to point port, NL type ports may negotiate as a loop.
Switch-interface ports 218.1 and 218.2 are internal Fibre Channel (FC) interfaces through which the router portion conducts I/O operations with the switch portion. When a mapping to a FC storage device is created, the router-switch software automatically selects one of the switch-interface ports to use when accessing the target device. The internal interfaces are selected at random and evenly on a per-LUN (logical unit number) basis, allowing the router-switch to load-balance between the two FC interfaces. The operational status of these internal FC interfaces is monitored by each active SCSI Router application running on the switch-router. The failure of either of these two interfaces is considered a unit failure, and if the switch-router is part of a cluster, all active SCSI Router applications will fail over to another switch-router in the cluster. Other embodiments allow operations to continue with the remaining switch-interface port. Still other embodiments include more than two switch-interface ports.
In the exemplary embodiment, the N/NL switch-interface ports can each use up to 32 World Wide Port Names (WWPNs). The WWPNs for port 218.1 are computed as 28+virtual port+base MAC address, and the WWPNs for port 218.2 are computed as 29+virtual port+base MAC address. Additionally, switch-interface ports 218.1 and 218.2 are hidden from the user. One exception is the WWPN of each internal port. The internal WWPNs are called “initiator” WWPNs. Users who set up access control by WWPN on their FC devices set up the device to allow access to both initiator WWPNs.
Switch-interface port 218.3 is used to exchange configuration data and get operational information from switch portion 220 through its management-interface port 224. In the exemplary embodiment, switch-interface port 218.3 is an 10/100 Ethernet port. In the exemplary embodiment, this exchange occurs under the control of a Switch Management Language (SML) Application Program Interface (API) that is part of interface software 216. One example of a suitable API is available from QLogic Corporation of Aliso Viejo, Calif. Ports 218.1, 218.2, and 218.3 are coupled respectively to FC interface ports 221.1 and 221.2 and interface port 224 of switch portion 220.
Switch portion 220, which in the exemplary embodiment incorporates commercially available technology and supports multiple protocols including IP and SCSI, additionally includes internal FC interface ports 221.1 and 221.2, an FC switch 222, external FC ports (or interfaces) 223.1-223.8, a management interface port 224, and a switch processor module 225.
FC interface ports 221.1 221.2 are coupled respectively to ports of 218.1 and 218.2 of the router-to-switch interface via internal optical fiber links, thereby forming internal FC links. In the exemplary embodiment, each FC interface supports auto-negotiation as either an F or FL port.
FC switch 222, in the exemplary embodiment, incorporates a SANbox2-16 FC switch from QLogic Corporation. This SANbox2 switch includes QLogic's Itasca switch ASIC (application-specific integrated circuit.) Among other things, this switch supports Extended Link Service (ELS) frames that contain manufacturer information.
FC ports 223.1-223.8, which adhere to one or more FC standards or other desirable communications protocols, can be connected as point-to-point links, in a loop or to a switch. For flow control, the exemplary embodiment implements a Fibre Channel standard that uses a look-ahead, sliding-window scheme, which provides a guaranteed delivery capability. In this scheme, the ports output data in frames that are limited to 2148 bytes in length, with each frame having a header and a checksum. A set of related frames for one operation is called a sequence.
Moreover, the FC ports are auto-discovering and self-configuring and provide 2-Gbps full-duplex, auto-detection for compatibility with 1-Gbps devices. For each external FC port, the exemplary embodiment also supports: Arbitrated Loop (AL) Fairness; Interface enable/disable; Linkspeed settable to 1 Gbps, 2 Gbps, or Auto; Multi-Frame Sequence bundling; Private (Translated) Loop mode.
Switch processor module 225 operates the FC switch and includes a switch processor (or controller) 225.1, and associated memory that includes a switch management agent 225.2, and a switch MIB handler 225.3. In the exemplary embodiment, switch processor 225.1 includes an Intel Pentium processor and a Linux operating system. Additionally, processor 225 has its own software image, initialization process, configuration commands, command-line interface, and graphical user interface (not shown). (In the exemplary embodiment, this command-line interface and graphical-user interface are not exposed to the end user.) A copy of the switch software image for the switch portion is maintained as a tar file 226 in bridge-and-buffer module 215 of router portion 210.
