The invention relates to a data-recording device comprising conductive microtips and to the production method thereof. According to the invention, the microtip comprises one end which is intended to be brought into electrical contact with a recording medium. Moreover, the microtip comprises a longitudinal conducting core having an essentially constant cross-section. In addition, the microtip is surrounded by a sheath of non-conducting material, such that the free ends of the core and the sheath are level at the end of the microtip. The cross-section of the sheath can diminish towards the end of the microtip, e.g. such as to form a truncated-cone-shaped part. The core can comprise a carbon nanotube. Furthermore, a multitude of microtips can be disposed in the form of a network, the ends thereof generating an essentially-flat common surface. The inventive method comprises an abrasion step.
|
1. Data recording device comprising at least one electrically conducting microtip having an end designed to be brought into electric contact with a recording medium, the microtip comprising a longitudinal conducting core having a substantially constant cross-section, device wherein the microtip is surrounded by a sheath made of non-conducting material, so that the free ends of the core and of the sheath are at the same level at the end of the microtip.
4. device according to
7. device according to
8. device according to
9. device according to
10. device according to
11. Method for production of a data recording device according to
12. Method for production according to
13. Method for production according to
deposition of a layer of conducting material on a substrate,
etching of the conducting material, through a mask, so as to form at least one pillar designed to form the core of a microtip,
deposition, at least on the substrate, of a layer of the non-conducting material designed to constitute the sheath,
and, after the abrasion step, etching of the non-conducting material so as to delineate the sheath laterally.
14. Method for production according to
deposition of a layer of non-conducting material designed to constitute the sheath on a substrate,
etching of pass-through holes in the layer,
deposition of a material at least on the walls and the bottom of each hole,
removal of the material from the bottom of each hole by anisotropic etching,
deposition of the material designed to form the core in the holes,
and, after the abrasion step, etching of the layer so as to delineate the sheath laterally.
|
This application is a 371 of PCT/FR04/02755, filed Oct. 26, 2004.
The invention relates to a data recording device comprising at least one electrically conducting microtip having an end designed to be brought into electric contact with a recording medium, the microtip comprising a longitudinal conducting core having a substantially constant cross-section.
1. State of the Art
Memory dot writing and reading techniques by microtips enable very large data storage densities to be obtained.
Several techniques are based on the use of electrically conducting microtips to perform for example local electrical resistivity mappings of a recording medium. To write or read data, the microtip is brought into contact with the recording medium or close to the latter. Progressive abrasion of the end of the microtips can cause degradation of the performances of the recording device and may result in destruction of the microtip.
Numerous types of recording media are proposed for storing data written and/or read from injection of current by means of the microtip. The electric contact surface between the microtip and the recording medium is one of the main parameters controlling the reading resolution and writing density obtained. A small radius of curvature for the apex of the microtip is generally sought for. Progressive abrasion can cause the electric contact surface between the microtip and the recording medium to be widened and thus impair the radius of curvature of the apex of the microtip and modify the electrical properties of the microtip losing the desired resolution.
Most conducting microtips are based on the silicon technology which enables a microtip apex with a very small radius of curvature to be obtained. One technique, for example, consists in first producing a layer of very highly doped and therefore conducting silicon. The layer is then etched anisotropically to sharpen the microtip. Another technique consists in first producing a non-doped silicon microtip and in covering the microtip with a layer of conducting materials such as nitrides or carbides which are moreover particularly hard materials. Certain techniques use the hardness of diamond to protect the microtip. The microtip is thus covered by a diamond layer, which requires complex fabrication processes presenting high costs.
These devices comprise microtips of pyramidal, conical or truncated-conical shape. These microtips are relatively solid but their electrical properties vary according to the wear process.
Certain devices comprise microtips of constant cross-section, which enables electrical properties to be obtained that are independent from the wear process. Such microtips are however very fragile.
Moreover, in the case of microtip lattices, to take account of the statistical dispersion of the lengths of the microtips, each microtip is supported by a flexible element, for example a cantilever, which enables all the microtips to be brought simultaneously into contact with the recording medium. Fabrication of the cantilevers does however add complex steps to the production process of the devices.
The document WO03/060923 describes a data recording device comprising a cantilever microtip lattice. Each microtip comprises a nanotube salient from the material of the microtip in which it is inserted. The cantilever material can comprise a polymer or a dielectric material, metals or polysilicon. The tip and cantilever can be delineated by lithography, dry etching or wet etching. The nanotube has a constant cross-section and the cross-section of the microtip material decreases in the direction of the end of the microtip.
2. Object of the Invention
It is one object of the invention to remedy these shortcomings and in particular to provide a device comprising at least one solid microtip, while presenting electrical properties independent from the wear process.
According to the invention, this object is achieved by the appended claims and in particular by the fact that the microtip is surrounded by a sheath made of non-conducting material, so that the free ends of the core and of the sheath are at the same level at the end of the microtip.
