An implantable device for use in a human and/or animal body for replacement of an organ valve. The device has an elongate main body having a first end and a second end provided with openings, and a membrane element provided with at least one opening. The device has, in a first operating state (primary form), a large ratio of length to transverse extent along an axis, and, in a second operating state (secondary form), a smaller ratio of length to transverse extent along an axis. The device is reversibly convertible from the secondary form into the primary form by application of force against elastic material forces. At least one of the two ends of the main body has an outwardly protruding anchoring portion for anchoring the device in the organ and/or a vessel.
|
25. Implantable device for use in a human and/or animal body for replacement of an organ valve, comprising:
an elongate main body having a first end and a second end each provided with an opening; and
a membrane element provided with at least one opening, said device having a deployed configuration having a relatively larger cross sectional area, and a non-deployed configuration having a relatively smaller cross sectional area, said device convertible from the non-deployed configuration to the deployed configuration by application of force against elastic material forces of the main body, wherein at least one of the first end and the second end of the main body has an outwardly protruding anchoring portion for anchoring the device in the organ and/or a vessel;
wherein the membrane element has a ring portion and, connected thereto, a valve portion;
wherein the valve portion comprises three sail elements.
34. Implantable device for use in a human and/or animal body for replacement of an organ valve, comprising:
an elongate main body having a first end and a second end each provided with an opening; and
a membrane element provided with at least one opening, said device having a deployed configuration having a relatively larger cross sectional area, and a non-deployed configuration having a relatively smaller cross sectional area, said device convertible from the non-deployed configuration to the deployed configuration by application of force against elastic material forces of the main body, wherein at least one of the first end and the second end of the main body has an outwardly protruding anchoring portion for anchoring the device in the organ and/or a vessel;
wherein the membrane element has a ring portion and, connected thereto, a valve portion;
wherein the main body comprises cut elements with widened and rounded ends for producing atraumatic ends of the main body.
1. Implantable device for use in a human and/or animal body for replacement of an organ valve, comprising:
an expandable, elongate main body having a longitudinal axis and being substantially cylindrical in shape about said axis, said body including a first end and a second end each provided with an opening;
at least one outwardly protruding anchoring portion disposed proximate at least one of said first and second ends of said main body;
an expandable membrane element provided with at least one opening, said membrane element disposed within the main body and having a valve portion and a ring portion secured to the main body; and
said main body and said membrane element together movable between a first condition in which said main body and said membrane element together define a first cross sectional area, and a second, deployed condition in which said main body and said membrane element together define a second cross sectional area greater than said first cross sectional area.
23. Implantable device for use in a human and/or animal body for replacement of an organ valve, comprising:
an elongate main body having a first end and a second end each provided with an opening;
a membrane element provided with at least one opening, said device having a deployed configuration having a relatively larger cross sectional area, and a non-deployed configuration having a relatively smaller cross sectional area, said device convertible from the non-deployed configuration to the deployed configuration by application of force against elastic material forces of the main body, wherein at least one of the first end and the second end of the main body has an outwardly protruding anchoring portion for anchoring the device in the organ and/or a vessel; and
a ring portion secured to the main body and connected to a valve portion, the valve portion associated with the membrane element and disposed within the main body;
wherein the main body comprises cut elements with widened and rounded ends for producing atraumatic ends of the main body.
20. Implantable device for use in a human and/or animal body for replacement of an organ valve, comprising:
an elongate main body having a first end and a second end each provided with an opening; and
a membrane element provided with at least one opening, said device having a deployed configuration having a relatively larger cross sectional area, and a non-deployed configuration having a relatively smaller cross sectional area, said device convertible from the non-deployed configuration to the deployed configuration by application of force against elastic material forces of the main body, wherein at least one of the first end and the second end of the main body has an outwardly protruding anchoring portion for anchoring the device in the organ and/or a vessel;
wherein the main body is substantially of one piece;
wherein the main body is cut and/or punched from a piece of material and/or separated therefrom by another method of separation;
wherein the material section comprises parallel cuts and alternating subsequent cuts extending obliquely.
2. Implantable device according to
4. Implantable device according to
5. Implantable device according to
6. Implantable device according to
7. Implantable device according to
8. Implantable device according to
9. Implantable device according to
10. Implantable device according to
11. Implantable device according to
12. Implantable device according to
13. Implantable device according to
14. Implantable device according to
15. Implantable device according to
16. Implantable device according to
18. Implantable device according to
19. Implantable device according to
21. Implantable device according to
22. Implantable device according to
24. Implantable device according to
26. Implantable device according to
27. Method for producing an implantable device according to
cutting and/or punching a main body from a piece of material;
bending the main body into a substantially cylindrical body;
inserting a membrane element into the substantially cylindrical main body and connected therewith; and
securing the ring portion to the main body, the ring portion connected to the valve portion associated with the membrane element.
28. Method according to
29. Method for implanting an implantable device according to
30. Method according to
31. Method according to
32. Method according to
33. Method according to
|
The invention relates to an implantable device for use in the human and/or animal body for replacement of an organ valve, with an elongate main body having a first end and a second end provided with openings, and with a membrane element provided with at least one opening, said device in a first operating state (primary form) having a large ratio of length to transverse extent along an axis and, in a second operating state (secondary form), having a smaller ratio of length to transverse extent along the axis, said device being able to be converted reversibly from the secondary form to the primary form by application of a force counter to elastic material forces, and the invention also relates to a method for producing an implantable device of this kind.
Implantable devices of this kind for replacement of an organ valve in the human and/or animal body are known in the prior art. It was previously customary in particular to replace heart valves by performing open-heart surgery, which is an operation not without risks, especially in elderly patients. Devices for heart valve replacement were therefore developed which can be brought to the correct position in the heart via a catheter and without open-heart surgery. From EP 0 592 410, for example, it is known to provide a compressible elastic valve which is arranged on an elastic stent, the commissural points of the elastic compressible valve being applied on the cylinder surface of the elastic stent. The elastic compressible valve is a biological, trilobate valve. The stent consists of a stainless steel wire which is folded in a number of loops and bent in a circle and welded together. The stent comprises two or more closed rings which are connected to one another in order to form a cylindrical structure. Three of the loops in the outer ring are designed with a greater height than the other loops, so as to form apices to which the commissural points of the biological valve are attached. The cylindrical surface of the stent can also be of a closed design. On account of the tubular or annular shape of the stent, only a relatively poor anchoring is possible in the implantation area, in particular in the aorta and the heart.