Further details on the operation of the above describe system, including high availability embodiments can be found in application Ser. No. 10/128,656, entitled “SCSI-BASED STORAGE AREA NETWORK”, application Ser. No. 10/131,793, entitled “VIRTUAL SCSI BUS FOR SCSI-BASED STORAGE AREA NETWORK”, and provisional application Ser. No. 60/374,921, entitled “INTERNET PROTOCOL CONNECTED STORAGE AREA NETWORK”, all of which have been previously incorporated by reference.
The method begins when a system executing the method receives configuration data (block 305). In some embodiments, the configuration data includes the network addresses for applications running on the application gateway device, and may also include specifications of primary and secondary network interfaces that are to be assigned to the network address. In some embodiments, the network address is an IP network address.
At some point during the operation of the system, the system may detect the failure of a network interface (block 310). The failure may be detected either at startup time, in which case the secondary network interface may be used, or the failure may be detected after startup. In some embodiments of the invention, the failing network interface must be down for two seconds in order for a failure to be determined.
If the failure occurs after startup, the configuration data is analyzed to determine if the network address assigned to the first (failing) network interface can be failed over to the second network interface (block 315). Various embodiments of the invention may use various factors in determining if the network address may be failed over from a first network interface to a second network interface. For example, one factor that may be analyzed is whether or not the network interfaces are connected to the same network. If not, the network address may not be failed over. Additionally, some embodiments of the invention analyze the configuration data to determine if the first and second network interfaces are on the same subnet. If not, the network address may not be failed over.
Additionally, some embodiments of the invention support VLANs (Virtual Local Area Network). In these embodiments, if the first network address and network interface are on a VLAN, the configuration data is analyzed to determine if second network interface can support the same VLAN. If not, the network address may not be failed over to the second network interface. In some embodiments executing the VTP protocol, a switch participating in the VLAN will inform the network interfaces which VLANs are acceptable. In alternative embodiments, the acceptable VLANS are configured.
Furthermore, in clustered environments, such as those described in
A further check performed by some embodiments of the invention is to determine if the second network interface can support an additional network address. In some embodiments, each network interface can support up to fifteen network addresses. If the second network interface is at the maximum, the network address may not be failed over.
Similarly, the system may check to determine if the second network interface can support an additional MAC address. If not, the network address may not be failed over.
After analyzing the configuration data as described above, the system will determine if the network address can be failed over from a failed first network interface to a second network interface (block 320). If so, the network address is moved to the second network interface (block 325) and applications using the first network interface continue to operate as if the failure did not occur (note that some data may need to be retransmitted, however this is typically handled by the network protocol layers and is typically transparent to the application). If not, the network address remains associated with the first network interface and the application may no longer be able to send or receive data to and from the network.
Additionally, any static routes associated with the network address are removed from routing tables on the system (block 344).
In some embodiments of the invention, ARP (Address Resolution Protocol) entries associated with the first network address are removed from the system (block 346).
Finally, in some embodiments, any cached routes associated with the network address are flushed (i.e. removed) from the system (block 348). In some embodiments, cached routes associated with TCP, UDP and IP protocols are flushed.
The system then proceeds to prepare to associate the network address with the second network interface. The network address is assigned to the second network interface (block 350). In some embodiments, the MAC address that was associated with the network address on the first interface is moved to the second interface (block 352).
In some embodiments, the static routes that were removed at block 344 above are reinstalled on the system and associated with the second network interface (block 354).
In those embodiments supporting VLANS, if the first network interface was participating in a VLAN, then the VLAN logical interfaces are deleted from the first network interface and established on the second network interface if necessary.