It is also an object of the invention to provide a method for production of a data recording device according to the invention, comprising an abrasion step, so that the free ends of the core and of the sheath are at the same level at the end of the microtip.
Other advantages and features will become more clearly apparent from the following description of particular embodiments of the invention given as non-restrictive examples and represented in the accompanying drawings, in which:
In
When several microtips 1 are arranged by means of conducting tracks 12 on the same substrate 6, the substrate can be chosen insulating which enables the microtips 1 to be electrically isolated from one another. In the case of a single microtip 1, the substrate 6 can be chosen conducting and a conducting track 12 is not necessary.
In
The cross-section of the conducting core 4 being substantially constant, the electric contact surface between the end 2 of the microtip 1 and the recording medium 3 is independent from the abrasion process step. The mechanical contact zone between the end 2 of the microtip 1 and the recording medium 3 is defined by the lateral dimensions of the sheath 5. The mechanical contact zone is thus larger than the electric contact surface. The contact force is thus distributed over an increasingly larger zone during the abrasion process and, consequently, the contact pressure is increasingly lower and the speed of the abrasion process decreases as wear progresses, resulting in the surfaces in presence taking exactly the same shape as one another, in particular in the case where there are several microtips.
The sheath 5 can be formed by an insulating material, for example silica, or by a material having a low conductivity for example by a semi-conducting material, so that the resistance of the sheath 5 is substantially greater than the resistance of the core 4. For example, the conductivity of the material of the sheath 5 can be ten times lower than the conductivity of the material of the core 4.
In a particular embodiment, the core 4 is formed by a carbon nanotube. For example, a carbon nanotube can be grown using a metallic track deposited on a silicon substrate, the metallic track typically comprising a catalyzer, for example a transition metal. For example, a method for growing vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition is described in the document “Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition” by M. Chhowalla et al. (J. Appl. Phys., Vol. 90, No. 10, 15 Nov. 2001). In this method, the metallic track is fragmented by sintering so as to form nanometric metallic particles on the substrate. During the chemical vapor deposition, a carbon nanotube grows under each nanometric metallic particle.
The recording device represented in
The space between the microtips 1 and the recording medium 3 can be filled by a lubricant having a low conductivity, for example by graphite, silicone or a liquid, which ensures the electrical conduction between the microtip 1 and the recording medium 3. The electrical conductivity of the lubricant must be sufficiently low not to create a short-circuit between adjacent microtips 1 (Z-DOL or graphite or silicone type lubricant).
A method for producing a data recording device according to the invention comprises, after assembly of the constituent materials respectively the core 4 and sheath 5 of a microtip 1, an abrasion step so that the free ends of the core 4 and of the sheath 5 are at the same level at the end 2 of the microtip 1. The abrasion step is preferably performed by mechano-chemical planarization. On account of the statistical dispersion of the lengths of the bodies before abrasion, all the materials constituting the bodies 4 and the sheaths 5 can for example be polished until the thickness of the assembly corresponds for example to half of the mean length of the bodies 4.
A method for production of a data recording device according to
The first step consists, as represented in
The substrate 6 has been previously provided with conducting tracks 12 by deposition of a metal layer, for example made of copper, etched by any photolithography and etching process. The bodies 4 are deposited on these conducting tracks 12 in the following steps.
The second step consists, as represented in
Then in a third step, illustrated in
Then a fourth step consists, as represented in
In a fifth step, represented in
A single microtip or any two-dimensional or one-dimensional lattice of microtips can be achieved by a method similar to the method described above.
Whereas in the method represented in
In the case where the core 4 is fabricated first, for example by etching of a conducting material (
The core is then produced by any envisageable deposition method of a conducting material such as tungsten or by deposition of a catalyzer, such as nickel for growth of carbon nanotubes 17 from the bottom of each hole 14, as represented in
The method according to the invention enables a microtip lattice 1 to be obtained the ends 2 whereof form a substantially flat common surface, which enables all the microtips 1 to be brought simultaneously into contact with the recording medium 3 without needing flexible elements such as cantilevers to compensate length differences of the microtips 2.
The microtip lattice can be used as a two-dimensional matrix by similitude with the millipede® solution of the IBM corporation, or as an array for use with a memory in the form of a rotary disc. In the case of a rotary disc, the recording medium 3 can for example be made of plastic.
The invention is not limited to the embodiments represented. In particular, the sheath 5 can have an outside wall of any shape. For example, the wall can have a cylindrical or square cross-section. The microtip 1 according to the invention can also be arranged on a cantilever, obtained for example by etching after the microtip has been produced.