A better anchoring for a heart valve replacement is described in DE 101 21 210 A1. According to said document, an intraluminal anchoring element is designed deviating from the cylinder shape such that, in its position of use, it is connected to the aorta with a shape fit, at least in some areas. According to said document, the intraluminal anchoring element therefore has radially extending widened parts at the heart outlet (behind the original aortic valve). Furthermore, it is curved to adapt to the curved path of the aorta. The anchoring element is additionally made up of, for example, a lattice-shaped, loop-shaped or screw-shaped thread structure or filaments and can comprise several meandering, ring-forming thread structures. The individual ring-forming structures are interconnected by adhesive bonding, soldering, welding, etc. In this design of a heart valve replacement, the disadvantage is that the anchoring element has a very long design, that is to say has to be inserted very deep into a blood vessel or the heart. Openings are admittedly provided for the origins of different coronary arteries, but the length of the anchoring element can have the effect that some of these openings are covered by the anchoring element, so that blockage of the blood flow or clogging of the origins may arise there.
EP 1 057 460 A1 and the abstract of JP 2001000460 A disclose the provision of a heart valve replacement device which has a stent, said stent being expandable in the radial direction of the blood vessel, and a biological valve being secured on the stent. The stent valve arrangement is arranged on the expandable part of a balloon catheter and introduced into the human body. The stent is made up of a multiplicity of portions made of wire. The individual wire portions are welded together. By means of the balloon catheter, the stent is expanded to the desired diameter at the implantation site. This is done in two stages. After expansion of the stent at the implantation site, the diameter of the balloon catheter is reduced again and the catheter is removed. The pulmonary valve replacement device remains in the pulmonary artery, touching the artery wall. A disadvantage of this heart valve replacement device is that a balloon catheter has to be used to expand the stent. In addition, the stent is intended to sit in the vessel or artery solely on the basis of its expanded shape. It has been shown, however, that with this form of a heart valve replacement problems can arise because of shifting of the stent inside the vessel, and, in particular, inexact positioning may lead to blocking of the origins of the coronary vessels, with the result of at least partial closure of these origins and, consequently, blockage of the blood flow. Problems also arise, where incorrect positioning is concerned, in that although the stent is expanded by means of the balloon, its diameter cannot be reduced again.
From U.S. Pat. No. 5,855,597 it is also known to cut out star-shaped elements and join these together to form a stent. An aortic valve replacement made of a flexible, biocompatible material is inserted into a central opening of the star-shaped elements which have been joined together. The stent is brought to the desired implantation site via a catheter system. Although the star shape does provide a hold inside the patient's aorta, there is also a risk of injury occurring there, particularly if the blood vessel is slightly damaged, in particular perforatable, on account of the age or state of health of the patient.
U.S. Pat. No. 6,482,228 B1, for example, discloses an aortic valve replacement which comprises a stent and, distinct from this, but connected to it, a rotor-shaped valve replacement. The latter is arranged over the original valve. The stent consists of several joined-together rings of wires which have been bent in an undulating line. A disadvantage of this design proves to be the structure of the aortic valve replacement, with provision of a stent with distinct rotor-shaped element for arrangement behind the natural aortic valve. On the one hand, this is very complex, and, on the other hand, there is the risk of the rotor coming loose from the stent. Moreover, it is arranged inside the aorta substantially without any further holding by the stent, secured only in the longitudinal direction. The aortic valve replacement therefore does not represent a secure and stable unit.
For heart valve replacement, the prior art also includes annular devices which, at three places, have support posts drawn out from the ring. These can either be loop-shaped, as is disclosed in WO 97/46177, or made of a solid material, as is disclosed for example in U.S. Pat. No. 4,816,029, DE 196 24 948 A1 and DE 35 41 478 A1. However, not all of these annular heart valve replacement devices can be implanted via a catheter since they cannot be collapsed to a sufficiently small size.
The object of the present invention is to develop an implantable device for replacement of an organ valve in such a way that the aforementioned disadvantages no longer occur, and in particular to permit especially good and stable anchoring of the device at the implantation site in the organ and/or vessel in the area of the natural valve, and in this way to create a device which is as inexpensive as possible to produce.
For an implantable device according to the preamble of Claim 1, the object is achieved by the fact that at least one of the two ends of the main body has an outwardly protruding anchoring portion for anchoring the device in the organ and/or a vessel. For the main body of an implantable organ valve replacement device, the object is achieved by the fact that the main body is made substantially in one piece. For a method for producing such an implantable device, the object is achieved by the fact that a main body is cut and/or punched from a material section and/or separated from it by another method of separation, the resulting main body material section is bent to form a substantially cylindrically bent body and is connected at its longitudinal edges, and a membrane element is inserted into the substantially cylindrical main body and connected to the latter. Further developments of the invention are defined in the dependent claims.