Finally, in some embodiments of the invention, a gratuitous ARP packet is issued by the second network interface (block 356). The packet is gratuitous in that it is not issued in response to an ARP request. The gratuitous ARP is desirable, because it causes other network elements in the network such as switches and routers to update their respective ARP tables more quickly than they would through normal address resolution mechanisms that rely on timeouts.
It should be noted that the tasks performed above need not be performed in the order indicated in the flowchart. Additionally, various embodiments of the invention need not perform each and every task noted above.
Systems and methods for failing over a network address from a first network interface to a second network interface have been described. The embodiments of the invention provide advantages over previous systems. For example, by transferring the network address from one network interface to another, the failover may be transparent to the applications and hosts communicating with the applications, thus resulting in less disruption on the network.
While the embodiments of the invention have been described as operating in a storage router environment, the systems and methods may be applied to variety of application gateway devices, including switches, routers, personal computers, laptop computers, server computers etc. that have more than one network interface. This application is intended to cover any adaptations or variations of the present invention. The terminology used in this application is meant to include all of these environments. It is to be understood that the above description is intended to be illustrative, and not restrictive. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. Therefore, it is manifestly intended that this invention be limited only by the following claims and equivalents thereof.
Bakke, Mark A., Thompson, David P.
Patent | Priority | Assignee | Title |
10218782, | Dec 10 2003 | SonicWALL Inc. | Routing of communications to one or more processors performing one or more services according to a load balancing function |
7831736, | Feb 27 2003 | Cisco Technology, Inc. | System and method for supporting VLANs in an iSCSI |
7848320, | Jun 08 2004 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method and system of storage area network switch addressing |
8578021, | Nov 19 2009 | INFOVISTA SAS | Performance measurement and service quality monitoring server using a command line interface |
8958429, | Dec 22 2010 | Juniper Networks, Inc | Methods and apparatus for redundancy associated with a fibre channel over ethernet network |
9104607, | Oct 31 2012 | International Business Machines Corporation | Simulation engine for use in disaster recovery virtualization |
9104625, | Dec 11 2012 | International Business Machines Corporation | Disaster recovery internet protocol address failover |
9350629, | Aug 22 2012 | Oracle International Corporation | System and method for ensuring internet protocol (IP) address and node name consistency in a middleware machine environment |
9450700, | Aug 05 2013 | Amazon Technologies, Inc | Efficient network fleet monitoring |
9471447, | Oct 31 2012 | International Business Machines Corporation | Virtualization simulation engine including assuming a dormant state for a lower priority application |
9559894, | Aug 22 2012 | Oracle International Corporation | System and method for supporting high available (HA) network communication in a middleware machine environment |
9736234, | Dec 10 2003 | QUEST SOFTWARE INC F K A DELL SOFTWARE INC ; Aventail LLC | Routing of communications to one or more processors performing one or more services according to a load balancing function |
Patent | Priority | Assignee | Title |
4495617, | Sep 09 1982 | A B DICK COMPANY | Signal generation and synchronizing circuit for a decentralized ring network |
5390326, | Apr 30 1993 | Invensys Systems, Inc | Local area network with fault detection and recovery |
5461608, | Jun 30 1993 | NEC Corporation | Ring network with temporary master node for collecting data from slave nodes during failure |
5473599, | Apr 22 1994 | Cisco Technology, Inc | Standby router protocol |