Patent | Priority | Assignee | Title |
Patent | Priority | Assignee | Title |
5751683, | Jul 24 1995 | Terraspan LLC | Nanometer scale data storage device and associated positioning system |
5756997, | Mar 04 1996 | NANOLOGY ALPHA LLC | Scanning probe/optical microscope with modular objective/probe and drive/detector units |
6144028, | Jul 28 1994 | Terraspan LLC | Scanning probe microscope assembly and method for making confocal, spectrophotometric, Near-Field, and Scanning probe measurements and associated images |
6146227, | Sep 28 1998 | Xidex Corporation | Method for manufacturing carbon nanotubes as functional elements of MEMS devices |
6229138, | Jul 28 1994 | Terraspan LLC | Scanning probe microscope assembly and method for making confocal, spectrophotometric, near-field, and scanning probe measurements and associated images |
6232597, | Jul 28 1994 | Terraspan LLC | Scanning probe microscope assembly and method for making confocal, spectrophotometric, near-field, and scanning probe measurements and associated images |
6242734, | Jul 28 1994 | Terraspan LLC | Scanning probe microscope assembly and method for making confocal, spectrophotometric, near-field, and scanning probe measurements and associated images |
6252226, | Jul 28 1994 | Terraspan LLC | Nanometer scale data storage device and associated positioning system |
6265711, | Jul 28 1994 | NANOLOGY ALPHA LLC | Scanning probe microscope assembly and method for making spectrophotometric near-field optical and scanning measurements |
6281491, | Jul 28 1994 | Terraspan LLC | Scanning probe microscope assembly and method for making confocal, spectrophotometric, near-field, and scanning probe measurements and associated images |
6337479, | Apr 28 1994 | Terraspan LLC | Object inspection and/or modification system and method |
6353219, | Jul 28 1994 | Terraspan LLC | Object inspection and/or modification system and method |
6369379, | Jul 28 1994 | Terraspan LLC | Scanning probe microscope assembly and method for making confocal, spectrophotometric, near-field, and scanning probe measurements and associated images |
6396054, | Jul 28 1994 | Terraspan LLC | Scanning probe microscope assembly and method for making confocal, spectrophotometric, near-field, and scanning probe measurements and associated images |
6515277, | Jul 28 1994 | Terraspan LLC | Scanning probe microscope assembly and method for making confocal, spectrophotometric, near-field, and scanning probe measurements and associated images |
6528785, | Dec 03 1998 | Daiken Chemical Co., Ltd.; Yoshikazu, Nakayama | Fusion-welded nanotube surface signal probe and method of attaching nanotube to probe holder |
6597090, | Sep 28 1998 | Xidex Corporation | Method for manufacturing carbon nanotubes as functional elements of MEMS devices |
7020064, | May 10 2000 | SAMSUNG ELECTRONICS CO , LTD | Rewritable data storage using carbonaceous material and writing/reading method thereof |
7042828, | Jul 24 1995 | Terraspan LLC | Nanometer scale data storage device and associated positioning system |
20010010668, | |||
20020003211, | |||
20020084410, | |||
20020088938, | |||
20020092983, | |||
20020092984, | |||
20020096634, | |||
20020102201, | |||
20020109086, | |||
20020109087, | |||
20020117611, | |||
20020117951, | |||
20020135755, | |||
20030007443, | |||
20030010910, | |||
20030042922, | |||
20030052585, | |||
20030066960, | |||
20030075682, | |||
20030106998, | |||
20030122073, | |||
20040106220, | |||
20040168527, | |||
20040265209, | |||
EP1054249, | |||
EP1274092, | |||
WO19494, | |||
WO3060923, | |||
WO9805920, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 26 2004 | Commissariat a l'Energie Atomique | (assignment on the face of the patent) | / | |||
Mar 10 2006 | GIDON, SERGE | COMMISSARIAT A L ENERGIE ATOMIQUE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017831 | /0903 | |
Mar 10 2006 | SAMSON, YVES | COMMISSARIAT A L ENERGIE ATOMIQUE | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 017831 | /0903 |
Date | Maintenance Fee Events |
Apr 21 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Jul 01 2016 | REM: Maintenance Fee Reminder Mailed. |
Nov 18 2016 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Nov 18 2011 | 4 years fee payment window open |
May 18 2012 | 6 months grace period start (w surcharge) |
Nov 18 2012 | patent expiry (for year 4) |
Nov 18 2014 | 2 years to revive unintentionally abandoned end. (for year 4) |
Nov 18 2015 | 8 years fee payment window open |
May 18 2016 | 6 months grace period start (w surcharge) |
Nov 18 2016 | patent expiry (for year 8) |
Nov 18 2018 | 2 years to revive unintentionally abandoned end. (for year 8) |
Nov 18 2019 | 12 years fee payment window open |
May 18 2020 | 6 months grace period start (w surcharge) |
Nov 18 2020 | patent expiry (for year 12) |
Nov 18 2022 | 2 years to revive unintentionally abandoned end. (for year 12) |