By these means, an implantable device for replacement of an organ valve is created with which, by using protruding anchoring portions at both ends of the main body, it is possible to obtain a particularly good hold at these two ends in a vessel and/or organ. When the implantable device is in fact used as a heart valve replacement device, one end with a protruding anchoring portion can extend for example into the left ventricle and secure itself there, and the other end with the other protruding anchoring portion of the main body can be used for clamping to the wall of the aorta. In this way, the implantable device and in particular the main body can be made much shorter than is possible for example in the case of the stent according to DE 101 21 210 A1. Since the main body can also be converted reversibly from a primary form to a secondary form, it can be brought to the implantation site without any problem via a catheter. When it slides out of the catheter, the implantable device deploys from the primary form to the secondary form, whereupon the diameter of the main body increases and as a result the length is in general slightly reduced. The possibility of reversible conversion from the primary form to the secondary form, and vice versa from the secondary form to the primary form, makes it possible, in contrast to the stent according to EP 1 057 460 A1, to retract the device into the catheter if, during implantation, it is decided that the device is not properly positioned, that is to say in particular the implantable device is not properly positioned with respect to the origins of the coronary vessels and/or the natural heart valve and the aorta and ventricle. Using a main body designed substantially in one piece reduces the production outlay, since the very elaborate joining together of individual filaments or wire loops is avoided and the material section, once bent, only has to be joined together along one edge in the longitudinal direction. By producing a main body made of only one piece, the latter is also made more secure against breaking in the area of weld points between individual wires. Such a breaking apart can in fact lead to a situation in which sharp-edged areas protrude from a stent and can damage or perforate the wall, in particular of the aorta. With a one-piece design, the structure of the main body can also be made more uniform than is possible when joining together individual annular elements, as is described in the prior art.
The protruding anchoring portion is preferably provided extending all around the circumference of the main body. Alternatively, however, individual protruding anchoring portions can also be provided on the circumference of the main body. One or other variant will be preferred depending on the implantation site, and the choice will in particular be made depending on the available space and possible constrictions in a vessel caused by calcification, etc.
The device preferably has areas of different stiffness. It is particularly preferable for an area of lesser stiffness to be arranged between areas of greater stiffness. The area of lesser stiffness is particularly preferably provided in the main body outside the anchoring portions. By providing areas of different stiffness, bends at the implantation site can be imitated. These bends, for example in the aorta, can be followed particularly easily in areas of lesser stiffness of the device. In order to guarantee a good hold at the implantation site, the areas of the anchoring portions, that is to say the end areas of the main body, preferably have a greater stiffness than one or more portions arranged between them. Several areas of different stiffness can also be provided along the length of the main body if this is required by the external circumstances, in particular in the aorta or in the ventricle. The distribution of the different degrees of stiffness along the main body can thus also be adapted to the particular patient and to the spatial circumstances prevailing in the heart or at the implantation site.
In principle, it is possible to tailor the implantable device to the particular patient and/or to provide a standard format which can be used for the majority of patients. A basic format can also be provided in particular with areas that can be changed in variable ways, thus once again permitting adaptation to the majority of the exceptions. In this way, the costs involved in producing the implantable device are also reduced, because special customized configurations are extremely rare.
One or more guide openings are preferably provided for the passage of guide wires for implantation of the device. The at least one guide opening is particularly preferably arranged near to the membrane element. The at least one guide opening preferably has a diameter substantially corresponding to the opening width of the origins of the coronary arteries to be spanned in the implanted state of the device. The provision of guide wires for implantation of the device proves to be particularly advantageous since in this way it is possible to better direct the device during the implantation. When the implantable device is provided as a replacement for a heart valve, in particular the aortic valve, origins of the coronary arteries lie in the area of the valve, and these should be neither completely nor partially closed by the device since, if this happened, the passage of blood would no longer be possible or would be severely restricted, leading to serious health problems for the patient. By providing at least two guide openings near to the membrane element, the origins of the right coronary artery and of the left coronary artery can be framed by the guide openings.
For implanting the device, the guide wires can first be guided or threaded through the guide openings of the main body. The guide wires can then be advanced further by a probe as far as the implantation site in the heart and at least partially pushed into the coronary vessels. The implantable device is then advanced in the primary form, via a catheter, into the body of the patient and as far as the implantation site in the heart, and is pushed out of the catheter there and expanded. With the aid of the guide wires, the device is oriented with respect to the origins of the coronary vessels from the heart. The fact that the guide wires are guided into the coronary vessels permits a particularly simple and exact alignment of the guide openings of the main body of the implantable device with respect to these vessels. In addition to the guide openings, the implantable device can also have one or more additional openings, particularly in an area which, after implantation of the device, covers the origins of the coronary arteries. If one or more additional openings are provided on the main body or the device, the guide openings can also be made smaller because then they do not necessarily cover the origins of the coronary arteries. However, if they do so, they are preferably provided with a diameter corresponding to the opening width of the origins of the coronary arteries.
The device is preferably provided, particularly in the area of the main body, with markings which can be detected by imaging techniques. In this way, it is possible, during the implantation procedure, to monitor the positioning, particularly with respect to the origins of the coronary vessels, via a monitor or the like. Particularly suitable techniques include radiography or magnetic resonance tomography, which are able to display an axially accurate position of the implantable device, especially an aortic valve replacement, in the body of the patient. The markings can be provided at different locations on the main body or device, particularly also on the guide wires and in the area of the openings or guide openings.
The device is preferably pushed so far into the area of a heart valve, in particular an aortic valve, that the natural valve is pressed against the vessel wall and held there by the device. In this connection, it would in principle even be possible to introduce a further implantable device into an already implanted device, in which case the membrane element of the initially implanted device would also be pressed against the wall of the main body. Such introduction of a further implantable device into an already implanted device could prove useful, for example, in the event of deteriorating stability and mobility of the membrane element. It is also possible in principle, after an old natural valve has first been removed, in particular by surgery, to introduce an implantable device with membrane element as valve replacement at this location. In the event of severe calcification of the natural valve, it may prove advantageous to remove the latter completely since, in these cases, it has usually become completely unable to move. In this case it would otherwise be quite difficult to press the natural valve against the vessel wall. In addition, a constriction would remain in this area, which is also an undesirable state of affairs because it means a reduced cross section of flow and, consequently, an increase in pressure, and thus brings with it disadvantages for the patient's health.
The at least one guide wire and/or the implantable device is particularly preferably introduced into the body via the carotid aorta or axillary artery. In this way, the chosen implantation route covers a very short distance, in contrast to the implantation routes in the prior art, in which implantation in each case takes place through introduction of a catheter in the patient's groin region. This is the case in particular in DE 101 21 210 A1.