5535395, | Oct 02 1992 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Prioritization of microprocessors in multiprocessor computer systems |
5544077, | Jan 19 1994 | International Business Machines Corporation | High availability data processing system and method using finite state machines |
5579491, | Jul 07 1994 | Dell U.S.A., L.P. | Local proactive hot swap request/acknowledge system |
5600828, | Jul 15 1994 | International Business Machines Corporation | File specification wildcard |
5666486, | Jun 23 1995 | Data General Corporation | Multiprocessor cluster membership manager framework |
5732206, | Jul 23 1996 | International Business Machines Corporation | Method, apparatus and program product for disruptive recovery in a data processing system |
5812821, | Sep 28 1994 | International Business Machines Corporation | Small computer system interface ("SCSI") controller |
5832299, | Feb 24 1995 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | System for emulating input/output devices utilizing processor with virtual system mode by allowing mode interpreters to operate concurrently on different segment registers |
5850573, | Aug 16 1990 | Canon Kabushiki Kaisha | Control method for peripheral device in host computer connectable to a plurality of peripheral devices |
5870571, | Aug 02 1996 | Hewlett-Packard Company | Automatic control of data transfer rates over a computer bus |
5909544, | Aug 23 1995 | Apple Inc | Automated test harness |
5935215, | Mar 21 1997 | International Business Machines Corporation; IBM Corporation | Methods and systems for actively updating routing in TCP/IP connections using TCP/IP messages |
5941972, | Dec 31 1997 | Crossroads Systems, Inc. | Storage router and method for providing virtual local storage |
5951683, | Jan 28 1994 | Fujitsu Limited; PFU Limited | Multiprocessor system and its control method |
5991813, | May 16 1997 | ICon CMT Corp. | Network enabled SCSI interface |
5996024, | Jan 14 1998 | EMC IP HOLDING COMPANY LLC | Method and apparatus for a SCSI applications server which extracts SCSI commands and data from message and encapsulates SCSI responses to provide transparent operation |
5996027, | Dec 18 1992 | Intel Corporation | Transmitting specific command during initial configuration step for configuring disk drive controller |
6006259, | Nov 20 1998 | Nokia Technologies Oy | Method and apparatus for an internet protocol (IP) network clustering system |
6009476, | Nov 21 1995 | Altera Corporation | Device driver architecture supporting emulation environment |
6009480, | Sep 12 1997 | Symbol Technologies, LLC | Integrated device driver wherein the peripheral downloads the device driver via an I/O device after it is determined that the I/O device has the resources to support the peripheral device |
6018765, | Jan 23 1996 | MEDEA CORPORATION | Multi-channel multimedia data server |
6041381, | Feb 05 1998 | CF DB EZ LLC | Fibre channel to SCSI addressing method and system |
6078957, | Nov 20 1998 | CHECK POINT SOFTWARE TECHNOLOGIES INC | Method and apparatus for a TCP/IP load balancing and failover process in an internet protocol (IP) network clustering system |
6108300, | May 02 1997 | Cisco Technology, Inc | Method and apparatus for transparently providing a failover network device |
6108699, | Jun 27 1997 | Oracle America, Inc | System and method for modifying membership in a clustered distributed computer system and updating system configuration |
6131119, | Apr 01 1997 | Sony Corporation; Sony Trans Com, Inc. | Automatic configuration system for mapping node addresses within a bus structure to their physical location |
6134673, | Oct 01 1997 | Round Rock Research, LLC | Method for clustering software applications |
6145019, | Mar 02 1998 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Unconfigured device that automatically configures itself as the primary device if no other unconfigured device is present |
6151297, | Jul 08 1997 | Hewlett Packard Enterprise Development LP | Method and system for link level server/switch trunking |
6163855, | Apr 17 1998 | Microsoft Technology Licensing, LLC | Method and system for replicated and consistent modifications in a server cluster |
6178445, | Mar 31 1998 | International Business Machines Corporation | System and method for determining which processor is the master processor in a symmetric multi-processor environment |
6185620, | Apr 03 1998 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Single chip protocol engine and data formatter apparatus for off chip host memory to local memory transfer and conversion |
6195687, | Mar 18 1998 | WILMINGTON TRUST, NATIONAL ASSOCIATION, AS SUCCESSOR COLLATERAL AGENT | Method and apparatus for master-slave control in a educational classroom communication network |
6195760, | Jul 20 1998 | Alcatel Lucent | Method and apparatus for providing failure detection and recovery with predetermined degree of replication for distributed applications in a network |
6209023, | Apr 24 1998 | Hewlett Packard Enterprise Development LP | Supporting a SCSI device on a non-SCSI transport medium of a network |
6219771, | Aug 30 1996 | NEC Corporation | Data storage apparatus with improved security process and partition allocation functions |
6268924, | Jun 06 1996 | Microsoft Technology Licensing, LLC | Document object having a print interface for programmatic automation by a using program |
6269396, | Dec 12 1997 | WSOU Investments, LLC | Method and platform for interfacing between application programs performing telecommunications functions and an operating system |
6314526, | Jul 10 1998 | UNILOC 2017 LLC | Resource group quorum scheme for highly scalable and highly available cluster system management |
6343320, | Jun 09 1998 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Automatic state consolidation for network participating devices |
6353612, | Jun 19 1998 | BROCADE COMMUNICATIONS SYSTEMS, INC , A CORP OF DELAWARE | Probing device |
6363416, | Aug 28 1998 | Hewlett Packard Enterprise Development LP | System and method for automatic election of a representative node within a communications network with built-in redundancy |
6378025, | Mar 22 1999 | PMC-SIERRA, INC | Automatic multi-mode termination |
6392990, | Jul 23 1999 | Glenayre Electronics, Inc. | Method for implementing interface redundancy in a computer network |
6393583, | Oct 29 1998 | International Business Machines Corporation | Method of performing checkpoint/restart of a parallel program |
6400730, | Mar 10 1999 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Method and apparatus for transferring data between IP network devices and SCSI and fibre channel devices over an IP network |
6421753, | Dec 31 1997 | Crossroads Systems, Inc. | Storage router and method for providing virtual local storage |
6425035, | Dec 31 1997 | Crossroads Systems, Inc. | Storage router and method for providing virtual local storage |
6425036, | Dec 31 1997 | Crossroads System, Inc | Storage router and method for providing virtual local storage |
6449652, | Jan 04 1999 | EMC IP HOLDING COMPANY LLC | Method and apparatus for providing secure access to a computer system resource |
6470382, | May 26 1999 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Method to dynamically attach, manage, and access a LAN-attached SCSI and netSCSI devices |
6470397, | Nov 16 1998 | CAVIUM INTERNATIONAL; MARVELL ASIA PTE, LTD | Systems and methods for network and I/O device drivers |
6473803, | Jun 02 1997 | Unisys Corporation | Virtual LAN interface for high-speed communications between heterogeneous computer systems |
6480901, | Jul 09 1999 | NetApp, Inc | System for monitoring and managing devices on a network from a management station via a proxy server that provides protocol converter |
6484245, | May 29 1997 | Hitachi, Ltd. | Apparatus for and method of accessing a storage region across a network |
6553408, | Mar 25 1999 | DELL PRODUCTS, L P | Virtual device architecture having memory for storing lists of driver modules |
6560630, | Mar 18 1999 | HEWLETT-PACKARD DEVELOPMENT COMPANY, L P | Receive load balancing and fail over with multiple network interface cards |
6574755, | Dec 30 1998 | ERICSSON-LG ENTERPRISE CO , LTD | Method and processing fault on SCSI bus |
6591310, | May 11 2000 | AVAGO TECHNOLOGIES INTERNATIONAL SALES PTE LIMITED | Method of responding to I/O request and associated reply descriptor |
6597956, | Aug 23 1999 | Oracle America, Inc | Method and apparatus for controlling an extensible computing system |