The main body of the device is preferably oriented in such a way that the anchoring portion protruding at the first end extends into the ventricle, in particular the left ventricle, and the anchoring portion protruding at the second end clamps onto the vessel wall, in particular the wall of the aorta. This permits a particularly good hold and a stable configuration. The respective dimensions of the anchoring portions can also be chosen differently on an individual basis, depending on the anatomy of the particular patient. The extent by which the anchoring portions protrude can also be chosen on an individual basis. In principle, however, it is also possible to achieve standardization in which the anchoring portions protrude to such an extent, and have such dimensions, that the vast majority of patients can be fitted with this kind of main body or implantable device.
The at least one guide wire is preferably threaded through the main body and/or arranged on the outside of the main body. For the implantation procedure, the nature of the arrangement of the guide wires on the main body of the implantable device can also be made dependent on the particular conditions of the patient. To the extent that retraction of the guide wires, when they are arranged on the outside of the main body, does not prove practical because of the fragility of the vessel in the area of the implantation site, the guide wire is preferably guided through the main body from the inside.
The implantable device particularly preferably has a main body which is cut and/or punched from a material section or separated from the latter by another method of separation. In this way, any desired cutting can be obtained and reproduced. Adaptation to the individual circumstances in the body of the patient can also be easily made by simple modification of the cutting. The cutting can in particular be controlled by computer, coupled with data from a measurement system and/or with the measurement system itself for measuring the implantation site by radiography, tomography, ultrasound, etc., in order to permit individual adaptation to the individual patient.
The material section preferably comprises parallel cuts and, alternating with these and adjoining them, obliquely extending cuts. Cuts extending transversely with respect to the parallel cuts are particularly preferably provided in order to produce areas of different stiffness. By providing parallel cuts, it is possible to produce net structures and meshes, in combination with the alternating obliquely extending cuts. The obliquely extending cuts in each case form the transition from one mesh to another, which in the prior art is produced by soldering, welding or similar. In some areas it is possible to provide parallel cuts and cuts arranged transversely with respect to these, which are positioned between two obliquely arranged cuts so that a weakening is obtained in the folded-out main body. In this way, an area of lesser stiffness can be produced which makes it easier to curve the main body. The material section is preferably configured to produce a continuous net structure of the substantially cylindrical main body, in particular with different mesh sizes. The cutting length can be varied and results in different mesh sizes. The length of the obliquely arranged cuts also influences the mesh size of individual meshes.
At its ends, the material section preferably has widened, rounded cut elements for producing atraumatic ends for the main body. In this way it is possible to avoid damage to the vessel walls in the end area of the main body, that is to say in the area of the protruding anchoring portions. In principle, another design is also possible, for example the provision of a ring which, upon expansion of the main body, deploys along with it.
Holes acting as guide openings and/or additional openings are preferably provided in the area of the obliquely extending cuts. The holes can also be provided in the other areas of the material section, but the area of the obliquely extending cuts, which form bridges, is particularly suitable for this purpose because of its width and its later spacing after expansion. Depending on the size of the holes and as a function of their shape, it is possible to make individual adaptations to the origins of the coronary arteries and also to the guide wires.
It proves particularly expedient if the membrane element for the implantable device has a ring portion and, connected to this, a valve portion. The valve portion preferably comprises three sail elements. A natural valve can in particular be simulated in this way. Provision of a ring portion permits a good anchoring on the main body of the implantable device. The main body is preferably made of a biocompatible material, in particular a metal or a metal alloy, in particular stainless steel, or a plastic such as polycarbonate, in particular a shape-memory material such as nitinol. The membrane element is preferably made of a synthetic or biological material, in particular polyurethane. Main body and membrane element can be connected to one another in a detachable or non-detachable manner. The connection of main body and membrane element can therefore be effected particularly preferably by adhesive bonding, welding, sewing, melting, or immersion, or by another joining technique. The ring portion of the membrane element is preferably chosen so wide that a good hold on the main body is permitted. Since the membrane element is generally made of a very thin material, the ring portion can, for example, be applied as a thin tube onto the main body or inserted into the latter. In this respect, immersion of the main body or application of a thin membrane portion onto the inside or outside of the main body are particularly suitable. In this way, protection is also achieved against the membrane element slipping relative to the main body.
To produce different degrees of stiffness, the material of the main body is particularly preferably treated, at least in one area, by chemical and/or mechanical means, in particular by etching, electropolishing, micro-sectioning or otherwise. Therefore, in addition to weakening of the material of the main body, it is in this way possible to produce different degrees of stiffness in the main body so as to be able to better adapt it to the natural shape of the aorta and ventricle.
To create biological stability, the membrane element can be provided with a coating. When a polyurethane is used as material for the membrane element, it is in this way possible to achieve a greater durability. It is thus possible to prevent the membrane element from shrinking and/or becoming brittle or rigid.
The implantable device according to the invention can be used particularly in the treatment of heart disease in adults, particularly preferably in the treatment of aortic valve incompetence which occurs increasingly with advancing age.
For a more detailed explanation of the invention, illustrative embodiments are described in greater detail below with reference to the drawings, in which:
The membrane element 20 is inserted in the lower portion of the main body shown in
Slightly below the ring portion 21 of the membrane element, two guide openings 16, 17 are provided in the cylindrical central piece 15 of the main body. Guide wires can be guided through the guide openings 16, 17 so that, upon implantation of the implantable device 1, the latter can be guided and maneuvered into the correct position. The guide wires can either be guided from inside through the guide openings 16, 17 or can be engaged into these from the outside.
An area 18 demarcated by broken lines is designed to be more flexible than the other areas 19 (see
The plan view of the implantable device 1 according to
The length of the main body can be chosen shorter than is possible in the prior art, in particular according to DE 101 21 210 A1. The length 1 can be 40 mm for example. Depending on the application, i.e. on the physical conditions of a patient, any other desired dimensions of the main body can be chosen.
In its upper half shown in
In the area of the material section which is intended to form the flexible area 18 of the main body, cuts 33 are additionally provided extending transversely with respect to the parallel cuts. The transversely extending cuts are configured in such a way that parallel cuts arranged next but one are connected to one another. The transversely extending cuts form rounded areas, so that, when the material section is drawn out, no points are formed, but instead only rounded corners of the meshes. The transversely extending cuts 33 mean that the material section is weakened in this area, as a result of which it is more flexible and can be curved in different directions.
Provided between the individual transversely extending cuts 33 there are once again in each case obliquely extending cuts, which again form bridges 34. These bridges on the one hand connect the stiffer areas 19 to the more flexible area 18 and on the other hand connect the two portions 35, 36 of the more flexible area 18 to one another.
The two ends of the main body, that is to say the ends 37, 38 of the material section, have rounded cut elements 39 widened at one end. These rounded cut elements connect next-but-one cuts to one another, and, between these, next-but-one cuts are connected to one another by transversely extending cuts 33. In this way, the meshes of the jacket of the main body can be very easily formed, and yet a traumatic termination at the two ends of the main body can be produced. The risk of injury to the wall of the aorta and/or to an area of the ventricle can thus be substantially avoided.
In some of the obliquely extending cuts 32, punched-out or cut-out holes 40 are additionally provided as guide openings. The holes 40 are not formed in the bridges 34 formed between two obliquely extending cuts, but as partial widening of the cuts. Compared to the hole diameters shown in
The material chosen for the material section 30 is preferably a metal, in particular a shape-memory material such as nitinol. To generate a cylindrical main body with protruding anchoring portions, the two lateral longitudinal edges 41, 42 are connected to one another in the longitudinal direction of the material section, in particular by soldering or welding or adhesive bonding or by another joining technique. The membrane element can thereafter be introduced into the structure of the main body or applied to the latter in the area of its ring portion 21. The ring portion can either be bonded into the structure of the main body or sewn in, welded or otherwise secured. It is also possible to melt it onto or into the structure of the main body, preferably from both sides of the structure of the main body. Immersing the structure of the main body into a suitable material in order to form the membrane element also proves very advantageous since in this case the structure of the main body is likewise wetted with the material of the membrane element on both sides, thus permitting a very good hold of the membrane element on the main body. If a biological membrane element is used, it is particularly suitable to sew the membrane element into the structure of the main body.
Known techniques are used to shape the main body and to impress the selected shape on the preferably used shape-memory material. The implantable device can then be folded up reversibly to such an extent that it fits into a catheter and can be guided through the latter to the implantation site in a patient's heart and can there be deployed reversibly at the implantation site, so that, in the event of inadequate deployment and/or incorrect positioning, it is possible to retract the implantable device back into the catheter and then reposition it again at the implantation site.
For the implantation procedure, a first guide wire 50 is initially introduced through the aortic valve 2 and into the ventricle 6. Further guide wires 51, 52 are then guided into the coronary vessels 3, 4. The guide wires are in each case also engaged through the main body of the implantable device 1. In the position shown in
To detect the position of the catheter and in particular of the implantable device by means of imaging equipment, platinum markers 70 are provided on the catheter in the area of both ends of the implantable device. At its distal end, the catheter forms a tip 54. By providing this tip 54, it is particularly easy to guide the catheter through the natural heart valve 2. The catheter guided through the aortic valve 2 is shown in
To be able to hold the implantable device with its guide openings 16, 17 exactly positioned in front of the origins of the coronary vessels 3, 4 from the aorta 5, the guide wires 51, 52, as can be seen in
In the illustration according to
In addition to the embodiments described above and shown in the drawings, many others are also possible in which the implantable organ valve device in each case comprises, at the ends of the main body of the implantable device, protruding anchoring portions for anchoring the device in an organ and/or a vessel in the human or animal body, or in which the main body for the device is made essentially in one piece, so that it is possible to create a more compact device, and achieve a more efficient production and simpler adaptation to the physical circumstances of individual patients, than is possible in the prior art.
Jung, Johannes, Lê, Trong-Phi
Patent | Priority | Assignee | Title |
10028848, | Dec 06 2011 | Aortic Innovations, LLC | Device for endovascular aortic repair and method of using the same |
10039636, | May 16 2016 | Boston Scientific Scimed, Inc. | Replacement heart valve implant with invertible leaflets |
10080652, | Mar 13 2015 | Boston Scientific Scimed, Inc | Prosthetic heart valve having an improved tubular seal |
10105218, | Nov 09 2007 | Cook Medical Technologies LLC | Aortic valve stent graft |
10136991, | Aug 12 2015 | Boston Scientific Scimed, Inc | Replacement heart valve implant |
10172708, | Jan 25 2012 | Boston Scientific Scimed, Inc. | Valve assembly with a bioabsorbable gasket and a replaceable valve implant |
10179041, | Aug 12 2015 | Boston Scientific Scimed, Inc | Pinless release mechanism |
10195392, | Jul 02 2015 | Boston Scientific Scimed, Inc | Clip-on catheter |
10201416, | May 16 2016 | Boston Scientific Scimed, Inc. | Replacement heart valve implant with invertible leaflets |
10201417, | Feb 03 2015 | Boston Scientific Scimed, Inc | Prosthetic heart valve having tubular seal |
10201418, | Sep 10 2010 | Boston Scientific Medical Device Limited | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
10206774, | Dec 23 2003 | Boston Scientific Scimed Inc. | Low profile heart valve and delivery system |
10258465, | Dec 23 2003 | Boston Scientific Scimed Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
10278805, | Aug 18 2000 | Atritech, Inc. | Expandable implant devices for filtering blood flow from atrial appendages |
10285809, | Mar 06 2015 | Boston Scientific Scimed, Inc | TAVI anchoring assist device |
10299922, | Dec 22 2005 | Boston Scientific Medical Device Limited | Stent-valves for valve replacement and associated methods and systems for surgery |
10314695, | Dec 23 2003 | Boston Scientific Scimed, Inc | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
10314701, | Dec 22 2005 | Boston Scientific Medical Device Limited | Stent-valves for valve replacement and associated methods and systems for surgery |
10314702, | Nov 16 2005 | Edwards Lifesciences Corporation | Transapical method of supplanting an implanted prosthetic heart valve |
10335273, | Dec 23 2003 | Boston Scientific Scimed, Inc | Leaflet engagement elements and methods for use thereof |
10335277, | Jul 02 2015 | Boston Scientific Scimed, Inc | Adjustable nosecone |
10342660, | Feb 02 2016 | Boston Scientific Scimed, Inc | Tensioned sheathing aids |
10357359, | Dec 23 2003 | Boston Scientific Scimed Inc | Methods and apparatus for endovascularly replacing a patient's heart valve |
10413409, | Dec 23 2003 | Boston Scientific Scimed, Inc. | Systems and methods for delivering a medical implant |
10413412, | Dec 23 2003 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
10426605, | Oct 05 2013 | SINO MEDICAL SCIENCES TECHNOLOGY INC | Device and method for mitral valve regurgitation treatment |
10426608, | Dec 23 2003 | Boston Scientific Scimed, Inc. | Repositionable heart valve |
10426617, | Mar 06 2015 | Boston Scientific Scimed, Inc | Low profile valve locking mechanism and commissure assembly |
10449040, | May 05 2004 | SPEYSIDE MEDICAL LLC | Method of treating a patient using a retrievable transcatheter prosthetic heart valve |
10449043, | Jan 16 2015 | Boston Scientific Scimed, Inc | Displacement based lock and release mechanism |
10478289, | Dec 23 2003 | Boston Scientific Scimed, Inc. | Replacement valve and anchor |
10531952, | Nov 05 2004 | Boston Scientific Scimed, Inc. | Medical devices and delivery systems for delivering medical devices |
10549101, | Apr 25 2005 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
10555809, | Jun 19 2012 | Boston Scientific Scimed, Inc. | Replacement heart valve |
10583005, | May 13 2016 | Boston Scientific Scimed, Inc | Medical device handle |
10695171, | Nov 05 2010 | Cook Medical Technologies LLC | Stent structures for use with valve replacements |
10709552, | May 16 2016 | Boston Scientific Scimed, Inc. | Replacement heart valve implant with invertible leaflets |
10716663, | Dec 23 2003 | Boston Scientific Scimed, Inc. | Methods and apparatus for performing valvuloplasty |
10729541, | Jul 06 2017 | TWELVE, INC | Prosthetic heart valve devices and associated systems and methods |
10786352, | Jul 06 2017 | TWELVE, INC | Prosthetic heart valve devices and associated systems and methods |
10792172, | Dec 06 2011 | Aortic Innovations, LLC | Heart valve replacement device for endovascular aortic repair and method of using the same |
10828154, | Jun 08 2017 | Boston Scientific Scimed, Inc | Heart valve implant commissure support structure |
10842655, | Dec 06 2011 | Aortic Innovations, LLC | Device for endovascular aortic repair and method of using the same |
10856973, | Aug 12 2015 | Boston Scientific Scimed, Inc. | Replacement heart valve implant |
10869760, | Sep 10 2010 | Symetis SA | Valve replacement devices, delivery device for a valve replacement device and method of production of a valve replacement device |
10898325, | Aug 01 2017 | Boston Scientific Scimed, Inc. | Medical implant locking mechanism |
10925724, | Dec 23 2003 | Boston Scientific Scimed, Inc. | Replacement valve and anchor |
10939996, | Aug 16 2017 | Boston Scientific Scimed, Inc. | Replacement heart valve commissure assembly |
10993805, | Feb 26 2008 | JenaValve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
11033384, | Nov 09 2007 | Cook Medical Technologies LLC | Aortic valve stent graft |
11065113, | Mar 13 2015 | Boston Scientific Scimed, Inc. | Prosthetic heart valve having an improved tubular seal |
11065138, | May 13 2016 | JENAVALVE TECHNOLOGY, INC | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath and loading system |
11147668, | Feb 07 2018 | Boston Scientific Scimed, Inc | Medical device delivery system with alignment feature |
11154398, | Feb 26 2008 | JenaValve Technology. Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
11185405, | Aug 30 2013 | JenaValve Technology, Inc. | Radially collapsible frame for a prosthetic valve and method for manufacturing such a frame |
11185408, | Dec 23 2003 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
11191641, | Jan 19 2018 | Boston Scientific Scimed, Inc | Inductance mode deployment sensors for transcatheter valve system |
11197754, | Jan 27 2017 | JenaValve Technology, Inc. | Heart valve mimicry |
11229517, | May 15 2018 | Boston Scientific Scimed, Inc | Replacement heart valve commissure assembly |
11241310, | Jun 13 2018 | Boston Scientific Scimed, Inc | Replacement heart valve delivery device |
11241312, | Dec 10 2018 | Boston Scientific Scimed, Inc. | Medical device delivery system including a resistance member |
11246625, | Jan 19 2018 | Boston Scientific Scimed, Inc. | Medical device delivery system with feedback loop |
11266500, | Nov 16 2005 | Edwards Lifesciences Corporation | Transapical heart valve delivery system |
11278398, | Dec 23 2003 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
11285002, | Dec 23 2003 | Boston Scientific Scimed, Inc. | Methods and apparatus for endovascularly replacing a heart valve |
11337800, | May 01 2015 | JenaValve Technology, Inc. | Device and method with reduced pacemaker rate in heart valve replacement |
11357624, | Apr 13 2007 | JenaValve Technology, Inc. | Medical device for treating a heart valve insufficiency |
11382739, | Jun 19 2012 | Boston Scientific Scimed, Inc. | Replacement heart valve |
11382742, | May 13 2016 | Boston Scientific Scimed, Inc. | Medical device handle |
11439504, | May 10 2019 | Boston Scientific Scimed, Inc | Replacement heart valve with improved cusp washout and reduced loading |
11439732, | Feb 26 2018 | Boston Scientific Scimed, Inc | Embedded radiopaque marker in adaptive seal |
11484405, | Jun 16 2004 | Boston Scientific Scimed, Inc. | Everting heart valve |
11517431, | Jan 20 2005 | JenaValve Technology, Inc. | Catheter system for implantation of prosthetic heart valves |
11554011, | Nov 05 2010 | Cook Medical Technologies LLC | Stent structures for use with valve replacements |
11564794, | Feb 26 2008 | JenaValve Technology, Inc. | Stent for the positioning and anchoring of a valvular prosthesis in an implantation site in the heart of a patient |
11589981, | May 25 2010 | JenaValve Technology, Inc. | Prosthetic heart valve and transcatheter delivered endoprosthesis comprising a prosthetic heart valve and a stent |
11602428, | Nov 05 2010 | Cook Medical Technologies LLC | Stent structures for use with valve replacements |
11654021, | Apr 18 2017 | Twelve, Inc. | Prosthetic heart valve device and associated systems and methods |
11696825, | Dec 23 2003 | Boston Scientific Scimed, Inc. | Replacement valve and anchor |
11730595, | Jul 02 2015 | Boston Scientific Scimed, Inc. | Adjustable nosecone |
11771544, | May 05 2011 | Symetis SA | Method and apparatus for compressing/loading stent-valves |
11877926, | Jul 06 2017 | Twelve, Inc. | Prosthetic heart valve devices and associated systems and methods |
11911270, | Nov 05 2010 | Cook Medical Technologies LLC | Stent structures for use with valve replacements |
12121438, | Nov 16 2005 | Edwards Lifesciences Corporation | Transapical heart valve delivery system |
12121461, | Mar 20 2015 | JENAVALVE TECHNOLOGY, INC | Heart valve prosthesis delivery system and method for delivery of heart valve prosthesis with introducer sheath |
12171658, | Nov 09 2022 | JenaValve Technology, Inc. | Catheter system for sequential deployment of an expandable implant |
7771467, | Nov 03 2006 | The Cleveland Clinic Foundation | Apparatus for repairing the function of a native aortic valve |
8052749, | Dec 23 2003 | Boston Scientific Scimed, Inc | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
8062357, | Dec 23 2003 | Sadra Medical, Inc. | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
8182528, | Dec 23 2003 | Boston Scientific Scimed, Inc | Locking heart valve anchor |
8211170, | Nov 05 2004 | Sadra Medical, Inc. | Medical devices and delivery systems for delivering medical devices |
8231670, | Dec 23 2003 | Boston Scientific Scimed, Inc | Repositionable heart valve and method |
8246678, | Dec 23 2003 | Boston Scientific Scimed, Inc | Methods and apparatus for endovascularly replacing a patient's heart valve |
8252052, | Dec 23 2003 | Boston Scientific Scimed, Inc | Methods and apparatus for endovascularly replacing a patient's heart valve |
8328868, | Nov 05 2004 | Boston Scientific Scimed, Inc | Medical devices and delivery systems for delivering medical devices |
8343213, | Dec 23 2003 | Boston Scientific Scimed, Inc | Leaflet engagement elements and methods for use thereof |
8579962, | Dec 23 2003 | Boston Scientific Scimed, Inc | Methods and apparatus for performing valvuloplasty |
8603160, | Dec 23 2003 | Boston Scientific Scimed, Inc | Method of using a retrievable heart valve anchor with a sheath |
8617236, | Nov 05 2004 | Boston Scientific Scimed, Inc | Medical devices and delivery systems for delivering medical devices |
8623076, | Dec 23 2003 | Boston Scientific Scimed, Inc | Low profile heart valve and delivery system |
8623078, | Dec 23 2003 | Boston Scientific Scimed, Inc | Replacement valve and anchor |
8668733, | Jun 16 2004 | Boston Scientific Scimed, Inc | Everting heart valve |
8715337, | Nov 09 2007 | Cook Medical Technologies LLC | Aortic valve stent graft |
8771336, | Aug 21 2010 | MEDICAL ENGINEERING AND DEVELOPMENT INSTITUTE, INC ; Cook Medical Technologies LLC | Endoluminal prosthesis comprising a valve replacement and at least one fenestration |
8828078, | Dec 23 2003 | Boston Scientific Scimed, Inc | Methods and apparatus for endovascular heart valve replacement comprising tissue grasping elements |
8840662, | Dec 23 2003 | Boston Scientific Scimed, Inc | Repositionable heart valve and method |
8840663, | Dec 23 2003 | Boston Scientific Scimed, Inc | Repositionable heart valve method |
8858620, | Dec 23 2003 | Boston Scientific Scimed, Inc | Methods and apparatus for endovascularly replacing a heart valve |
8894703, | Dec 23 2003 | Boston Scientific Scimed, Inc | Systems and methods for delivering a medical implant |
8940040, | Dec 06 2011 | Aortic Innovations, LLC | Device for endovascular aortic repair and method of using the same |
8992608, | Jun 16 2004 | Boston Scientific Scimed, Inc | Everting heart valve |
8998976, | Jul 12 2011 | Boston Scientific Scimed, Inc. | Coupling system for medical devices |
9005273, | Dec 23 2003 | Boston Scientific Scimed, Inc | Assessing the location and performance of replacement heart valves |
9011521, | Dec 23 2003 | Boston Scientific Scimed, Inc | Methods and apparatus for endovascularly replacing a patient's heart valve |
9199085, | Apr 25 2005 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
9277991, | Dec 23 2003 | Boston Scientific Scimed, Inc | Low profile heart valve and delivery system |
9308085, | Dec 23 2003 | Boston Scientific Scimed, Inc | Repositionable heart valve and method |
9320599, | Dec 23 2003 | Boston Scientific Scimed, Inc | Methods and apparatus for endovascularly replacing a heart valve |
9339399, | Dec 06 2011 | Aortic Innovations, LLC | Device for endovascular aortic repair and method of using the same |
9358106, | Dec 23 2003 | Boston Scientific Scimed, Inc | Methods and apparatus for performing valvuloplasty |
9358110, | Nov 05 2004 | Boston Scientific Scimed, Inc | Medical devices and delivery systems for delivering medical devices |
9370421, | Dec 03 2011 | Boston Scientific Scimed, Inc. | Medical device handle |
9393111, | Jan 15 2014 | SINO MEDICAL SCIENCES TECHNOLOGY INC | Device and method for mitral valve regurgitation treatment |
9393113, | Dec 23 2003 | Boston Scientific Scimed, Inc | Retrievable heart valve anchor and method |
9415225, | Apr 25 2005 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
9526609, | Dec 23 2003 | Boston Scientific Scimed, Inc | Methods and apparatus for endovascularly replacing a patient's heart valve |
9532872, | Dec 23 2003 | Boston Scientific Scimed, Inc | Systems and methods for delivering a medical implant |
9585749, | Dec 23 2003 | Boston Scientific Scimed, Inc | Replacement heart valve assembly |
9585750, | Dec 23 2003 | Boston Scientific Scimed, Inc | Methods and apparatus for endovascularly replacing a patient's heart valve |
9649495, | Apr 25 2005 | Cardiac Pacemakers, Inc. | Method and apparatus for pacing during revascularization |
9662207, | Nov 16 2005 | Edwards Lifesciences Corporation | Transapical method of delivering prosthetic heart valve |
9744035, | Jun 16 2004 | Boston Scientific Scimed, Inc. | Everting heart valve |
9788942, | Feb 03 2015 | Boston Scientific Scimed, Inc | Prosthetic heart valve having tubular seal |
9861476, | Dec 23 2003 | Boston Scientific Scimed, Inc | Leaflet engagement elements and methods for use thereof |
9861477, | Jan 26 2015 | Boston Scientific Scimed, Inc | Prosthetic heart valve square leaflet-leaflet stitch |
9872768, | Nov 05 2004 | Boston Scientific Scimed, Inc. | Medical devices and delivery systems for delivering medical devices |
9901445, | Nov 21 2014 | Boston Scientific Scimed, Inc | Valve locking mechanism |
9956075, | Dec 23 2003 | Boston Scientific Scimed Inc. | Methods and apparatus for endovascularly replacing a heart valve |
ER327, | |||
ER4618, |
Patent | Priority | Assignee | Title |
3714671, | |||
4816029, | May 07 1981 | MEDTRONIC, INC , 7000 CENTRAL AVENUE, N E , MINNEAPOLIS, MINNESOTA 55432, A MN CORP | Stent for aortic heart valve |
5728158, | Oct 28 1991 | Advanced Cardiovascular Systems, Inc. | Expandable stents |
5855597, | May 07 1997 | Vascular Concepts Holdings Limited | Stent valve and stent graft for percutaneous surgery |
6290728, | Sep 10 1998 | HORIZON TECHNOLOGY FUNDING COMPANY LLC | Designs for left ventricular conduit |
6425916, | Feb 10 1999 | Heartport, Inc | Methods and devices for implanting cardiac valves |
6440164, | Oct 21 1999 | Boston Scientific Scimed, Inc | Implantable prosthetic valve |
6458153, | Dec 31 1999 | VACTRONIX SCIENTIFIC, LLC | Endoluminal cardiac and venous valve prostheses and methods of manufacture and delivery thereof |
6482228, | Nov 14 2000 | Percutaneous aortic valve replacement | |
6508835, | Dec 11 1998 | Endologix LLC | Endoluminal vascular prosthesis |
6752828, | Apr 03 2002 | SciMed Life Systems, Inc. | Artificial valve |
7201771, | Dec 26 2002 | Medtronic, Inc | Bioprosthetic heart valve |
20020138135, | |||
20020193871, | |||
20030153943, | |||
20040102855, | |||
20050283231, | |||
20060106450, | |||
20060212110, | |||
DE10118944, | |||
DE10121210, | |||
DE19624948, | |||
DE3441478, | |||
DE69101385, | |||
EP592410, | |||
EP928606, | |||
EP1044663, | |||
EP1057460, | |||
EP1302179, | |||
JP2001000460, | |||
WO9746177, |
Executed on | Assignor | Assignee | Conveyance | Frame | Reel | Doc |
Oct 28 2001 | JUNG, JOHANNES | pfm, Produkte fur die Medizin AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015369 | /0029 | |
Jul 28 2004 | pfm, Produkte fur die Medizin AG | (assignment on the face of the patent) | / | |||
Oct 28 2004 | LE, TRONG-PHI | pfm, Produkte fur die Medizin AG | ASSIGNMENT OF ASSIGNORS INTEREST SEE DOCUMENT FOR DETAILS | 015369 | /0029 | |
Dec 16 2009 | pfm, Produkte fur die Medizin AG | PFM MEDICAL AG | CHANGE OF NAME SEE DOCUMENT FOR DETAILS | 025885 | /0124 |
Date | Maintenance Fee Events |
May 12 2009 | ASPN: Payor Number Assigned. |
Sep 20 2012 | M1551: Payment of Maintenance Fee, 4th Year, Large Entity. |
Sep 20 2016 | M1552: Payment of Maintenance Fee, 8th Year, Large Entity. |
Nov 16 2020 | REM: Maintenance Fee Reminder Mailed. |
May 03 2021 | EXP: Patent Expired for Failure to Pay Maintenance Fees. |
Date | Maintenance Schedule |
Mar 31 2012 | 4 years fee payment window open |
Oct 01 2012 | 6 months grace period start (w surcharge) |
Mar 31 2013 | patent expiry (for year 4) |
Mar 31 2015 | 2 years to revive unintentionally abandoned end. (for year 4) |
Mar 31 2016 | 8 years fee payment window open |
Oct 01 2016 | 6 months grace period start (w surcharge) |
Mar 31 2017 | patent expiry (for year 8) |
Mar 31 2019 | 2 years to revive unintentionally abandoned end. (for year 8) |
Mar 31 2020 | 12 years fee payment window open |
Oct 01 2020 | 6 months grace period start (w surcharge) |
Mar 31 2021 | patent expiry (for year 12) |
Mar 31 2023 | 2 years to revive unintentionally abandoned end. (for year 12) |