6606690, | Feb 20 2001 | Hewlett Packard Enterprise Development LP | System and method for accessing a storage area network as network attached storage |
6640278, | Mar 25 1999 | DELL PRODUCTS, L P | Method for configuration and management of storage resources in a storage network |
6654830, | Mar 25 1999 | DELL PRODUCTS, L P | Method and system for managing data migration for a storage system |
6658459, | Feb 27 1998 | RPX Corporation | System for sharing peripheral devices over a network and method for implementing the same |
6665702, | Jul 15 1998 | RADWARE LTD | Load balancing |
6678721, | Nov 18 1998 | CONEXANT, INC | System and method for establishing a point-to-multipoint DSL network |
6683883, | Apr 09 2002 | CALLAHAN CELLULAR L L C | ISCSI-FCP gateway |
6691244, | Mar 14 2000 | Oracle America, Inc | System and method for comprehensive availability management in a high-availability computer system |
6697924, | Oct 05 2001 | International Business Machines Corporation | Storage area network methods and apparatus for identifying fiber channel devices in kernel mode |
6701449, | Apr 20 2000 | CIPRICO INC | Method and apparatus for monitoring and analyzing network appliance status information |
6718361, | Apr 07 2000 | NetApp, Inc | Method and apparatus for reliable and scalable distribution of data files in distributed networks |
6718383, | Jun 02 2000 | Oracle America, Inc | High availability networking with virtual IP address failover |
6721907, | Jun 12 2002 | AGAMI SYSTEMS, INC | System and method for monitoring the state and operability of components in distributed computing systems |
6724757, | Jan 15 1999 | Cisco Systems, Inc | Configurable network router |
6728780, | Jun 02 2000 | Sun Microsystems, Inc. | High availability networking with warm standby interface failover |
6738854, | Dec 31 1997 | Crossroads Systems, Inc. | Storage router and method for providing virtual local storage |
6748550, | Jun 07 2001 | International Business Machines Corporation | Apparatus and method for building metadata using a heartbeat of a clustered system |
6757291, | Feb 10 2000 | Western Digital Technologies, INC | System for bypassing a server to achieve higher throughput between data network and data storage system |
6760783, | May 21 1999 | Intel Corporation | Virtual interrupt mechanism |
6763195, | Jan 13 2000 | SIGNIFY HOLDING B V | Hybrid wireless optical and radio frequency communication link |
6763419, | Dec 31 1997 | Crossroads Systems, Inc. | Storage router and method for providing virtual local storage |
6766520, | Jun 08 2000 | Unisys Corporation | Tape drive emulation software objects, and emulation of other peripheral systems for computers |
6771663, | Feb 23 2000 | TAMIRAS PER PTE LTD , LLC | Hybrid data transport scheme over optical networks |
6771673, | Aug 31 2000 | Verizon Patent and Licensing Inc | Methods and apparatus and data structures for providing access to an edge router of a network |
6779016, | Aug 23 1999 | Oracle America, Inc | Extensible computing system |
6785742, | Feb 24 1999 | Brocade Communications Systems, Inc | SCSI enclosure services |
6789152, | Dec 31 1997 | Crossroads Systems, Inc. | Storage router and method for providing virtual local storage |
6799316, | Mar 23 2000 | Lenovo PC International | Virtualizing hardware with system management interrupts |
6807581, | Sep 29 2000 | ALACRITECH, INC | Intelligent network storage interface system |
6823418, | Jun 29 2001 | Intel Corporation | Virtual PCI device apparatus and method |
6839752, | Oct 27 2000 | International Business Machines Corporation | Group data sharing during membership change in clustered computer system |
6845403, | Oct 31 2001 | Qualcomm Incorporated | System and method for storage virtualization |
6848007, | Nov 12 1999 | CF DB EZ LLC | System for mapping addresses of SCSI devices between plurality of SANs that can dynamically map SCSI device addresses across a SAN extender |
6856591, | Dec 15 2000 | Cisco Technology, Inc | Method and system for high reliability cluster management |
6859462, | Aug 10 1999 | Cisco Technology, Inc | Minimization and optimization of overall data transfer connect time between handheld wireless communicating devices and remote machines |
6874147, | Nov 18 1999 | Intel Corporation | Apparatus and method for networking driver protocol enhancement |
6877044, | Feb 10 2000 | Vicom Systems, Inc.; VICOM SYSTEMS, INC | Distributed storage management platform architecture |
6885633, | Apr 10 2000 | FORCEPOINT FEDERAL HOLDINGS LLC; Forcepoint LLC | Network node and a system |
6886171, | Feb 20 2001 | STRATUS TECHNOLOGIES IRELAND LTD | Caching for I/O virtual address translation and validation using device drivers |
6895461, | Apr 22 2002 | Cisco Technology, Inc | Method and apparatus for accessing remote storage using SCSI and an IP network |
6920491, | Apr 25 2001 | Oracle America, Inc | Fabric device configuration interface for onlining fabric devices for use from a host system |
6938092, | Mar 07 2001 | ALACRITECH, INC | TCP offload device that load balances and fails-over between aggregated ports having different MAC addresses |
6941396, | Feb 19 2003 | SUPRO STORTEK CO , LTD | Storage controller redundancy using bi-directional reflective memory channel |
6944785, | Jul 23 2001 | NetApp, Inc | High-availability cluster virtual server system |
6976134, | Sep 28 2001 | EMC IP HOLDING COMPANY LLC | Pooling and provisioning storage resources in a storage network |
6985490, | Jul 11 2001 | CALLAHAN CELLULAR L L C | Extension of fibre channel addressing |
7043727, | Jun 08 2001 | International Business Machines Corporation | Method and system for efficient distribution of network event data |
7089293, | Nov 02 2000 | Oracle America, Inc | Switching system method for discovering and accessing SCSI devices in response to query |
7120837, | May 09 2002 | Cisco Technology, Inc | System and method for delayed error handling |
7146233, | Feb 11 2000 | Oracle America, Inc | Request queue management |
7165258, | Apr 22 2002 | Cisco Technology, Inc | SCSI-based storage area network having a SCSI router that routes traffic between SCSI and IP networks |
20010020254, | |||
20020010750, | |||
20020010812, | |||
20020023150, | |||
20020042693, | |||
20020049845, | |||
20020052986, | |||
20020055978, | |||
20020059392, | |||
20020065872, | |||
20020103943, | |||
20020116460, | |||
20020126680, | |||
20020156612, | |||
20020161950, | |||
20020176434, | |||
20020188657, | |||
20020188711, | |||
20020194428, | |||
20030005068, | |||
20030014462, | |||
20030018813, | |||
20030018927, | |||
20030058870, | |||
20030084209, | |||
20030093541, | |||
20030093567, | |||
20030097607, | |||
20030131157, | |||
20030145108, | |||
20030145116, | |||
20030149829, | |||
20030163682, | |||
20030182422, | |||
20030182455, | |||
20030208579, | |||
20030210686, | |||
20030212898, | |||
20030229690, | |||
20030233427, | |||
20030236988, | |||
20040022256, | |||
20040024778, | |||
20040064553, | |||
20040085893, | |||
20040117438, | |||
20040141468, | |||
20040148376, | |||
20040233910, | |||
20050055418, | |||
20050063313, | |||
20050268151, | |||
20060265529, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Jun 28 2003 | Cisco Technology, Inc. | (assignment on the face of the patent) | / | |||
Oct 08 2003 | BAKKE, MARK A | Cisco Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014691 | /0538 | |
Oct 08 2003 | THOMPSON, DAVID P | Cisco Technology, Inc | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 014691 | /0538 |
Date | Maintenance Fee Events |
Dec 18 2008 | ASPN: Payor Number Assigned. |
May 11 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
May 11 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
May 11 2020 | M1553: Payment of Maintenance Fee, 12th Year, Large Entity. |
Date | Maintenance Schedule |
Nov 11 2011 | 4 years fee payment window open |
May 11 2012 | 6 months grace period start (w surcharge) |
Nov 11 2012 | patent expiry (for year 4) |
Nov 11 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 11 2015 | 8 years fee payment window open |
May 11 2016 | 6 months grace period start (w surcharge) |
Nov 11 2016 | patent expiry (for year 8) |
Nov 11 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 11 2019 | 12 years fee payment window open |
May 11 2020 | 6 months grace period start (w surcharge) |
Nov 11 2020 | patent expiry (for year 12) |
Nov 11 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |